• Cerveau

Télencéphale

Cellules Gliales

- Forme cellulaire majoritaire (90% des cellules du cerveau)
- Taille inférieure à celle des neurones (5 à 50fois)
- Pas de contacts synaptiques
- Présentes au niveau du SNC & SNP
- Nombreux types cellulaires

NP Oligodendrocytes Astrocytes Ependymocytes Cellules de Schwann Microglies Cellules Satellites

Télencéphale

Cellules Gliales

☑ Astrocytes

- Origine Neuro-ectodermique
- Petite taille (*Diamètre de 6 à 11 µm*)
- Cellules gliales de soutien dans le tissu neuronale —— Relation astrogliose/pathologies

Télencéphale

⊡Cellules Gliales **⊡**Astrocytes

- Expression de GFAP (glial fibrillary acid protein)
- Expression de la *glutamine synthetase* & *S100B*
- Présence dans l'ensemble du CNS
- Distribution non-chevauchante et contigue
- Présence Astrocytomes protoplasmique : 5 à 10 branches , chacune en plusieurs branches
- *Ex Hippocampe : 100000 synapses / astrocyte*

Télencéphale

Cellules Gliales

⊠Astrocytes

- Expression de canaux potassique & sodiques
- Existence de courant astrocytaire
- Pas de déclenchement ou prolongation du PA
- Excitabilité des astrocytomes (concentration du Ca2+ intracellulaire)

Rôle dans le développement

- Développement après production des neurones
- guidage axonal des neurones et neuroblastes
- Formation et fonction des synapses : relargage de la *Thrombospondine*
- Limitation de la croissance synaptique par production de C1q

Télencéphale

Cellules Gliales

⊠Astrocytes

Régulation du flux sanguin

- Interactions bi-directionnelles
- Régulation du flux sanguin local (SNC) en réponse à l'activité neuronale
- Augmentation ou diminution du diamètre des vaisseaux :
 production PGE / NO / AA
- Expression des AQP4 & transporteur K+
- Enveloppement des synapses et maintien de l'homéostasie synaptique
- Homéostasie synaptique par recapture des neurotransmetteurs

Efficacité de la transmission synaptique

- Régulation du relargage pré-synaptique : gliotransmetteurs
- "Synapse tripartite"

Télencéphale

Cellules Gliales

⊠Astrocytes

Métabolisme & énergie

- Intermédiaire flux sanguin/neurones : Glucose & métabolites
- Site principal de stockage du glycogène
- Précurseur de la BHE ?????

Bordering along regions

of tissue damage & inflammation due to: • *Trauma* • *Ischemia*

Cytotoxicity

Infection
 Autoimmune

inflammation

Neoplasm

Inflammatory cells,

Infectious agents, Non-CNS cells etc.

Glial sca Barrier

TélencéphaleImage: Cellules Gliales

Cellules Ependymaires

- Cellules ciliées : *ependymocytes*
- Localisation : Cavités ventriculaires
- Apparition : long du tube neural : 26-28 semaines
- Morphologie : cuboide sous forme de colonne oligodendrocytes de du SNC (voir plus loin).
- Noyau : rond, chroma
- Microvillosités et long
- Espace entre astrocyte
- Faible capacité prolifé
- Surface basale : expres
- Nettoyage et detoxific
- Rôle des microvillosit
- Rôle de Vax1 dans la différenciation
- Les cellules microgliales, ou *microglie*, font partie d'un
 Boucle autocrine / parisérime de tentres spécialisées anne le hettoyage des tissus par l'ingurgitation des déchets, leur destruction et
- Expression de GLUTteu/ Gliminationas Elles Ale Pent des monocytes (variété de globules blancs) du sang ayant pénétré dans le SNC.
- Boucle autocrine / parescrine (Lutes fanterug hates croins and avail penetre dans le site. principales cellules présentatrices de l'antigène. Elles

le

Guidage Axonal

Immuno-marquage d'olic mis en culture et visualis fluorescence. Le noy apparait en bleu grâc

2.5. Les cellules m

Télencéphale MCellules Gliales

Oligodendrocytes

- Origine : Progeniteurs d'oligodendrocytes (OPCs)
- Origine : zone ventriculaire ventrale
- Origine : moelle épinière dorsale
- Cellules myélinisante du SNC
- Développement sous l'action de PDGF
- Migration sous l'action de facteurs de croissance
- OPC ----- Oligodendrocytes : signalisation Notch via Jagged-1/ Gamma-secretase
- Myélinisation : bref via les oligodendrocytes immatures
- Choix de la myélinisation : saxon de diamètre 0.2um
- Niveau périphérique : myélinisation via cellules de Schwann : interaction NRG1/Erbb
- Déclenchement de la myélinisation : activité électrique
- 3X poids et support de 100X le poids
- Utilisation importante de l'ATP & O2 : ROS product

TélencéphaleImage: Cellules Gliales

MOligodendrocytes

Protein	Developmental stage	Comments
Carbonic anhydrase II	Differentiated oligodendrocytes	Not only oligodendrocytes interspecies differences
CNP	OPC, differentiated oligodendrocytes	Highly specific and reliable; tolerates prolonged fixation poorly
GalC galactosylceramide	Differentiating OPC, mature oligodendrocytes	PFA/cryo-sections only
Kir4.1	Differentiated oligodendrocytes	Also in astrocytes
MBP myelin basic protein	Differentiated oligodendrocytes	Mainly myelin, in oligodendrocytes only during active remyelination
MAG	Differentiated oligodendrocytes	Periaxonal loop of oligodendrocyte processes in mature myelin, heavily expressed in myelinating oligodendrocytes
MOG myelin oligodendrocyte glycoprotein	Differentiated oligodendrocytes	Mainly myelin, surface labeling of mature oligodendrocytes
NG2	OPC	PFA/cryo; positive in OPCs in well fixed experimental and biopsy material; frequently lost in autopsy material; autolysis sensitive
Nkx2.2	High in OPC, low in mature oligodendrocytes	
Nogo A	Mature oligodendrocytes	
04	OPC, mature oligodendrocytes	PFA/cryo-sections only
Olig2	High in OPC, low in mature oligodendrocytes	
PLP proteolipid protein	Differentiated oligodendrocytes	Mainly myelin, in oligodendrocytes only during active remyelination
RIP	Myelinating oligodendrocytes	
TPPP/p25	Myelinating oligodendrocytes	Mature oligodendrocytes, highly reliable in human tissue

S100

MBP

Α

neural crest cell

Télencéphale

Cellules Gliales Cellules de Schwann

- Cellules gliales principales du SNP
- Fonction principale : formation de la gaine de myéline
- Rôle dans le développement du SNP : guidage axonal
- Elimination des débris •
- Pas de transmission synaptique
- Division continue : rôle dans les traitements postlesions
- Développement depuis la crête neurale •
- Rôle de la protéine P0 (MPZ) : Changement de concentration en fonctionne l'interaction avec l'axon
- Myélinastion diamètre axonal dépendante
- Dépendance par rapport au message neuronal en fonction du stage de maturation

Non-myelinating SC

Télencéphale

Cellules Gliales Cellules de Schwann

- Développement sous l'action de BMP/FGF : activation de la voie Wnt
- Action principale de Sox10, NRG-1, HDAC-1, HDAC-2
- Action de la signalisation NRG-1/Erbb2,3
- Rôle de NRG-III dans le processus de myélinisation
- Role de GDNF & NT-3 dans la formation des noeud de Ranvier & perineurium
- F-Spondin dans l'élongation axonale

Télencéphale

Cellules Gliales Microglies

- Cellules gliales
- Origine : "mesoderme" ???
- Pas de marqueurs spécifiques, mais : Iba1/MRF-1, GLUT5, CD163, CD209b, CCR2, nestin, CD34, TLR-2, TLR-4
- Développement : 5 gw : apparition des microglies intracerebrales (meninges & plexus choroide)
- Développement : 10-12 gw :expression de Iba1/RCA-1/CD68?/CD45
- Développement : 10-16 gw :expression de la taille et de la densité cellulaire
- Role dans la vascularisation de la rétine
- Role majeur dans la phagocytose des débris cellulaires
- Role de capteur " microglia sensor" : détection de synapse défectueuses & réparation
- Chimio-attraction : expression de AMPA & GABA-R : role dans le décapage synaptique
- Relation age / dystrophie des microglies
- Activation différente selon stress Vs Infection/inflammation

Télencéphale

Cellules Gliales Microglies

- Activation différente selon stress Vs Infection/inflammation
- Zinc, CD38, activation P2X7R
- Famille heterogene, mais on distingue

Microglie M1 : activation classique

- TNFa / Il-1b /NO/ ROS / Proteases
- Réponse aux infections et lésions

Microglie M2 : activation alternative & desactivation acquise

- IL-4 / IL-13/NO/ ROS / Proteases
- IGF-1
- " soulagement" de l'inflammation aigue
- captation des cellules apopototique
- sensibilité IL-10 & TGF-b
- SRA & CD163

widespread microglial degeneration leads to slow neurodegeneration

Télencéphale

Cellules Gliales Microglies

Microglie M1 : activation classique

- Relargage de molecules pro-inflammatoires
- Réponse aux infections et lésions

Microglie M2 : activation alternative & desactivation acquise

