

Faculté de Technologie Département de Technologie L1 (ST)

Mathématiques 1

(Analyse et Algèbre)

M'hamdi Mohammed Salah

Table des matières

1	\mathbf{Log}	Logiques et méthodes du raisonement mathématiques				
2	Ens	embles	s, Relations et Applications	3		
3	Fon	ctions	réelles à une variable	3		
	3.1	Généra	alités sur les fonctions numériques	3		
				5		
		3.2.1	Limite en un point	5		
		3.2.2	Limite en l'infini	7		
		3.2.3	Les formes indéterminées	8		
		3.2.4	Propriétés sur les limites	8		
	3.3	Contin	nuité d'une fonction	9		
		3.3.1	Continuité en un point	9		
		3.3.2	Continuité sur un intervalle	12		
	3.4	Dériva	abilité d'une fonction	13		
		3.4.1	Définitions et propriétés	13		

3.4.2	Opérations sur les fonctions dérivables	16
3.4.3	Théorèmes fondamentaux sur les fonctions dérivables	17

- 1 Logiques et méthodes du raisonement mathématiques
- 2 Ensembles, Relations et Applications
- 3 Fonctions réelles à une variable
- 3.1 Généralités sur les fonctions numériques

Soit X un intervalle de \mathbb{R} .

1. On appelle fonction numérique définie dans un domaine X (on dit aussi fonction réelle), toute application f telle que à chaque point x de X, on fait correspondre un seul élément y de \mathbb{R} . Et on écrit

$$f: X \to \mathbb{R}$$

 $x \mapsto f(x),$

X est le domaine de définition de la fonction f.

2. On appelle graphe d'une fonction $f: X \to \mathbb{R}$, l'ensemble

$$G(f) = \{(x, y)/x \in X \text{ et } y = f(x)\}.$$

- 3. Opérations sur les fonctions réelles Soient $f, g: X \to \mathbb{R}$.
 - (a) On dit que f est égale à g si et seulement si $f(x) = g(x), \forall x \in X$.
 - (b) On dit que f est inférieure ou égale à g si et seulement si $f(x) \leq g(x)$, $\forall x \in X$.
 - (c) On dit que f est supérieure ou égale à g si et seulement si $f(x) \ge g(x)$, $\forall x \in X$.
 - (d) La somme : $(f+g)(x) = f(x) + g(x), \forall x \in X$.
 - (e) Le produit : $(f.g)(x) = f(x).g(x), \forall x \in X$.
 - (f) Le rapport : $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}, \forall x \in X \text{ et } g(x) \neq 0.$
- 4. Propriétés générales des fonctions
 - (a) Une fonction $f: X \to \mathbb{R}$ est dite paire si :

$$\forall x \in X, -x \in X \text{ on } a \ f(-x) = f(x).$$

Exemple 3.1. $f(x) = \cos(x)$ est paire car on a

$$f(-x) = \cos(-x) = \cos(x) = f(x).$$

(b) Une fonction $f: X \to \mathbb{R}$ est dite impaire si :

$$\forall x \in X, -x \in X \text{ on } a \ f(-x) = -f(x).$$

Exemple 3.2. $f(x) = \sin(x)$ est impaire car on a

$$f(-x) = \sin(-x) = -\sin(x) = f(x).$$

- (c) On dit qu'une fonction $f: X \to \mathbb{R}$ est périodique si $\exists \alpha \in \mathbb{R}^{+*}$ tel que
 - i. $x + \alpha \in X$,
 - ii. $f(x + \alpha) = f(x)$.

La plus petite valeur positive de α est appelée la période de f.

Exemple 3.3. Les fonctions sinus et cosinus sont 2π -périodiques. La fonction tangente est π -périodique. Pour tout $x \in \mathbb{R}$ et tout $k \in \mathbb{Z}$ on $a : \cos(x+2k\pi) = \cos(x)$, et $\alpha = 2\pi$ est la période de la fonction $\cos(x)$ définie sur \mathbb{R} .

- (d) Fonctions monotones. Soit $f: X \to \mathbb{R}$, f est dite
 - i. croisssante si $\forall x_1, x_2 \in X, x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2);$
 - ii. strictement croisssante si $\forall x_1, x_2 \in X, x_1 < x_2 \Rightarrow f(x_1) < f(x_2);$
 - iii. décroisssante si $\forall x_1, x_2 \in X, x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2);$
 - iv. strictement décroisssante si $\forall x_1, x_2 \in X, x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$. **Exemple 3.4.** Les fonctions exponentielle $exp : \mathbb{R} \to \mathbb{R}$ et logarithme $ln :]0, +\infty[\to \mathbb{R}$ sont strictement croissantes.
- (e) Fonctions bornées. La fonction f est dite
 - i. majorée sur X si $\exists M \in \mathbb{R} : f(x) < M, \forall x \in X$;
 - ii. minorée sur X si $\exists m \in \mathbb{R} : f(x) \geq m, \forall x \in X$;
 - iii. bornée sur X si $\exists M, n \in \mathbb{R} : m \leq f(x) \leq M, \forall x \in X$;

Exemple 3.5. La fonction $f(x) = \sin(x)$ est bornée car on a :

$$-1 \le \sin(x) \le 1, \ \forall \ x \in \mathbb{R}.$$

Exemple 3.6. 1. $f(x) = x^2$ est une fonction paire, $\forall x \in \mathbb{R}$;

- 2. f(x) = x est une fonction impaire, $\forall x \in \mathbb{R}$;
- 3. $f(x) = \frac{x^2}{1+x^2}$ est une fonction paire, $\forall x \in \mathbb{R}$;
- 4. f(x) = sin(x) est une fonction impaire, $\forall x \in \mathbb{R}$;
- 5. $f(x) = \frac{\sin(x)}{x}$ est une fonction paire, $\forall x \in \mathbb{R}^*$;
- 6. f(x) = cos(x) est une fonction paire, $\forall x \in \mathbb{R}$.

3.2 Limite d'une fonction

3.2.1 Limite en un point

Définition 3.1. Soit $f: X \to \mathbb{R}$ une fonction définie sur un intervalle X de \mathbb{R} . Soit $x_0 \in \mathbb{R}$ un point de X ou une extrémité de X. Le nombre l est dit limite de f lorsque x tend vers x_0 si

$$\forall \epsilon > 0, \ \exists \delta = \delta(\epsilon) > 0, \ \forall x \in X, \ [\mid x - x_0 \mid < \delta \Rightarrow \mid f(x) - l \mid < \epsilon].$$

On dit aussi que f(x) tend vers l lorsque x tend vers x_0 et on écrit $l = \lim_{x \to x_0} f(x)$.

Remarque 3.1. N'oubliez pas que l'ordre des quantificateurs est important, on ne peut pas échanger le $\forall \epsilon$ avec le $\exists \delta$: le δ dépend en général du ϵ . Pour marquer cette dépendance on écrit $\delta(\epsilon)$.

Exemple 3.7. 1. Montrer que la fonction f(x) = 7x - 3 admet pour limite l = 11 en x = 2. On a

$$| f(x) - l | = | (7x - 3) - 11 |$$

= $| 7x - 14 |$
= $| 7(x - 2) |$
= $7 | x - 2 |$,

de plus

$$|f(x) - l| < \epsilon \implies 7 |x - 2| < \epsilon$$

 $\Rightarrow |x - 2| < \frac{\epsilon}{7},$

donc

$$\forall \epsilon > 0, \ \exists \delta = \frac{\epsilon}{7} > 0, \ \forall x \in \mathbb{R}, \left[\mid x - 2 \mid < \delta = \frac{\epsilon}{7} \Rightarrow \mid f(x) - 11 \mid < \epsilon \right].$$

2. Calculer la limite des fonctions suivantes :

$$\lim_{x \to -3} (3x+2) = -7, \ \lim_{x \to 1} (x-1)^2 = 0, \ \lim_{x \to 0} \frac{\sin(x)}{x} = 1, \ \lim_{x \to 2} \frac{(x^2-9)}{x-3} = 6,$$
$$\lim_{x \to 2} \frac{(x^2-4)}{x-2} = 4, \ (ici \ \frac{(x^2-4)}{x-2} \ n'est \ pas \ définie \ en \ 2).$$

Proposition 3.2. Si f admet une limite en un point x_0 , cette limite est unique.

Exemple 3.8. Calculer la limite des fonctions suivantes : $\lim_{x\to 0} \sin(\frac{1}{x})$ n'est pas unique, elle est entre [-1,1], donc elle n'existe pas.

Définition 3.3. Soit f une fonction définie sur un ensemble X de la forme $[a, x_0[\cup]x_0, b[$.

On dit que f a pour limite $+\infty$ en x_0 et on écrit $\lim_{x\to x_0} f(x) = +\infty$ si

$$\forall A > 0, \ \exists \delta > 0, \ \forall x \in X, [\mid x - x_0 \mid < \delta \Rightarrow f(x) > A].$$

On dit que f a pour limite $-\infty$ en x_0 et on écrit $\lim_{x\to x_0} f(x) = -\infty$ si

$$\forall A > 0, \ \exists \delta > 0, \ \forall x \in X, \ [\mid x - x_0 \mid < \delta \Rightarrow f(x) < -A].$$

Remarque 3.2.

Soit la fonction $f(x) = \sqrt{x}$ définie sur $[0, +\infty[$. f est définie uniquement à droite de 0, donc

$$\lim_{x \to x_0} f(x) = \lim_{\substack{> \\ x \to x_0}} f(x) = \lim_{x \to x_0^+} f(x),$$

d'où la nécessité d'introduire les deux notions suivantes :

- 1. On dit que f a une limite à droite en x_0 si $\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x)$ existe et finie.
- 2. On dit que f a une limite à gauche en x_0 si $\lim_{\substack{x \ x \to x_0}} f(x)$ existe et finie.

Exemple 3.9. On a

$$\lim_{\substack{x \to 1 \\ x \to 1}} \frac{1}{(x-1)^3} = +\infty, \ \lim_{\substack{x \to 1 \\ x \to 1}} \frac{1}{(x-1)^3} = -\infty.$$

Théorème 3.4. $\lim_{x\to x_0} f(x)$ existe si et seulement si $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} f(x) = l$ $(l \in \mathbb{R})$ existe, finie et unique.

Remarque 3.3. $\lim_{\substack{x \\ x \to x_0}} f(x) \neq \lim_{\substack{x \\ x \to x_0}} f(x) \Leftrightarrow \lim_{\substack{x \to x_0}} f(x)$ n'existe pas.

Exemple 3.10. Soit la fonction f définie comme suit

$$f(x) = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0. \end{cases}$$

On remarque que

$$\lim_{\substack{> \\ x \to 0}} f(x) = \lim_{\substack{> \\ x \to 0}} x = 0$$

et

$$\lim_{\substack{< \\ x \to 0}} f(x) = \lim_{\substack{< \\ x \to 0}} -x = 0,$$

donc la limite en 0 existe et égale à 0 c'est-à-dire $\lim_{x\to 0} f(x) = 0$.

Exemple 3.11. Soit la fonction g définie comme suit

$$g(x) = \begin{cases} x+1 & \text{si } x \ge 0\\ x-1 & \text{si } x < 0. \end{cases}$$

On remarque que

$$\lim_{x \to 1} g(x) = \lim_{x \to 0} x + 1 = 1$$

et

$$\lim_{\substack{< \\ x \to 0}} g(x) = \lim_{\substack{< \\ x \to 0}} x - 1 = -1$$

donc $\lim_{x\to 0} g(x)$ n'existe pas.

3.2.2 Limite en l'infini

Définition 3.5. Soit $f: X \to \mathbb{R}$ une fonction définie sur un ensemble X de la forme $]a, +\infty[$.

Le nombre l est dit limite de f lorsque x tend vers $+\infty$ si

$$\forall \epsilon > 0, \ \exists B > 0, \ \forall x \in X, [x > B \Rightarrow |f(x) - l| < \epsilon].$$

On dit aussi que f(x) tend vers l lorsque x tend vers $+\infty$ et on écrit $l=\lim_{x\to+\infty}f(x)$. On dit que f a pour limite $+\infty$ en $+\infty$ et on écrit $\lim_{x\to+\infty}f(x)=+\infty$ si

$$\forall A > 0, \ \exists B > 0, \ \forall x \in X, [x > B \Rightarrow f(x) > A].$$

Remarque 3.4. On définirait de la même manière la limite en $-\infty$ pour des fonctions définies sur les intervalles du type $]-\infty, a[$.

$+\infty-\infty$	$\underline{\infty}$	0	$0 \times \infty$
$+\omega-\omega$	$\overline{\infty}$	$\overline{0}$	

Table 1 – Quelques formes indéterminées

3.2.3 Les formes indéterminées

Voici quelques formes indéterminées (FI) dans le tableau (1) suivant :

Exemple 3.12.

1.

$$\lim_{x \to 0} (\frac{1}{x} - \frac{1}{x^2}) = \lim_{x \to 0^+} (\frac{1}{x} - \frac{1}{x^2}) = +\infty - \infty (FI)$$
$$= \lim_{x \to 0^+} \frac{1}{x} (1 - \frac{1}{x}) = +\infty \times (-\infty) = -\infty.$$

2.

$$\lim_{x \to +\infty} (\sqrt{x^2 + 3x - 4} - x) = \lim_{x \to +\infty} \frac{(\sqrt{x^2 + 3x - 4} - x) \times (\sqrt{x^2 + 3x - 4} + x)}{(\sqrt{x^2 + 3x - 4} + x)}$$

$$= \lim_{x \to +\infty} \frac{3x - 4}{(\sqrt{x^2 + 3x - 4} + x)}$$

$$= \lim_{x \to +\infty} \frac{x(3 - \frac{4}{x})}{x(\sqrt{x + 3 - \frac{4}{x}} + 1)}$$

$$= \lim_{x \to +\infty} \frac{(3 - \frac{4}{x})}{(\sqrt{x + 3 - \frac{4}{x}} + 1)}$$

$$= \frac{3}{2}.$$

3.

$$\lim_{x \to -\infty} \frac{3x - 4}{x + 2} = \lim_{x \to -\infty} \frac{x(3 - \frac{4}{x})}{x(1 + \frac{2}{x})}$$
$$= \lim_{x \to -\infty} \frac{(3 - \frac{4}{x})}{(1 + \frac{2}{x})} = 3.$$

3.2.4 Propriétés sur les limites

Proposition 3.6. Soient f, g deux fonctions définies dans un voisinage de x_0 et telle que $\lim_{x\to x_0} f(x) = l_1$ et $\lim_{x\to x_0} g(x) = l_2$, alors on a

1.
$$\lim_{x \to x_0} [f(x) \pm g(x)] = l_1 \pm l_2$$
.

2.
$$\lim_{x \to x_0} [f(x) \times g(x)] = l_1 \times l_2$$
.

3.
$$\lim_{x \to x_0} \lambda \pm g(x) = \lambda l_2$$
, pour tout $\lambda \in \mathbb{R}$.

4.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$$
, $si \lim_{x \to x_0} g(x) \neq 0$.

5.
$$\lim_{x \to x_0} |f(x)| = |l_1|$$
.

Théorème 3.7. Soient f, g, h trois fonctions définies dans un intervalle X (un voisinage de x_0) et telle que

$$f(x) \le g(x) \le h(x), \ \forall x \in X.$$

$$Si \lim_{x \to x_0} f(x) = l = \lim_{x \to x_0} h(x), \ alors \lim_{x \to x_0} g(x) = l.$$

Exemple 3.13. Etudier la limite de $f(x) = x^2 \sin(\frac{1}{x})$ en 0. $\forall x \in \mathbb{R}^*$, on a

$$-1 \le \sin(\frac{1}{x}) \le 1 \quad \Rightarrow \quad -x^2 \le x^2 \sin(\frac{1}{x}) \le x^2$$

$$\Rightarrow \quad \lim_{x \to +\infty} (-x^2) \le \lim_{x \to +\infty} (x^2 \sin(\frac{1}{x})) \le \lim_{x \to +\infty} (x^2)$$

$$\Rightarrow \quad 0 \le \lim_{x \to +\infty} (x^2 \sin(\frac{1}{x})) \le 0$$

En utilisant le théorème précédent, on obtient $\lim_{x \to +\infty} (x^2 \sin(\frac{1}{x})) = 0$.

3.3 Continuité d'une fonction

3.3.1 Continuité en un point

Définition 3.8. Soit $f: X \to \mathbb{R}$ une fonction définie sur un intervalle X de \mathbb{R} et x_0 un point de X.

• On dit que f est continue en un point x_0 si

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \forall x \in X, \ [\mid x - x_0 \mid < \delta \Rightarrow \mid f(x) - f(x_0) \mid < \epsilon],$$

c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).

• On dit que f est continue sur X si f est continue en tout point de X.

Définition 3.9. (continuité à gauche et à droite)

Soit $f: X \to \mathbb{R}$ une fonction définie sur un intervalle X de \mathbb{R} et x_0 un point de X.

- Une fonction définie en x_0 et à droite de x_0 est continue à droite de x_0 si $\lim_{\substack{x \to x_0}} f(x) = f(x_0)$.
- Une fonction définie en x_0 et à gauche de x_0 est continue à gauche de x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$.
- f est continue en si $x_0 \lim_{\substack{> \ x \to x_0}} f(x) = \lim_{\substack{\leq \ x \to x_0}} f(x) = f(x_0)$.

Exemple 3.14. Soit la fonction g définie comme suit

$$g(x) = \begin{cases} 1 & si \ x \ge 0 \\ 0 & si \ x < 0. \end{cases}$$

On remarque que g(0)=1. Puis :

 $\lim_{x \to 0} g(x) = 1 = g(0)$ donc g est continue à droite de 0.

 $\lim_{\stackrel{<}{x\to x_0}}g(x)=0\neq g(0)\ donc\ g\ n\text{'est pas continue à gauche de }0.$

Finalement, g n'est pas continue en 0.

Exemple 3.15. Soit la fonction g définie comme suit

$$g(x) = \begin{cases} 1 - x & si \ x \ge 0 \\ 1 + x & si \ x < 0. \end{cases}$$

On remarque que

$$g(x) = \begin{cases} 1 - x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ 1 + x & \text{si } x < 0. \end{cases}$$

Puis:

$$\lim_{\substack{> \\ x \to x_0}} g(x) = \lim_{\substack{> \\ x \to x_0}} 1 - x = 1,$$

et

$$\lim_{\stackrel{<}{x\to x_0}}g(x)=\lim_{\stackrel{<}{x\to x_0}}1+x=1.$$

Finalement,

$$\lim_{\substack{> \\ x \to x_0}} g(x) = \lim_{\substack{< \\ x \to x_0}} g(x) = 1 = g(0),$$

et donc q est continue en 0.

Proposition 3.10. (Opérations sur les fonctions continues)

Soient f et g deux fonctions continues en x_0 , alors

- 1. $\forall k_1, k_2 \in \mathbb{R}$, la fonction $k_1 f + k_2 g$ est continue en x_0 .
- 2. La fonction $f \times g$ est continue en x_0 .
- 3. Si $g(x_0) \neq 0$ alors la fonction $\frac{f}{g}$ est continue en x_0 .
- 4. La fonction |f| est continue en x_0 .

Proposition 3.11. (Continuité des fonctions composées)

Soient $f: X \to X'$ et $g: X' \to \mathbb{R}$ deux fonctions continue en x_0 et $f(x_0)$ respectivement. Alors $gof: X \to \mathbb{R}$ est continue en x_0 .

Remarque 3.5. f est dite discontinue en x_0 si

- 1. f n'est pas définie en x_0 ;
- 2. la limite en x_0 (à droite ou à gauche) existe mais différente de $f(x_0)$;
- 3. la limite en x_0 n'existe pas.

Définition 3.12. (Prolongement par continuité)

Si f n'est pas définie en x_0 (f définie sur $X - \{x_0\}$) et $\lim_{x \to x_0} f(x) = l$, $l \in \mathbb{R}$, alors on définit un prolongement par continuité de f en x_0 par

$$\widetilde{f}(x) = \begin{cases} f(x) & si \ x \in X - \{x_0\} \\ l & si \ x = x_0. \end{cases}$$

Exemple 3.16. Considérons la fonction f définie sur \mathbb{R}^* par $f(x) = x^2 \sin(\frac{1}{x})$. Voyons si f admet un prolongement par continuité en 0? Comme pour tout $x \in \mathbb{R}^*$, on a

$$-x^2 \le x^2 \sin(\frac{1}{x}) \le x^2,$$

on en déduit que f tend vers 0 en 0. Elle est donc prolongeable par continuité en 0 et son prolongement est la fonction \tilde{f} définie sur \mathbb{R} comme suit

$$\widetilde{f}(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

Exemple 3.17. Considérons la fonction g définie $sur \mathbb{R}^*$ par $g(x) = \frac{\sin(2x)}{x}$. Voyons si g admet un prolongement par continuité en 0? On a

$$\lim_{x \to 0} \frac{\sin(2x)}{x} = \lim_{x \to 0} \frac{2\cos(2x)}{1} = 2.$$

Elle est donc prolongeable par continuité en 0 et son prolongement est la fonction \tilde{g} définie sur \mathbb{R} comme suit

$$\widetilde{g}(x) = \begin{cases} \frac{\sin(2x)}{x} & si \ x \neq 0 \\ 2 & si \ x = 0. \end{cases}$$

Exemple 3.18. Soit $h(x) = e^{-\frac{1}{x^2}}$ pour $x \in \mathbb{R}^*$.

On a

$$\lim_{x \to 0} e^{-\frac{1}{x^2}} = e^{-\infty} = \frac{1}{e^{\infty}} = 0$$

et par suite

$$\widetilde{h}(x) = \begin{cases} e^{-\frac{1}{x^2}} & si \ x \neq 0 \\ 0 & si \ x = 0. \end{cases}$$

est le prolongement par continuité de h en 0.

3.3.2 Continuité sur un intervalle

Théorème 3.13. (Théorème des valeurs intermédiaires)

Soit $f:[a,b] \to \mathbb{R}$ une fonction telle que

- 1. f est continue sur [a, b];
- 2. f(a).f(b) < 0.

Alors

$$\exists c \in]a, b[, f(c) = 0.$$

De plus, si f est stictement monotone, alors le c est unique.

Exemple 3.19. Soit la fonction définie sur par $f(x) = x^3 + x^2 - x - 5$.

- 1. Montrer que la fonction est continue sur [-1, 2].
- 2. Calculer f(-1) et f(2).
- 3. En déduire que l'équation $x^3 + x^2 x = 5$ admet au moins une solution dans [-1, 2].

Corrig'e

- 1. La fonction f est une fonction polynôme, donc elle est continue sur \mathbb{R} et en particulier sur $[-1,2] \subset \mathbb{R}$.
- 2. Calculer f(-1) et f(2). D'une part, $f(-1) = (-1)^3 + (-1)^2 - (-1) - 5 = -4 < 0$. D'autre part, $f(2) = (2)^3 + (2)^2 - (2) - 5 = 5 > 0$.
- 3. D'une part, f est continue sur [-1,2] (d'après la première question). D'autre part, comme f(-1).f(2) < 0 (d'après la deuxième question), le théorème des valeurs intermédiaires permet d'affirmer que l'équation f(x) = 0 admet au moins une solution dans [-1,2].

3.4 Dérivabilité d'une fonction

3.4.1 Définitions et propriétés

Définition 3.14. Soient X un intervalle de \mathbb{R} , $x_0 \in X$ et $f: X \to \mathbb{R}$ une fonction. On dit que f est dérivable en x_0 si

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 existe et finie.

Cette limite est appelée dérivée de f en x_0 et est notée $f'(x_0)$.

Remarque 3.6. Une autre écriture de la dérivée en un point :

$$f'(x_0) = \lim_{x \to l} \frac{f(x+l) - f(x_0)}{l}.$$

Exemple 3.20. Soit la fonction définie par

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f(x) = x^3.$

Trouver la dérivée de f en un point x_0 de \mathbb{R} . On a

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{x^3 - x_0^3}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{(x - x_0)(x^2 + xx_0 + x_0^2)}{x - x_0}$$

$$= \lim_{x \to x_0} (x^2 + xx_0 + x_0^2)$$

$$= 3x_0^2.$$

Définition 3.15. (Dérivée à gauche et à droite en un point)

Soit $f: X \to \mathbb{R}$ une fonction définie sur un intervalle X de \mathbb{R} et x_0 un point de X.

• On définit la dérivée à droite de f en x_0 par

$$f'_d(x_0) = \lim_{\substack{x \to x_0 \ x \to x_0}} \frac{f(x) - f(x_0)}{x - x_0}.$$

• On définit la dérivée à gauche de f en x_0 par

$$f'_g(x_0) = \lim_{\substack{x < x_0 \\ x \to x_0}} \frac{f(x) - f(x_0)}{x - x_0}.$$

• f est dérivable en $x_0 \Leftrightarrow f'_d(x_0) = f'_g(x_0) = f'(x_0)$.

Exemple 3.21. Soit la fonction définie par

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f(x) = \begin{cases} 3x + 2 & \text{si } x \ge 0 \\ 2 - x & \text{si } x < 0. \end{cases}$$

f est-elle dérivale en 0?

On a f(0) = 3(0) + 2 = 2, autrement dit

$$f(x) = \begin{cases} 3x + 2 & si \ x > 0 \\ f(0) = 2 & si \ x = 0 \\ 2 - x & si \ x < 0, \end{cases}$$

puis,

$$f'_d(0) = \lim_{\substack{> \\ x \to 0}} \frac{f(x) - f(0)}{x - 0}$$
$$= \lim_{\substack{> \\ x \to 0}} \frac{(3x + 2) - 2}{x}$$
$$= \lim_{\substack{> \\ x \to 0}} \frac{3x}{x}$$
$$= 3,$$

et

$$f'_g(0) = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{f(x) - f(0)}{x - 0}$$
$$= \lim_{\substack{x \to 0 \\ x \to 0}} \frac{(2 - x) - 2}{x}$$
$$= \lim_{\substack{x \to 0 \\ x \to 0}} \frac{-x}{x}$$
$$= -1,$$

donc, f n'est pas dérivable en 0 car $f'_d(0) \neq f'_g(0)$.

Définition 3.16. f est dérivable sur X si elle est dérivable en tout point de X et l'application

$$f': \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f'(x),$

est appelée la fonction dérivée de f.

Remarque 3.7. (Interprétation géométrique de la dérivée en un point) Soit f une fonction dérivable en x_0 et (C) la courbe représentative de f. L'équation de la tangente (Δ) à la courbe (C) au point $M(x_0, f(x_0))$ est

$$y = f'(x_0)(x - x_0) + f(x_0)$$

 $f'(x_0)$ représente la pente de la droite tengente à la courbe (C) au point $M(x_0, f(x_0))$.

Remarque 3.8. (Dérivabilité et continuité)

Si f est dérivable en x_0 alors f est continue en x_0 . La réciproque est fausse en général.

Exemple 3.22. Exemple: soit

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = |x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0. \end{cases}$$

 $On \ a$

$$\lim_{\substack{x \\ x \to 0}} f(x) = \lim_{\substack{x \\ x \to 0}} x = 0 = f(0) = 0$$

et

$$\lim_{\substack{< \\ x \to 0}} f(x) = \lim_{\substack{> \\ x \to 0}} -x = 0 = f(0) = 0$$

donc f est continue en 0. Pour la dérivabilité en 0, on a

$$f'_{d}(0) = \lim_{\substack{> \\ x \to 0}} \frac{f(x) - f(0)}{x - 0}$$
$$= \lim_{\substack{> \\ x \to 0}} \frac{(x) - 0}{x}$$
$$= 1,$$

et

$$f'_{g}(0) = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{f(x) - f(0)}{x - 0}$$
$$= \lim_{\substack{x \to 0 \\ x \to 0}} \frac{(-x) - 0}{x}$$
$$= -1,$$

donc f n'est pas dérivable en 0 car $f'_d(0) \neq f'_g(0)$. Conclusion : f est continue en 0 mais elle n'est pas dérivable en 0.

3.4.2 Opérations sur les fonctions dérivables

Proposition 3.17. Soient f et g deux fonctions dérivable en $x_0 \in \mathbb{R}$, alors (h.f), $h \in \mathbb{R}$, f + g, f.g sont dérivable x_0 , et $(\frac{f}{g})$ est dérivable en x_0 si $g(x_0) \neq 0$. De plus

- 1. $(h.f(x_0))' = h.f'(x_0)$.
- 2. $(f(x_0) + g(x_0))' = f'(x_0) + g'(x_0)$.
- 3. $(f(x_0).g(x_0))' = f'(x_0).g(x_0) + f(x_0).g'(x_0)$.
- 4. $\left(\frac{f}{g}\right)'(x_0) = \frac{(f'(x_0).g(x_0)) (f(x_0).g'(x_0))}{g^2(x_0)}$.

Proposition 3.18. (Dérivée d'une fonction composée)

Soient $f: X \to X_0$ et $g: X_0 \to \mathbb{R}$ deux fonctions dérivables en x_0 et $f(x_0)$ respectivement. Alors $gof: X \to \mathbb{R}$ est dérivable en x_0 et on a

$$(gof)'(x_0) = f'(x_0)g'(f(x_0)).$$

Proposition 3.19. (Dérivée d'une fonction réciproque)

Si f est dérivable en x_0 , alors f^{-1} est dérivable en $f(x_0)$ et on a

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Définition 3.20. Soit $f: X \to \mathbb{R}$ une fonction dérivable sur X, alors :

• f' est dite dérivée d'ordre 1 de f. Si f' est dérivable sur X alors sa dérivée est appelée dérivée d'ordre 2 de f. On la note

$$f'' = f^{(2)} = (f')'.$$

D'une manière générale, on définit la dérivée d'ordre n de f par

$$f^{(n)} = (f^{(n-1)})', \ \forall n \ge 1, \ f^{(0)} = f.$$

- On dit que f est de classe C^1 sur X si f est dérivable sur X et f^0 est continue sur X.
- On dit que f est de classe C^n sur X (et on écrit $f \in C^n(X)$) si f est n fois dérivable sur X et $f^{(n)}$ est continue sur X.
- f est dite de classe C^{∞} sur X si elle est de classe C^n , $\forall n \in \mathbb{N}$.

Théorème 3.21. (Régles de l'Hospital)

Soient $f, g: X \to \mathbb{R}$ deux fonctions continues sur X, dérivables sur $X - \{x_0\}$ et vérifiant les conditions suivantes :

1.
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) \in \{0, \pm \infty\},\$$

2.
$$\forall x \in X - \{x_0\}, g'(x) \neq 0,$$

alors

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = l.$$

Exemple 3.23. Calculer la limite suivante :

$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{0}{0} \quad (FI),$$

par la suite, on a

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{(\sin x)'}{(x)'} = \lim_{x \to 0} \frac{\cos x}{1} = \cos(0) = 1.$$

3.4.3 Théorèmes fondamentaux sur les fonctions dérivables

Théorème 3.22. (Théorème de Rolle)

Soit $f:[a,b] \to \mathbb{R}$ une fonction vérifiant :

- 1. f est continue sur [a, b],
- 2. f est dérivable sur]a,b[,
- 3. f(a) = f(b), alors,

$$\exists c \in]a, b[: f'(c) = 0.$$

Remarque 3.9. Le théorème de Rolle nous affirme qu'il existe un point c en lequel la tangente est parallèle à l'axe des x.

Théorème 3.23. (Théorème des accroissements finis))

Soit $f:[a,b] \to \mathbb{R}$ une fonction vérifiant :

- 1. f est continue sur [a,b],
- 2. f est dérivable sur]a,b[, alors,

$$\exists c \in]a, b[: f(b) - f(a) = (b - a)f'(c).$$