
Structure Machine 2 Série de TD2 (2019-2020)

Objectif: Comprendre les fondements des circuits logiques séquentiels et expliquer le fonctionnement de la bascule RS, D, JK, registres et compteurs.

Q1 : Les circuits logiques se déclinent en 2 catégories, lesquelles ?

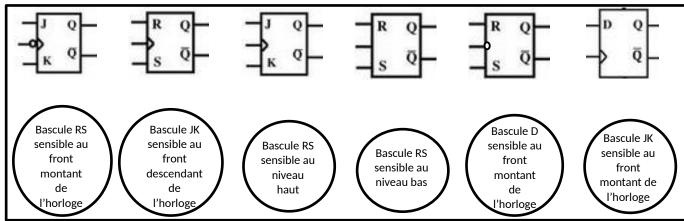
Q2 : Que représente la figure suivante ?

Mémoire

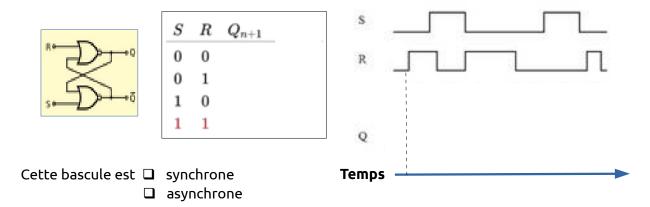
Q3: A la différence des circuits logiques combinatoires, les circuits logiques séquentiels, en plus de dépendre des entrées (dites combinatoires), il dépendent aussi de leur état

Q4 : Complétez les tables de vérité suivantes :

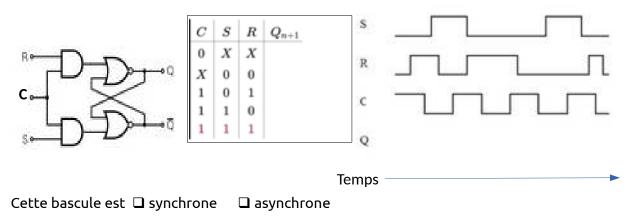
	Bascule asynch	
R	s	Q.
0	0	
0	1	
1	0	
1	1	


Bascule D sensible au front montant de l'horloge H				
н	D	Q.		
1	0			
†	1			
0	x			
1	x			

asynchrone				
J	к	Q.		
0	0			
0	1			
1	0			
1	1			

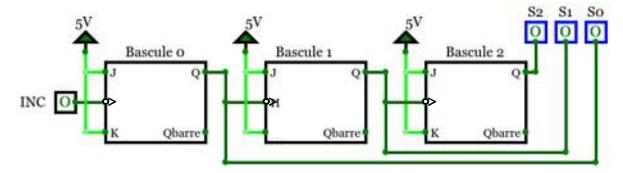

Q5 : Citez 4 exemples de circuits logiques combinatoires et 4 exemples de circuits logiques séquentiels

Q6: Vous savez que l'on peut synchroniser une bascule à un signal d'horloge. Dans ce cas, les entrées de la bascule ne sont pris en compte qu'à des moments précis liés à l'état de l'horloge. Selon cet état de l'horloge, on distingue 4 types de synchronisation, citez-les :

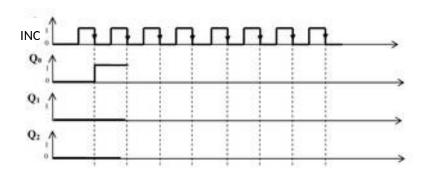

Q7 : Reliez les noms des bascules au figures leurs correspondant

Q8 : Soit la bascule RS suivante, complétez sa table de vérité et le logigramme ci-dessous :

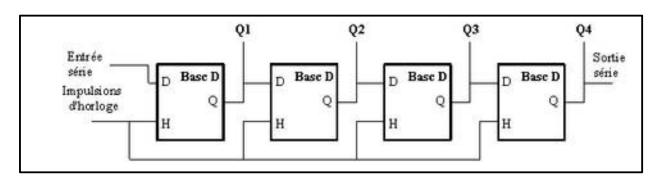
Q9 : Soit la bascule RSH suivante, complétez sa table de vérité et le logigramme ci-dessous :



Q10 : Bascule T : Donnez le schéma d'une bascules « T » sensible au front montant de l'horloge Complétez sa table de vérité :


T	Н	Qn	Qn	remarque
1	7		Q _{n-1}	basculement
1	0,1,			
0	0,1, 7, \			mémorisation

Q11: Donnez le schéma d'une bascule D synchrone sensible au **niveau d'horloge bas** et basée sur une bascule RS.


Q12 - Soit le circuits suivant :

Vous voyez que nous avons utilisé 3 bascules JK sensibles au front d'horloge descendant. Ce sont donc des bascules flip-flop. Vous voyez aussi que toutes les entrées J et K de ces bascules sont positionnées à un « 1 » logiques (5v). Nous vous demandons de compléter le chronogramme suivante et de dire ce que fait ce circuit :

Q13 – Quelle est la fonction réalisée par le circuit suivant?

Indication: Dans le circuit ci-dessus, nous avons omis la sortie Qbarre.

Q14 – Donnez le schéma d'un registre à décalage de gauche à droite en utilisant des bascules D synchrones sensibles au front montant.

