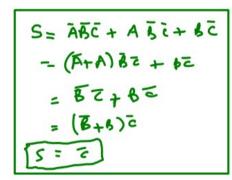
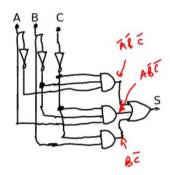
Université de Béjaia Faculté des sciences exactes Département de mathématique Niveau Licence 1

Examen de Structure Machine 2 Durée : 1h30 26 Juin 2021 de 12h30 à 14h00

Corrigé


Chapitre 1 : Circuits logiques combinatoires – CLC (sur 10,5 points)


Q1: Distinguer entre CLC et CLS (1 point): Cochez les bonnes affirmations:

- un CLC rempli une fonction de mémorisation
- les sorties d'un CLC ne dépendent pas de leurs état précédent
- ☐ les sorties d'un CLS dépendent uniquement des entrées combinatoires
- les sorties d'un CLC dépendent de leurs entrées combinatoires et de leur état précédent
- ☐ Une bascule est un CLC
- □ un registre est un CLS
- □ un compteur est un CLC
- ☐ On utilise des chronogrammes pour analyser des CLS
- □ Un décodeur est un CLC

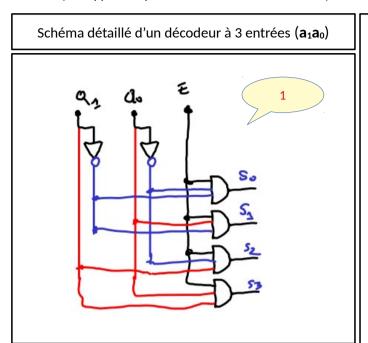
Indication: chaque erreur coûtera 0.5 points

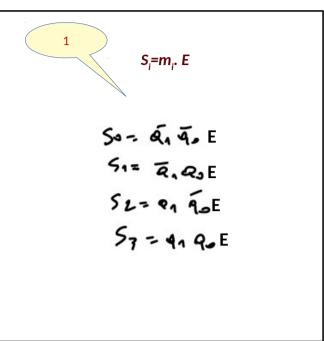
Q2: Analyse d'un circuit logique (sur 1 point) : Effectuez l'analyse du circuit suivant :

On voit que la sortie de ce circuit est Charre

Q3 - Différencier entre décodeur (DEC), multiplexeur (MUX) et démultiplexeur (DéMUX) (sur 3 points). Complétez le texte suivant :

- Un DEC est un circuit ayant n entrées d'adresse et 2ⁿ sorties et possiblement une entrée de validation E.
 En ignorant son entrée de validation, l'équation de chacune de ses sorties Si est donnée par la formule suivante
 S_i = m_i avec m_i le minterme i composé des variables d'entrée.
- Un DeMUX est un circuit ayant n entrées de commande, une entrée de données, et 2ⁿ sorties et possiblement une entrée de validation E. En ignorant son entrée de validation, l'équation de chacune de ses sorties Si est donnée par la formule suivante

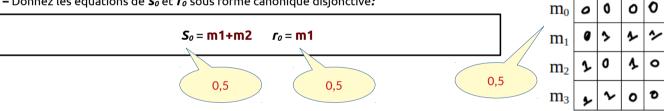

 $S_i = D.m_i$ avec m_i le minterme i composé des variables de commande


• Un MUX est un circuit ayant *n* entrées de commande, **2**ⁿ entrées de données, et **une** sortie et possiblement une entrée de validation *E*. En ignorant son entrée de validation, l'équation de sa sortie *S* est données par la formule suivante :

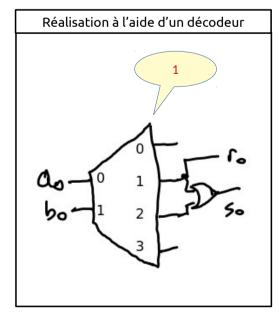
 ${\it e}_i$: les entrées de données et ${\it m}_i$: mintermes des variables de commande

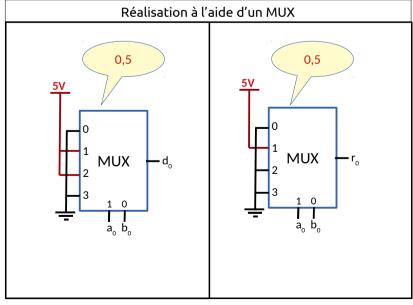
Indication: chaque erreur coûtera 0,5 point

Q4 – Décodeur (sur 2 points): Donner le schéma détaillé d'un décodeur à 2 entrées ($\mathbf{a}_1\mathbf{a}_0$) puis donnez les équations de ses sorties S_i (on supposera qu'on a une entrée de validation \mathbf{E})

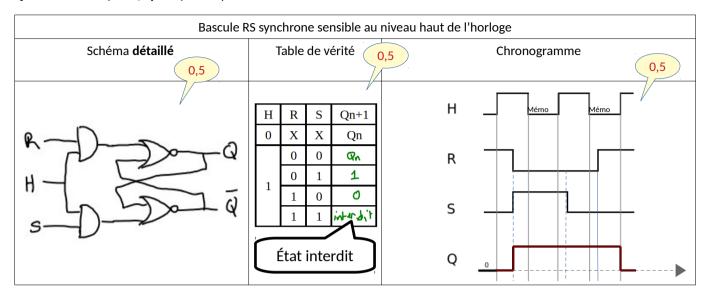


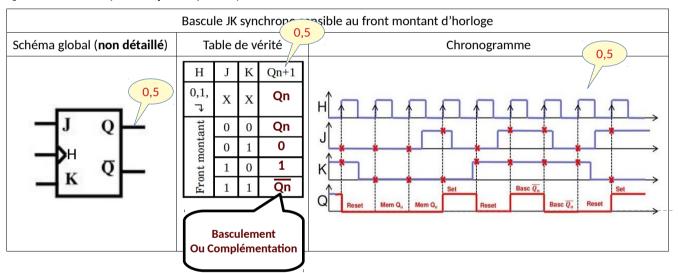
 $a_0 \, \big| \, b_0 \, \big| \, s_0 \, \big| \, r_0$


Q5 : Réalisation de fonctions à l'aide de multiplexeurs et de décodeurs sur 3,5 points : En vous servant d'un décodeur puis d'un multiplexeur, donnez le schéma de réalisation de la fonction demi-soustracteur (opération de soustraction binaire entre 2 bits) ayant pour entrées : a_0 et b_0 et comme sorties : s_0 (la somme) et r_0 (la retenue).

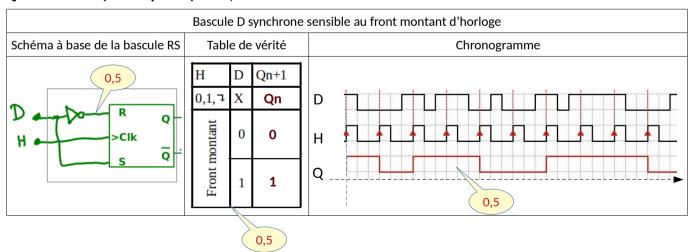

A – Donnez la table de vérité des fonctions \mathbf{s}_0 et \mathbf{r}_0

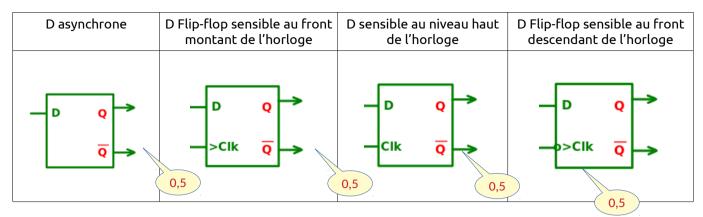
B – Donnez les équations de s_0 et r_0 sous forme canonique disjonctive:

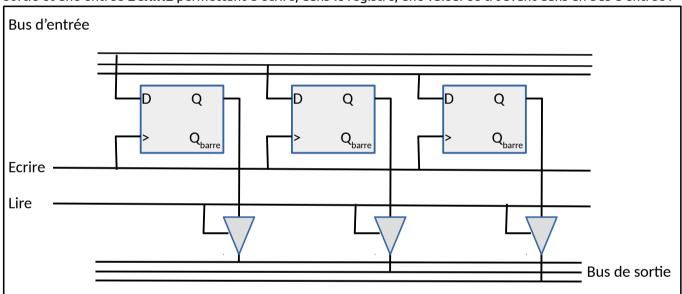

C – Donnez le logigramme de s₀ et r₀ en utilisant d'abord un décodeur puis un MUX (un MUX possède une seule sortie)

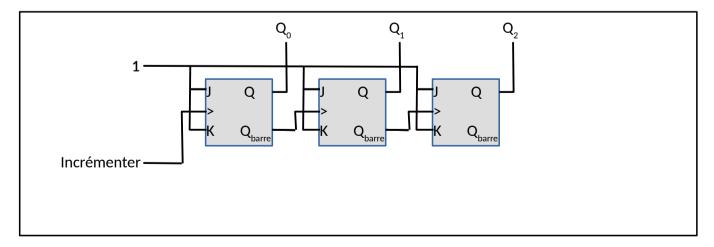


Chapitre 2 : Circuits logiques séquentiels (sur 9,5 points)


Q6 - Bascule RS (sur 1,5 point) : Complétez le tableau suivant


Q7 - Bascule JK (sur 1.5 points) : Complétez le tableau suivant


Q8 - Bascule D (sur 1.5 points): Complétez le tableau suivant


Q9 - Synchronisation (sur 2 points): Donnez les schémas (globaux) des bascule D suivantes :

Q10 - **Registre** (sur 2 points): En utilisant des bascules **D** synchrones sensibles au front montant, donnez le schéma d'un registre (3 bits) doté d'une entrées *LIRE* permettant de lire le contenu du registre dans le bus de sortie et une entrée *ECRIRE* permettant d'écrire, dans le registre, une valeur se trouvant dans un bus d'entrée :

Q11 - **Compteur** (sur 1,5 point): En utilisant des bascules **JK synchrones sensibles au front montant**, donnez le schéma d'un compteur modulo 7.

