Exercice n°1: Domaine (ensemble) de définition $D_f = E$ des fonctions $f: E \longrightarrow F$ suivantes :

- 1. $x \mapsto \frac{x+1}{x-2}$ est définie si $x-2 \neq 0$ ce qui signifie que $x \neq 2$ d'où $D_f = \mathbb{R} \{2\}$;
- 2. $x \mapsto \frac{x+1}{\sqrt{x}-2}$ est définie si $x \ge 0$ et $\sqrt{x}-2 \ne 0$ c'est-à-dire $\sqrt{x} \ne 2$ cela nous donne $x \ne 4$ d'où $D_f = \mathbb{R}_+ \{4\}$;
- 3. $x \mapsto \frac{1}{x}e^{-x^2}$ est définie si $x \neq 0$, donc $D_f = \mathbb{R} \{0\}$;
- 4. $x \mapsto \frac{x^2}{\ln(x)}$ est définie si x > 0 et $\ln(x) \neq 0$. La deuxième condition nous donne $x \neq 1$, par la suite le domaine $D_f = \mathbb{R}_+^* \{1\} =]0$, $1[\cup]1$, $+\infty[$.

Exercice n°2:

Soit les fonctions $f: x \mapsto x^2 + 2$; $g: x \mapsto \frac{2x}{x+1}$ et $h: x \mapsto \sqrt{x}$, et soit $D_f = \mathbb{R}$, $D_g = \mathbb{R} - \{-1\}$ et $D_h = \mathbb{R}_+ = [0, +\infty[$ les domaines respectifs des fonctions f, g et h.

Les fonctions f+g, g.h sont définies respectivement sur les domines $D_{f+g}=D_f\cap D_g=\mathbb{R}-\{-1\}$ et $D_{gh}=D_g\cap D_h=[0,+\infty[$ par :

$$(f+g)(x) = f(x) + g(x) = x^2 + 2 + \frac{2x}{x+1}$$
 et $(gh)(x) = g(x) \cdot h(x) = \frac{2x\sqrt{x}}{x+1}$.

La fonction $\frac{f}{h}$ est donnée par $\left(\frac{f}{h}\right)(x) \coloneqq \frac{f(x)}{h(x)} = \frac{x^2+2}{\sqrt{x}}$ définie sur le domine $D_f \cap D_h$ à condition que $h(x) \neq 0$ par conséquent $D_f = \mathbb{R}_+^* =]0, +\infty[$.

La fonction $h \circ g$ est donnée par $(h \circ g)(x) \coloneqq h \Big(g(x) \Big) = h \Big(\frac{2x}{x+1} \Big) = \sqrt{\frac{2x}{x+1}}$ définie donc pour $x \in D_g$ à condition que l'élément $g(x) \in D_h$; cette dernière s'écrit $\frac{2x}{x+1} \ge 0$ cela implique que $D_{h \circ g} =]-\infty, -1[\cup [0, +\infty[$.

De même $(g \circ h)(x) \coloneqq g(h(x)) = g(\sqrt{x}) = \frac{2\sqrt{x}}{\sqrt{x}+1}$ définie sur $D_{g \circ h} = \{x \in D_h \ tel \ que \ h(x) \in D_g\} = D_h$.

Exercice n°3:

 Ces fonctions sont données comme somme, produit, quotient et composée de fonctions usuelles, donc elles sont dérivables sur leur domaine de définition :

$$(3x^{5})' = 15x^{4}; \left(\frac{x^{4}}{4} - x\right)' = x^{3} - 1; \quad \left(\frac{2x}{x+1}\right)' = \frac{(2x)'(x+1) - (x+1)'2x}{(x+1)^{2}} = \frac{2}{(x+1)^{2}};$$

$$\left(\frac{1}{x}e^{-x^{2}}\right)' = \left(\frac{1}{x}\right)'e^{-x^{2}} + \left(e^{-x^{2}}\right)'\frac{1}{x} = -\frac{1}{x^{2}}e^{-x^{2}} + (-2x)e^{-x^{2}}\frac{1}{x} = -\left(\frac{1+2x^{2}}{x^{2}}\right)e^{-x^{2}};$$

$$\left(\frac{x^2}{\ln(x)}\right)' = \frac{\left(x^2\right)' \cdot \ln(x) - (\ln(x))' \cdot x^2}{(\ln(x))^2} = \frac{x(2\ln(x) - 1)}{(\ln(x))^2}.$$

• I'équation de la tangente en x=0 a pour équation : y=f'(0)(x-0)+f(0) où f'(0)=-1 et f(0)=0, donc y=-x.

Exercice n°4: Soit f la fonction définie sur l'intervalle [1,3] par $f(x) = \frac{2x}{x+1}$.

• La monotonie de f :

la fonction rationnelle f est dérivable sur son domaine de définition D_f , en particulier sur $[1,3] \subset D_f$.

Et $f'(x) = \frac{2}{(x+1)^2} > 0$ sur [1,3] c'est-à-dire que f est strictement croissante dans [1,3].

• L'ensemble des images de f sur l'intervalle [1, 3]:

<u>Critère</u>: L'image d'un intervalle I = [a, b] par une fonction <u>continue</u> est un intervalle $J = [\alpha, \beta]$ où α est le minimum des images sur I et β est le maximum.

La fonction rationnelle f est continue $\sup D_f$ et donc sur l'intervalle I=[1,3], d'après le critère précédent, l'image de I par f est l'intervalle $J=[\alpha,\beta]$ où $\alpha=f(1)=1$ et $\beta=f(3)=\frac{3}{2}$ car f est strictement croissante dans [1,3], donc $f([1,3])=J=\left[1,\frac{3}{2}\right]$.

• Vérifions que la fonction f^{-1} telle que $f^{-1}(x) = \frac{x}{2-x}$ est la réciproque de f:

On a : $f: I \to J$ et f^{-1} une autre fonction telle que $f^{-1}(x) = \frac{x}{2-x}$ définie sur $J \subset D_{f^{-1}}$.

De la même façon (en utilisant le critère), on peut vérifier que l'image de J par f^{-1} est l'intervalle I c'est-à-dire que $f^{-1}: J \to I$ est considérée comme une fonction de J à valeurs dans I.

Cela signifie aussi que les composées $f^{-1} \circ f$ et $f \circ f^{-1}$ sont définies.

Calculons maintenant $(f^{-1} \circ f)(x)$ sur I et $(f \circ f^{-1})(x)$ sur J:

$$x \in I$$
, $(f^{-1} \circ f)(x) := f^{-1}(f(x)) = f^{-1}(\frac{2x}{x+1}) = \frac{\frac{2x}{x+1}}{2 - \frac{2x}{x+1}} = \frac{\frac{2x}{x+1}}{\frac{2}{x+1}} = \frac{2x}{x+1} \times \frac{x+1}{2} = x$.

$$x \in J$$
, $(f \circ f^{-1})(x) := f(f^{-1}(x)) = f(\frac{x}{2-x}) = \frac{\frac{2}{2-x}}{\frac{x}{2-x}+1} = \frac{\frac{2x}{2-x}}{\frac{2}{2-x}} = \frac{2x}{2-x} \times \frac{2-x}{2} = x$.

Finalement les deux composées envoient l'élément x en x lui-même, ce qui signifie que f^{-1} est la réciproque de f.

• Branches infinies de la fonction \underline{f} : $x \mapsto \frac{2x}{x+1} \sup D_f =]-\infty, -1[\ \cup\]-1, +\infty[$. $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x}{x} = 2$, donc f admet une asymptote horizontale d'équation y = 2. $\lim_{x \to -1^{\pm}} f(x) = \frac{-1}{0^{\pm}} = \pm \infty$, dans ce cas f admet une asymptote verticale d'équation x = -1.

Exercice n°5: la fonction f est définie sur \mathbb{R}^* par : $f(x) = \frac{x^2 - 1}{x^3}$.

1. Dérivée, signe et extremums de f:

<u>Calcul de la première dérivée f'</u>: La fonction rationnelle f est dérivable sur son domaine de définition $D_f = \mathbb{R}^*$. Et

$$f'(x) = \frac{2x \cdot x^3 - 3x^2(x^2 - 1)}{(x^3)^2} = \frac{-x^4 + 3x^2}{x^6} = \frac{-x^2 + 3}{x^4}.$$

Le signe de la première dérivée : le numérateur de la dérivée s'écrit

$$-x^2 + 3 = -(x - \sqrt{3})(x + \sqrt{3})$$

La dérivée s'annule pour les valeurs $x=\sqrt{3}$ et $x=-\sqrt{3}$, par la suite f' est positive sur l'ensemble $]-\sqrt{3},0[\ \cup\]0,\sqrt{3}[$ et est négative sur $]-\infty,-\sqrt{3}[\ \cup\]\sqrt{3},+\infty[$.

x	-∞	$-\sqrt{3}$	0		$\sqrt{3}$		+∞
f'(x)	_	-	+	+	İ	_	

Les extremums de f:

Du signe de la première dérivée, on peut déduire les extremums de la fonction f de la façon suivante : f' est nulle pour $x=\sqrt{3}$ et elle change de signe aux côtés de cette valeur, donc $f\left(\sqrt{3}\right)=\frac{2\sqrt{3}}{9}$ est un maximum local de f puisque f' est positive à gauche et négative à droite de $\sqrt{3}$.

f' est nulle pour $x=-\sqrt{3}$ et elle change de signe aux côtés de cette valeur, donc $f\left(-\sqrt{3}\right)=-\frac{2\sqrt{3}}{9}$ est un a minimum local de f puisque f' est négative à gauche et positive à droite de $-\sqrt{3}$.

2. Deuxième dérivée, signe, concavité, convexité et points d'inflexion :

<u>Calcul de la deuxième dérivée f''</u>: La fonction rationnelle f' est dérivable sur son domaine de définition $D_f = \mathbb{R}^*$. Et

$$f''(x) = \left(\frac{-x^2+3}{x^4}\right)' = \frac{2(x^2-6)}{x^5}.$$

Le signe de la deuxième dérivée :

Le numérateur de la dérivée seconde s'écrit $2(x^2 - 6) = 2(x - \sqrt{6})(x + \sqrt{6})$

La dérivée seconde s'annule pour les valeurs $x=\sqrt{6}$ et $x=-\sqrt{6}$ et le signe de f'' dépend du signe de $(x-\sqrt{6})(x+\sqrt{6})$ et de x puisque le dénominateur $x^5=x$. x^4 d'où le tableau de signe suivant :

x	$-\infty$ $-$	$\sqrt{6}$ 0	$\sqrt{\epsilon}$	5 +∞
<i>x</i> ⁵	_	-	+	+
$(x-\sqrt{6})(x+\sqrt{6})$	+	_	_	+
f''(x)	_	+	_	+

Les intervalles où f est concave, convexe :

La fonction f est convexe sur les intervalles $\left[-\sqrt{6},0\right]$ et $\left[\sqrt{6},+\infty\right]$ et concave sur $\left]-\infty,-\sqrt{6}\right]$, $\left[0,\sqrt{6}\right]$.

<u>Les points d'inflexion</u> : Selon le changement de signe de f'' aux cotés des valeurs $-\sqrt{6}$ et $\sqrt{6}$, la fonction f a deux points d'inflexion $A = \left(-\sqrt{6}, f\left(-\sqrt{6}\right)\right)$ et $B = \left(\sqrt{6}, f\left(\sqrt{6}\right)\right)$.

Nom du document : Copie de Série N°2 Math (I), 2021-2022
Répertoire : C:\Documents and Settings\sis\Bureau
Modèle : C:\Documents and Settings\sis\Application

Data\Microsoft\Templates\Normal.dotm

Titre : Sujet :

Auteur: pers

Mots clés : Commentaires :

Date de création : 23/11/2015 10:01:00

N° de révision : 9

Dernier enregistr. le: 13/01/2022 08:24:00

Dernier enregistrement par : pers Temps total d'édition : 1 725 Minutes

Dernière impression sur : 13/01/2022 08:30:00

Tel qu'à la dernière impression Nombre de pages : 4

Nombre de mots: 1 028 (approx.)

Nombre de caractères : 5 655 (approx.)