- si λ n'est pas valeur propre, $E_{\lambda} = \{0\}$.
- si λ est valeur propre, dim $E_{\lambda} \geq 1$.

Proposition 9 – Soient $\lambda_1, \ldots, \lambda_p$ des scalaires distincts deux à deux. Alors les sousespaces propres $E_{\lambda_1}, \ldots, E_{\lambda_p}$ sont en somme directe.

Démonstration : on prouve le résultat par récurrence sur p. Si p=1, il n'y a rien à montrer. Supposons que les espaces $E_{\lambda_1},\dots,E_{\lambda_p}$ soient en somme directe et montrons que les espaces $E_{\lambda_1},\dots,E_{\lambda_p},E_{\lambda_{p+1}}$ sont aussi en somme directe.

Pour cela, il suffit de montrer que $(E_{\lambda_1} + \cdots + E_{\lambda_p}) \cap E_{\lambda_{p+1}} = \{0\}.$

Soit $x \in (E_{\lambda_1} + \cdots + E_{\lambda_p}) \cap E_{\lambda_{p+1}}$. On a $f(x) = \lambda_{p+1}x$ car $x \in E_{\lambda_{p+1}}$.

Comme $x \in E_{\lambda_1} + \cdots + E_{\lambda_p}$, il existe $x_1 \in E_{\lambda_1}, \ldots, x_p \in E_{\lambda_p}$ tel que $x = x_1 + \cdots + x_p$. On a donc également $f(x) = \lambda_1 x_1 + \cdots + \lambda_p x_p$. On déduit de ces deux calculs que

$$0 = (\lambda_1 - \lambda_{p+1})x_1 + \dots + (\lambda_p - \lambda_{p+1})x_p.$$

Les espaces $E_{\lambda_1}, \dots, E_{\lambda_p}$ sont en somme directe donc

pour
$$k \in \{1, \ldots, p\}$$
, $(\lambda_k - \lambda_{p+1})x_k = 0$.

Comme les λ_i sont deux à deux distincts, on en déduit que x=0.

Corollaire 10 – L'endomorphisme f est diagonalisable si et seulement si E est somme directe de ses sous-espaces propres.

Si on note $\lambda_1, \ldots, \lambda_p$ les valeurs propres deux à deux distinctes de f, on a

Corollaire 11 – L'endomorphisme f est diagonalisable si et seulement si $\dim E = \dim E_{\lambda_1} + \cdots + \dim E_{\lambda_p}$.

Proposition 12 – Soit $f \in \mathcal{L}(E)$ et λ une valeur propre de multiplicité α . Alors $\dim E_{\lambda} \leq \alpha$.

Démonstration : supposons dim $E_{\lambda} \geq \alpha + 1$. Soient $u_1, \dots, u_{\alpha+1}$ des vecteurs propres linéairement indépendants de E_{λ} . Complétons cette famille en une base $\mathscr B$ de E. On a

$$M(f)_{\mathscr{B}} = egin{pmatrix} \lambda & & 0 & | & & \\ & \ddots & & | & A & \\ 0 & & \lambda & | & \\ \hline & 0 & & | & B \end{pmatrix}$$

d'où $P_f(X) = D\acute{e}t[(\lambda - X)I_{\alpha+1}]$ $D\acute{e}t(B - XI_{n-\alpha-1}) = (\lambda - X)^{\alpha+1}$ $D\acute{e}t(B - XI_{n-\alpha-1})$. λ serait donc valeur propre de multiplicité strictement supérieure à α . Absurde

Des propositions précédentes, on déduit le

Théorème 13 – Soit f un endomorphisme d'un espace vectoriel E de dimension finie. L'endomorphisme f est diagonalisable si et seulement si les deux propositions suivantes sont vérifiées :

1) $P_f(X)$ est scindé dans \mathbb{K} , ce qui veut dire que

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \dots (X - \lambda_p)^{\alpha_p}$$

avec $\lambda_1, \ldots, \lambda_p$ scalaires et $\alpha_1 + \cdots + \alpha_p = n$.

2) Pour chaque valeur propre λ de multiplicité α , on a dim $E_{\lambda}=\alpha$.

Corollaire 14 – Soit f un endomorphisme d'un espace vectoriel de dimension n. Si f admet n valeurs propres distinctes deux à deux, alors f est diagonalisable.

4. Applications de la diagonalisation

4.1. Calcul de la puissance d'une matrice

Si A est diagonalisable, il existe $P\in GL_n(\mathbb{K})$ telle que $P^{-1}AP=D$ soit diagonale. Alors $A=PDP^{-1}$ et

$$A^k = PD^kP^{-1}$$
 pour tout $k \in \mathbb{N}$.

La matrice A est alors inversible si, et seulement si, D est inversible et $A^{-1}=PD^{-1}P^{-1}$. La formule précédente se généralise alors à $k\in\mathbb{Z}$.

Remarque - Si A est la matrice d'un endomorphisme f dans la base \mathcal{B}_0 , alors P est la matrice de passage de la base \mathcal{B}_0 à une base \mathcal{B} de vecteurs propres de A. La matrice P est obtenue en mettant les coordonnées dans la base \mathcal{B}_0 des vecteurs propres de A en colonnes. (De l'ordre des vecteurs propres dans la base \mathcal{B} dépend l'ordre des valeurs de la diagonale de D, et réciproquement.)

4.2. Suites récurrentes linéaires

Soient a et b deux réels donnés non simultanément nuls. Une suite récurrente linéaire d'ordre 2 vérifie la relation

$$u_n = au_{n-1} + bu_{n-2}$$
, u_0 et u_1 donnés.

Matriciellement, ceci peut s'écrire :

$$\begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{n-1} \\ u_{n-2} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$$

On est donc ramené à un calcul de puissance de matrice.

Soit (a_0,a_1,\ldots,a_{k-1}) k réels donnés non tous nuls. Une suite récurrente linéaire d'ordre k vérifie la relation

$$u_{n+k}=\sum_{i=0}^{k-1}a_iu_{n+i},\quad \{u_0,\ldots,u_{k-1}\}$$
 donnés.

On écrit cette égalité sous forme matricielle et on est encore ramené à un calcul de puissance de matrice d'ordre k.

4.3. Systèmes de suites récurrentes

Illustrons cela par un exemple :

déterminer les trois suites (u_n) , (v_n) et (w_n) définies par $u_0=1,\,v_0=w_0=0$ et

$$\begin{cases} u_{n+1} = 2u_n + 4w_n \\ v_{n+1} = 3u_n - 4v_n + 12w_n \\ w_{n+1} = u_n - 2v_n + 5w_n \end{cases}$$