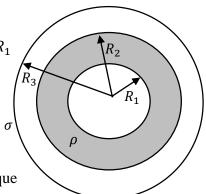
Série de TD 04

Exercice 01

Soit deux sphères concentriques, la première de rayon intérieur R_1 et extérieure R_2 uniformément chargée en volume avec une densité volumique uniforme ρ positive entourée par une deuxième sphère creuses de rayon R_3 ($R_3 > R_2$) uniformément chargée en surface avec une densité surfacique σ de charge positive σ .

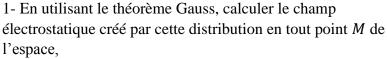


1- En utilisant le théorème Gauss, calculer le champ électrostatique créé par cette distribution en tout point M de l'espace, tel que OM = r. Distinguer les régions : $r < R_1$, $R_1 < r < R_2$, $R_2 < r < R_3$, $r > R_3$.

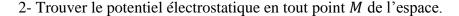
2- Trouver le potentiel électrostatique en tout point *M* de l'espace.

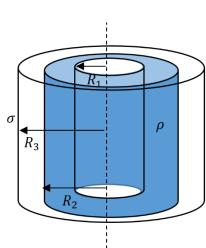
Exercice 02:

On considère deux cylindres infinis et coaxiaux. Le premier chargé positivement avec une densité de charge positive ρ comprise entre son rayon intérieure R_1 et extérieure R_2 . Le deuxième chargé positivement en surface avec une densité surfacique de charge positive σ .



tel que
$$OM = r$$
. Distinguer les régions : $r < R_1$, $R_1 < r < R_2$, $R_2 < r < R_3$, $r > R_3$.





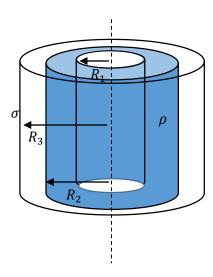
Exercice 03:

Un cylindre de hauteur infini et de rayon R est chargé en volume avec une densité volumique $\rho = \rho(r)$. Le potentiel électrique crée par cette distribution de charge est :

$$\begin{cases} r \leq R: V_1 = -\frac{A}{9\varepsilon_0} r^3 + C_1 \\ r \geq R: V_2 = -\frac{A}{3\varepsilon_0} R^3 \ln(r) + C_2 \end{cases}$$
 avec, A une constante positive, C_1 et C_2 des constantes quelconques

Déterminer pour $r \leq R$ et $r \geq R$:

- 1. Le champ électrique et vérifier s'il est continu en r = R
- 2. La densité de charge volumique $\rho(r)$ et en déduire la charge totale portée par le cylindre.



Université A. Mira de Bejaia Faculté de Technologie Département de Technologie – 1^{ère} Année

Année universitaire 2021/2022 Physique 2: électricité et magnétisme