Université A. Mira de Bejaia

L1 ST

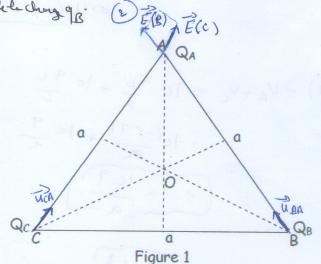
Département de Technologie

2020/2021

PHYSIQUE II

Durée 45min

Interrogation écrite N° 1 (7.5Pts)


Sujet Nº1

Soient trois charges ponctuelles q_A , q_B et q_C placées aux sommets d'un triangle équilatéral ABC de côté a (Figure 1).

- 1- Déterminer et représenter le vecteur champ électrique $\vec{E}(A)$ crée par les charges q_B et q_c au sommet A du triangle.
- 2- Déduire la force électrostatique $\vec{F}(A)$ (que subit la charge q_A).
- 3- Calculer le potentiel crée par ces trois charges au point O. (1) 4-Donner l'expression du portent put résultent V(B) au point B, puis de duie l'éner you potentielle électrostatique Ep(B) de la charge q_B: (2) Flor =

On donne:
$$q_A = -2q$$
, $q_B = +q$, $q_C = +q$

OA=OB=OC= $a \frac{\sqrt{3}}{3}$
 $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$, $\cos \frac{\pi}{3} = \frac{1}{2}$

Réponses

Nom: /Prénom: /Groupe:

En utilisant le principe de superporting, $\vec{E}(A) = \vec{E}(B) + \vec{E}(C)$ $\vec{E}(A) = \vec{E}(B) + \vec{E}(C)$

E(B) = K 9B UBA = K 9B UBB / 9B = 9

Ane UBA = - 1 1 + 13 3 1

F(A)

Pepresentahini:

F(B) (0,2)

F(C) (0,2)

F(A) (0,1)

Dia
$$F(B) = 16 \frac{9}{42} \left(-\frac{1}{2}\vec{i} + \frac{12}{2}\vec{j}\right) = \frac{1}{8} \left(-\frac{1}{2} + \frac{12}{2}\vec{j}\right)$$
 $F(C) = 16 \frac{9}{42} \left(-\frac{1}{2}\vec{i} + \frac{12}{2}\vec{j}\right) = 16 \frac{9}{42} \left(-\frac{1}{2} + \frac{12}{2}\vec{j}\right)$
 $F(C) = 16 \frac{9}{42} \left(-\frac{1}{2}\vec{i} + \frac{12}{2}\vec{j}\right) = 16 \frac{9}{42} \left(-\frac{1}{2} + \frac{12}{2}\vec{j}\right)$
 $F(A) = F(B) + F_C = 16 \frac{12}{42} \left(-\frac{1}{2} + \frac{12}{2}\vec{j}\right)$
 $V(C) = V_A + V_B + V_C = 16 \frac{9}{4} + \frac{16}{4} \frac{9}{4} + \frac$