

Enseignante: Dr. TAOURI Année: 2022/2023

Durée: 30 minutes

Interrogation N°1 de Chimie I

Nom:
Prénom:
Groupe: C4

Exercice: (07 points)

<u>Question 1</u>: Donner sous forme d'un tableau le nombre de masse, protons, neutrons et d'électrons des espèces chimiques suivantes : ${}^{25}_{14}X^{4+}$, ${}^{30}_{15}P$, ${}^{30}_{14}Si$, ${}^{35}_{17}Cl^-$

<u>Réponse 1 : (0.25*20=5 points)</u>

Elément	Symbole	$^{25}_{14}X^{4+}$	30 P	30 14 Si	³⁵ ₁₇ Cl ⁻
Nombre de masse	A	25	30	30	35
Nombre de protons	Z	14	15	14	17
Nombre de neutrons	N=A-Z	11	15	16	18
Nombre d'électrons	e=Z-q	10	15	14	18

Question 2 : Y-t-il des isobares et/ou des isotopes parmi les espèces chimiques précédentes ? Si oui, indiquer les isotopes et/ou les isotopes présents.

Réponse 2 :

Oui, il y a des isobares et des isotopes parmi les espèces chimiques précédentes.

Les isobares sont: ${}^{30}_{15}P$ et ${}^{30}_{14}Si$. (0.25*2=0.5 points)

Les isotopes sont: ${}_{14}^{25}X^{4+}$ et ${}_{14}^{30}Si$. (0.25*2=0.5 points)

<u>Question 3 :</u> Calculer la masse d'un échantillon de fer (Fe) qui contient 0.005 *mol* de Fe. Déduire ainsi que le nombre d'atome de Fe présent dans cet échantillon.

<u>Données</u>: $N_A=6,023 \times 10^{23} \text{mol}^{-1}$, M(Fe) = 54,94 g/mol

Réponse 3 :

$$n = \frac{m}{M} \to m = n \times M(0.25)$$

$$m = 0.005 \times 54.94 = 0.2747g (0.25)$$

1 mole de Fe
$$\longrightarrow$$
 6,023 × 10²³ atomes de Fe (0.25) n= 0.005 mol de Fe \longrightarrow N atomes de Fe = ?

$$N = \frac{0.005 \times 6,023 \times 10^{23}}{1} = 3.0125 \times 10^{21} \ atomes \ (0.25)$$

Bonne courage