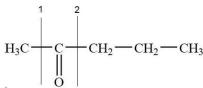
1- Composé organique CxHyOz

Masse molaire = 86 g/mol (d'après le fragment du pic moléculaire),


Donc: 86 g/mol – 16 g/mol = 70 g/mol, ceci correspond à 5 atomes de C + 10 atomes d'H.

La formule est donc : C₅H₁₀O ; Nombre d'instaurations = 1 (qui correspond à C=O)

0.75

SPECTRE 1: Le pic à m/z = 71 correspond au fragment issu de l'ion moléculaire ayant perdu un CH₃+.

On peut alors proposer la pentan-2-one pour le spectre 1 :

Le pic à m/z = 86 correspond à l'ion moléculaire

La coupure 1 donne le fragment $[CH_3-CH_2-CH_2-C\equiv O]^+$ pour lequel m/z = 71 (et H_3C^+ m/z = 15)

La coupure 2 donne les fragments $[CH_3-C\equiv 0]^+$ et $[CH_3-CH_2-CH_2]^{-+}$ pour lesquels m/z = 43.

0.75

SPECTRE 2:

L'isomère de position du composé pentan-2-one est le pentanone :

$$H_3C$$
 \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3 \longrightarrow \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3

Les pics à m/z = 29 correspond à l'ion $[CH_3-CH_2]^+$.

0.75

Et 86 – 29 = 57 ce pic est caractéristique de la chaine aliphatique [CH₃—CH₂—CH₂—CH₂]⁺, mais cela donnerait un nombre de carbone > 5, en plus l'autre fragment doit contenir 1 atome d'oxygène et 3 atomes de carbone.

Ce fragment est [CH₃—CH₂—C≡O]⁺

0.75

- 2- Abondance relative : L'intensité du fragment le plus abondant est prise à 100 %, les intensités des autres pics sont calculées par rapport à ce 100 %. Ces pourcentages correspondent alors aux probabilités de présences donc de stabilité des différents fragments.
- 0.75
- 3- Pic de base: Il correspond à l'ion le plus stable, issu de la fragmentation du l'ion parent. Etant donné 0.75 que ce fragment est le plus stable \Rightarrow il sera le plus abondant.
- - ▶ m/z = 43 pour le spectre 1 : $[CH_3-C=0]^+$. Ce cation est stabilisé par résonnance.

$$H_3C-\stackrel{\uparrow}{C}=O\longleftrightarrow H_3C-C\equiv \stackrel{\uparrow}{O}$$

m/z = 57 pour le spectre 2 : $[CH_3 - CH_2 - C \equiv O]^+$. Ce cation est stabilisé par résonnance.

$$H_3C-CH_2-\overset{\scriptscriptstyle \bullet}{C}=O$$
 \longleftrightarrow $H_3C-CH_2-C\equiv\overset{\scriptscriptstyle \bullet}{O}$

Remarque 1: Dans le spectre 1, les pics à m/z = 28 et m/z = 58 correspondent aux fragments issus du réarrangement de McLafferty, ceci confirme la structure proposée (qui possède un H en y).

<u>Remarque 2</u>: Ces fragments sont formés suite à une coupure en α des carbonyles (composés cétoniques).

Remarque 3: - Les isomères alcooliques sont à exclure (pas de pic à m/z = 31 et ni 45 et présence du pic M *+).

- L'isomère aldéhydique est aussi à exclure en raison de l'absence du pic à m/z = 85 qui correspond à (M-1).