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Corrigé de l’examen de Maths 1

Exercice 1. (04 pts) Montrer par récurrence que, pour tout n ∈ N∗ :

P(n) :
n∑

k=1

3k2 + k = n(n+ 1)2.

Pour n = 1, on a :
3 · 12 + 1 = 4 et 1 · 22 = 4, donc P(1) est vraie.
Soit n ≥ 1. On suppose que P(n) est vraie, c’est à dire

n∑
k=1

3k2 + k = n(n+ 1)2

et montrons que P(n+ 1) est vraie, c’est à dire
n+1∑
k=1

3k2 + k = (n+ 1)(n+ 2)2.

On a
n+1∑
k=1

3k2 + k =
n∑

k=1

3k2 + k + 3(n+ 1)2 + (n+ 1)

= n(n+ 1)2 + 3(n+ 1)2 + (n+ 1)

= (n+ 1)(n(n+ 1) + 3(n+ 1) + 1)

= (n+ 1)
(
n2 + 4n+ 4

)
= (n+ 1)(n+ 2)2,

donc P(n+ 1) est vraie.
D’où, pour tout n ∈ N∗,P(n) est vraie.
Exercice 2. (8 pts)

I. Soit f : R −→ R une application définie par : f(x) =
√
1 + x2

1. Calculons f−1({0}) et f−1({2}).
f−1({0}) = {x ∈ R/f(x) ∈ {0}}

= {x ∈ R/f(x) = 0}

=
{
x ∈ R/

√
1 + x2 = 0

}
=
{
x ∈ R/1 + x2 = 0

}
=
{
x ∈ R/x2 = −1

}
= ∅.



f−1({2}) = {x ∈ R/f(x) ∈ {2}}
= {x ∈ R/f(x) = 2}

=
{
x ∈ R/

√
1 + x2 = 2

}
=
{
x ∈ R/1 + x2 = 4

}
=
{
x ∈ R/x2 = 3

}
= {
√
3,−
√
3}

2. 2. Étudions l’injectivité, la surjectivité et la bijectivité de f .
(a) Injectivité de f : D’après la question précédente, on a
f(−
√
3) = 2 = f(

√
3) mais −

√
3 6=
√
3. Donc f n’est pas injective.

(b) Surjectivité de f : f n’est pas surjective car y = 0 (par exemple)
n’a pas d’antécédent (d’après la question précédente).
(c) Bijectivité de f : f n’est pas bijective car elle n’est pas injective (ou
bien car elle n’est pas surjective).

3. Donnons l’intervalle J tel que f : [0,+∞[−→ J soit bijective.
Il est facile de vérifier que f : [0,+∞[−→ [1,+∞[ est une bijection.
∀x ∈ [0,+∞[,∀y ∈ J = [1,+∞[ on a

y = f(x)⇐⇒ y =
√
x2 + 1

⇐⇒ y2 = x2 + 1

⇐⇒ x2 = y2 − 1

⇐⇒ |x| =
√

y2 − 1 (car y > 1)

⇐⇒ x =
√

y2 − 1 (car on cherche x ∈ [0,+∞[).

Donc
f−1 :[1,+∞[−→ [0,+∞[

y 7−→ f−1(y) =
√

y2 − 1

II. On définit sur R la relation binaire R par :

∀x, y ∈ R : xRy ⇔ f(x) = f(y).

1. Montrons que R est une relation d’équivalence.
(i) Réflexivité de R : Soit x ∈ R. Comme f(x) = f(x).
Donc xRx, d’où la réflexivité de R.
(ii) Symétrie de R : Soient x, y ∈ R, tels que xRy, on a

xRy =⇒ f(x) = f(y) =⇒ f(y) = f(x) =⇒ yRx.
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Donc ∀x, y ∈ R, xRy =⇒ yRx, d’où la symétrie de R.
(iii) Transitivité de R : Soient x, y, z ∈ R, tels que xRy et yRz, on a xRy

et
yRz

=⇒

 f(x) = f(y) . . . (1)
et
f(y) = f(z) . . . (2)

En sommant les égalités (1) et (2) membres à membres, on obtient

f(x) + f(y) = f(y) + f(z) =⇒ f(x) = f(z) =⇒ xRz

d’où la transitivité de R.
Conclusion : De i), ii) et iii), R est une relation d’équivalence sur R.

2. Déterminons la classe d’équivalence
√
2.

√
2 = {x ∈ R/xR

√
2}

= {x ∈ R/f(x) = f(
√
2)}

= {x ∈ R/
√
1 + x2 =

√
3}

= {x ∈ R/x2 = 2}

= {−
√
2,
√
2}

Exercice 3. (08 pts)

I. Soient a ∈ R et g la fonction définie par

g(x) =

x2 + 4x+ 1 si x ≤ 0
sin ax

x
+ x2 − x si x > 0

1. Continuité de g sur R
a) Continuité de g sur R∗ :
g est continue sur R∗ car la fonction x 7−→ x2 + 4x+ 1 est continue sur
R, donc en particulier sur ]−∞, 0[, et la fonction

x 7−→ sin ax

x
+x2−x est continue sur R∗, donc en particulier sur ]0,+∞[.

Donc g est continue sur R∗,∀a ∈ R.
b) continuité de g en 0 :
Pour que g soit continue en 0 , il faut et il suffit que :

lim
>

x→0

g(x) = lim
<

x→0

g(x) = g(0).

On a g(0) = 1

lim
>

x→0

g(x) = lim
>

x→0

sin ax

x
+ x2 − x = lim

>
x→0

a
sin ax

ax
+ x2 − x = a.
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et
lim
<

x→0

g(x) = lim
<

x→0

x2 + 4x+ 1 = 1.

Donc g est continue en 0 si et seulement si

lim
>

x→0

g(x) = lim
<

x→0

g(x) = g(0),

c’est à dire, si et seulement si a = 1.
Conclusion : g est continue sur R si et seulement si a = 1.

2. a. Théorème des valeurs intermédiaires :
Soit f : [a, b]→ R une fonction telle que
1. f est continue sur [a, b],
2. f(a) · f(b) < 0.
Alors

∃x0 ∈] a, b [: f (x0) = 0.

Et si de plus f est stictement monotone, alors le x0 est unique.
b. Montrons que l’équation g(x) = 0 admet au moins une solution sur
]− 1, 0[.
On a g est continue sur ] − 1, 0[, et on a g(0) = 1 > 0, et g(−1) =
−2 < 0, donc g(−1).g(0) < 0.
Alors par le théorème de valeurs intermédiaires, il existe au moins un
réel c ∈]− 1, 0[, tel que g(c) = 0.

II. 1. On considère la fonction h(x) = arccos x sur [a, b] avec 0 ≤ a < b < 1.
h est une fonction continue [a, b] et dérivable sur ]a, b[.
Alors d’après le théorème des accroissements finis :

∃c ∈]a, b[: h(b)− h(a) = (b− a)h′(c)

ou encore

∃c ∈]a, b[: arccos b− arccos a =
a− b√
1− c2

Or a < c < b, donc
√
1− b2 <

√
1− c2 <

√
1− a2

Par suite :
1√

1− a2
<

1√
1− c2

<
1√

1− b2

De plus, pour a− b < 0, on a

a− b√
1− b2

<
a− b√
1− c2

<
a− b√
1− a2
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Par conséquent : ∀a, b ∈ R avec 0 ≤ a < b < 1 on a :
a− b√
1− b2

< arccos b− arccos a <
a− b√
1− a2

.

2. Il suffit d’écrire l’encadrement précédent pour a = 0 et b =
5

6
.

III. Déterminons le développement limité à l’ordre 3 au voisinage de x0 = 0 de

la fonction f(x) =
arcsinx

ex
.

Au voisinage de 0, on a :
ex = 1 + x+ x2

2!
+ x3

3!
+ o (x3) , arcsinx = x+ 1

6
x3 + o (x3) .

Pour calculer le DL du quotient
x+ 1

6
x3 + o (x3)

1 + x+ x2

2!
+ x3

3!
+ o (x3)

, On effectue la

division suivant les puissances croissantes.
D’où,

x+ 1
6
x3 + o (x3)

1 + x+ x2

2
+ x3

6
+ o (x3)

= x− x2 +
2

3
x3 + o

(
x3
)
.

Ainsi le développement limité à l’ordre 3 au voisinage de x0 = 0 de la fonction

f(x) =
arcsinx

ex
est x− x2 + 2

3
x3 + o (x3) .
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