Examen de Physique 1 (Cycle Ingénieur)

Exercice 1: (08 pts)

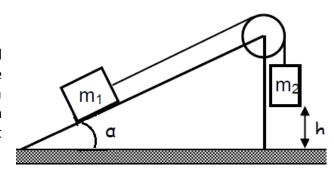
Un point matériel se déplace sur une courbe (C) tel que sa position est donnée à chaque instant par :

 $\vec{r}(t) = b\cos(\alpha t)\vec{i} + b\sin(\alpha t)\vec{j} + ct\vec{k}$, où b, c et α sont des constantes.

- 1. Trouver les expressions des vecteurs vitesse et accélération. En déduire leur module.
- **2.** Déterminer les composantes tangentielle et normale de l'accélération. En déduire le rayon de courbure de la courbe (C).
- **3.** Trouver les expressions des vecteurs unitaires tangentiel \vec{u}_t et normal \vec{u}_n de la base intrinsèque.
- **4.** Ecrire le vecteur position $\vec{r}(t)$ dans la base $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$ associée aux coordonnées cylindriques (ρ, θ, z) .
- **5.** Trouver les expressions des vecteurs vitesse et accélération dans la base $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$. En déduire leur module.

Exercice 2 (09 pts)

Deux masses m_1 et m_2 sont liées par un fil inextensible qui passe par une poulie. La masse m_1 glisse sur un plan incliné qui fait un angle $\alpha = 30^\circ$ par rapport à l'horizontale. Le contact entre la masse m_1 et le plan incliné est caractérisé par les coefficients de frottement $\mu_s = 0.7$ et $\mu_c = 0.3$. On prendra g = 9.8 m/s².



Partie I: 1) Représenter les forces qui agissent sur m_1 et m_2 .

2) Si $m_1 = 1$ kg, déterminer la valeur m_{2max} de m_2 pour que le système reste au repos.

Partie II: On prend, une masse $m_2 = 1.5$ kg. Elle est lâchée, sans vitesse initiale, d'une hauteur h = 20 cm.

- 1) Calculer l'accélération prise par les deux masses et la tension T du fil.
- 2) Calculer les vitesses des deux masses lorsque la masse m₂ touche le sol.
- 3) La masse m₂ s'immobilise, le fil se détend et la masse m₁ continue son mouvement.
 - a. Déterminer la nouvelle accélération de la masse m₁.
 - b. En déduire la distance totale parcourue par la masse m₁ avant de s'arrêter ?

Questions de cours : (03 points)

- 1. Enoncer la 1^{ère} loi de Newton.
- **2.** Ecrire le principe fondamental de la dynamique pour un point matériel dont la masse n'est pas constante.
- **3.** Enoncer le théorème de l'énergie cinétique.

Bon courage

Corrigé de l'Examen de Physique 1 (Ingénieur)

Exercice 1: (08 points)

1. Vecteurs vitesse et accélération.

$$\vec{v} = \frac{d\vec{r}}{dt} = -b\alpha \sin(\alpha t)\vec{i} + b\alpha \cos(\alpha t)\vec{j} + c\vec{k}, (\mathbf{0.5} \ \mathbf{pts}) ||\vec{v}|| = \sqrt{b^2 \alpha^2 + c^2} (\mathbf{0.5} \ \mathbf{pts})$$
$$\vec{a} = \frac{d\vec{v}}{dt} = -b\alpha^2 \cos(\alpha t)\vec{i} - b\alpha^2 \sin(\alpha t)\vec{j}, \quad (\mathbf{0.5} \ \mathbf{pts}) ||\vec{a}|| = b\alpha^2 \ (\mathbf{0.5} \ \mathbf{pts})$$

2. Composantes tangentielle et normale de l'accélération.

$$a_{t} = \frac{d\|\vec{v}\|}{dt} = 0 \quad (\mathbf{0.5} \, \mathbf{pts})$$

$$a_{n} = \sqrt{a^{2} - a_{t}^{2}} = b \quad \rightarrow \quad a_{n} = b \, \alpha^{2}(\mathbf{0.5} \, \mathbf{pts})$$

$$R_{c} = \frac{v^{2}}{a_{n}} \qquad \rightarrow R_{c} = \frac{b^{2}\alpha^{2} + c^{2}}{b \, \alpha^{2}}(\mathbf{0.5} \, \mathbf{pts})$$

3. Vecteurs unitaires tangentiel \vec{u}_t et normal \vec{u}_n de la base intrinsèque.

$$\vec{u}_{t} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{-b\alpha \sin(\alpha t)\vec{i} + b\alpha \cos(\alpha t)\vec{j} + c\vec{k}}{\sqrt{b^{2}\alpha^{2} + c^{2}}} (\mathbf{0.5} pts)$$

$$\vec{u}_{n} = \frac{\vec{a}_{n}}{\|\vec{a}_{n}\|} = \frac{\vec{a}}{\|\vec{a}\|} = \frac{-b\alpha^{2}\cos(\alpha t)\vec{i} - b\alpha^{2}\sin(\alpha t)\vec{j}}{b\alpha^{2}}$$

$$\rightarrow \vec{u}_{n} = -\cos(\alpha t)\vec{i} - \sin(\alpha t)\vec{j} (\mathbf{0.5} pts)$$

4. Vecteur position $\vec{r}(t)$ dans la base $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$

Dans la base $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$, $\vec{r}(t) = \rho \vec{e}_{\rho} + z \vec{e}_{z}(\mathbf{0.25} \, \mathbf{pts})$ $\rho = \sqrt{x^{2} + y^{2}} \rightarrow \rho = b \quad (\mathbf{0.25} \, \mathbf{pts})$

$$\rho = \sqrt{x^2 + y^2} \quad \rightarrow \quad \rho = b \quad (0.25 \ pts)$$

 $z = c t \quad (0.25 pts)$

$$\vec{r}(t) = b\vec{e}_{\rho} + c t \vec{e}_{z}(\mathbf{0}.\mathbf{5} \mathbf{pts})$$

5. Vecteurs vitesse et accélération dans la base $(\vec{e}_0, \vec{e}_\theta, \vec{e}_z)$.

$$\theta = arctg\left(\frac{y}{x}\right) \rightarrow \theta = \alpha t \quad (\mathbf{0}.\mathbf{25pts})$$

$$donc \quad \frac{d\vec{e}_{\rho}}{dt} = \frac{d\theta}{dt}\vec{e}_{\theta} = \alpha \vec{e}_{\theta}(\mathbf{0}.\mathbf{25pts}) \qquad et \quad \frac{d\vec{e}_{\theta}}{dt} = -\frac{d\theta}{dt}\vec{e}_{\rho} = -\alpha \vec{e}_{\rho}(\mathbf{0}.\mathbf{25pts})$$

$$\vec{v} = \frac{d\vec{r}}{dt} = b\frac{d\vec{e}_{\rho}}{dt} + c\vec{e}_{z} \rightarrow \vec{v} = b\alpha \vec{e}_{\theta} + c\vec{e}_{z}(\mathbf{0}.\mathbf{5pts}), ||\vec{v}|| = \sqrt{b^{2}\alpha^{2} + c^{2}}(\mathbf{0}.\mathbf{25pts})$$

$$\vec{a} = \frac{d\vec{v}}{dt} = b\alpha \frac{d\vec{e}_{\theta}}{dt} \rightarrow \vec{a} = -b\alpha^{2}\vec{e}_{\rho}, (\mathbf{0}.\mathbf{5pts})||\vec{a}|| = b\alpha^{2}(\mathbf{0}.\mathbf{25pts})$$

Exercice 2(09 pts)

Partie I

1. Condition d'équilibre sur m₁: $\overrightarrow{P_1} + \overrightarrow{R} + \overrightarrow{T_0} + \overrightarrow{F_s} = \overrightarrow{0}$

Projection sur la verticale : $R = P_1 \cos\alpha$ (0.25 pts)

Projection sur la parallèle $T_0 = P_1 sin\alpha + F_s$ (0.25 pts)

(01 pts)

Sachant que $F_s = \mu_s R$ donc $T_0 = m_1 g(sin\alpha + \mu_s cos\alpha)$ ---- (1) (0.5 pts)

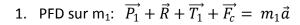
Condition d'équilibre sur m_2 : $\overrightarrow{P_2} + \overrightarrow{T_0} = \overrightarrow{0}$

Donc
$$T_0 = P_2 = m_{2 max} g$$
 ----(2)(0.25 pts)

L'égalité entre (1) et (2) donne :

$$m_{2 max} = m_1 (sin\alpha + \mu_s cos\alpha)$$
 (0.5 pts)

D'où :
$$m_{2 max} = 1,1 kg$$
 (0.25 pts)



Projection sur la parallèle $T_1-P_1sin\alpha-F_c=m_1a$ (0.5 pts)

Sachant que
$$F_c = \mu_c R$$
 donc : $m_1 a = T_1 - m_1 g(sin\alpha + \mu_c cos\alpha)$ ---- (3) (0.5 pts)

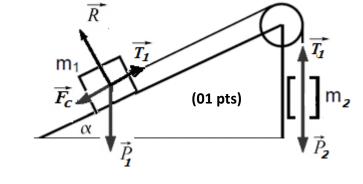
PFD sur m₂:
$$\overrightarrow{P_2} + \overrightarrow{T_1} = m_2 \vec{a}$$

Donc
$$m_2 \alpha = P_2 - T_1$$
 ---- (4)(0.25 pts)

En additionnant (3) et (4) on obtient :

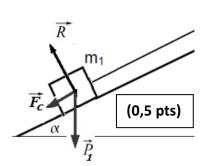
$$a=g\frac{m_2-m_1(sin\alpha+\mu_ccos\alpha)}{m_1+m_2}$$
 (0.5 pts)

Donc $a = 2.9 \, m/s^2$ (0.25 pts)



En remplaçant cette valeur dans (4) on obtient $T_1 = m_2 (g - a) = 10,35 N$ (0.5 pts)

- 2. Le mouvement est uniformément accéléré pour les deux masses qui auront les mêmes vitesses donc $v_1^2-v_0^2=2~a~h$. Les masses étaient au repos ($v_0=0$) d'où $v_1=\sqrt{2~a~h}v_1=1,1~m/s$ (0.5 pts)
- 3. La masse m₂ s'immobilise et m₁ continue son mouvement



a- PFD sur m₁:
$$\overrightarrow{P_1} + \overrightarrow{R} + \overrightarrow{F_c} = m_1 \overrightarrow{a}$$

 $m_1 a' = -P_1 sin\alpha - F_c donc \ a' = -g(sin\alpha + \mu_c cos\alpha)$ (0.5 pts) on obtient $a' = -7.45 \ m/s^2$ (0.25 pts)

b- Durant cette phase de décélération m_1 va parcourir la distance d_1 avant de s'arrêter

$$v_f^2 - v_1^2 = 2 \ a^{'} d_1 puisque v_f = 0 \implies d_1 = -\frac{v_1^2}{2 \ a^{'}} alors d_1 = 0.08 \ m$$
 (0.5 pts) La distance totale parcourue est $D = d + d_1 = 0.28 \ m$ (0.25 pts)

3. Question de cours :

- **1.** Première loi de Newton (Principe d'inertie) : Tout objet non soumis à des forces (ou $\Sigma \overrightarrow{F_{ext}} = \overrightarrow{0}$) conserve son état de repos s'il y était, ou son mouvement rectiligne uniforme. **(01 pts)**
- **2.** La résultante des forces extérieurs appliquées sur un corps égale à la variation de son vecteur quantité de mouvement par rapport au temps $\Sigma \overrightarrow{F_{ext}} = \frac{d\vec{P}}{dt}$ (01 pts)
- **3.** Théorème de l'énergie cinétique : la variation de l'énergie cinétique entre deux points A et B est égale au travail entre ces deux points de la résultante \vec{F} de toutes les forces appliquées au point matériel ($\Delta E_c = W_{A \to B}(\vec{F}_{ext})$).**(01 pts)**