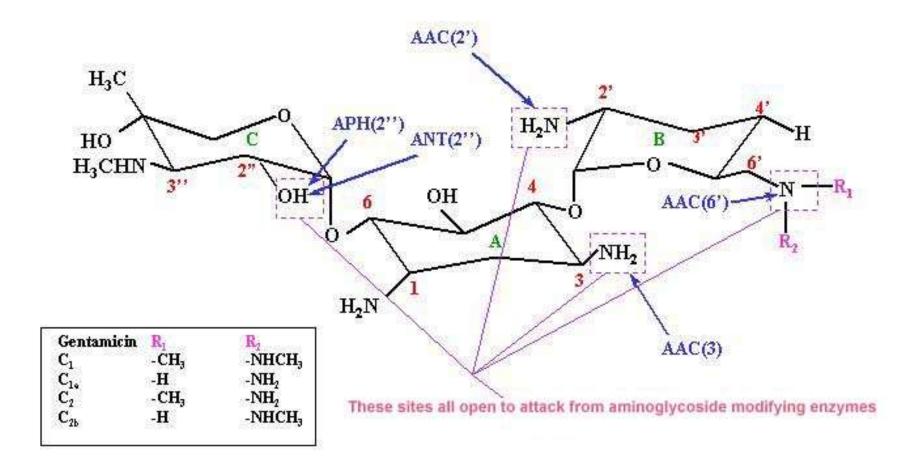
<u>Mechanisms of</u> <u>Aminoglycoside Resistance</u>

DR. MAIRIA.

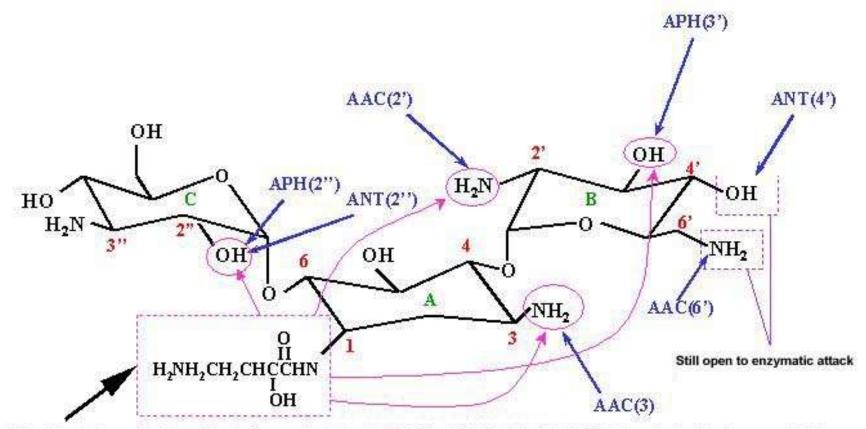
There are three mechanisms of aminoglycoside resistance:

- reduced uptake or decreased cell permeability
- alterations at the ribosomal binding sites
- production of aminoglycoside modifying enzymes


Aminoglycoside-modifying enzymes

- N-Acetyltransferases (AAC) catalyzes acetyl CoA-dependent acetylation of an amino group
- O-Adenyltransferases (ANT) catalyzes ATP-dependent adenylation of hydroxyl group
- O-Phosphotransferases (APH) catalyzes ATP-dependent phosphorylation of a hydroxyl group

The nomenclature is defined as follows:


- AAC, ANT, or APH for the type of enzymatic modification,
- followed by a number in parentheses designating the site of modification.
- The Roman numerals and letters that follow stand for unique resistance profiles and protein designations, respectively.

Gentamicin

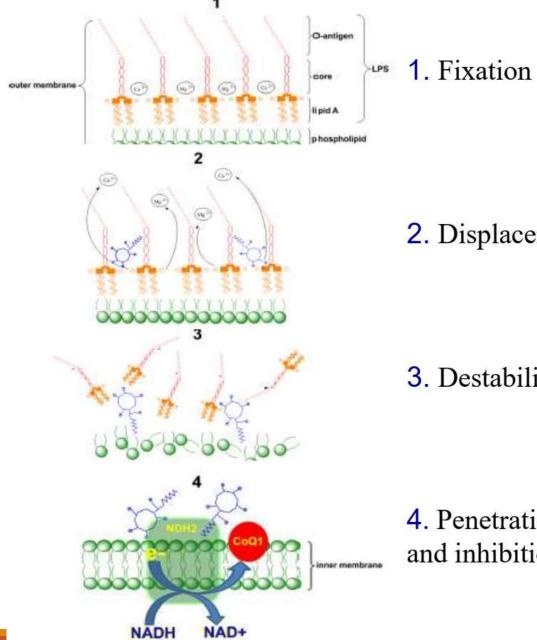
Modified from Antimicrob Agents Chemother 1999;43:727-37

Amikacin

This side chain protects amikacin from attack by AAC(3, 2'), APH (3', 2"), & ANT (2") - by steric hindrance or folding.

Enzyme	Genes	Selected Aminoglycoside Substrates	Comments
AAC(3)-I	aac(3)-la aac(3)-lb	Gm	
AAC(3)-II	aac(3)-lla		
	aac(3)-IIb	Gm, Tob	
	aac(3)-IIc		
AAC(3)-III	aac(3)-IIIa		Commonly found in Pseudomonas spp.
	aac(3)-IIIb	Neo, Prm	Rarely seen in Enterobacteriaceae
	aac(3)-IIIc		
AAC(6')-I	aac(6')-la		
	aac(6')-lb		
	aac(6')-lc		
	aac(6')-Id		
	aac(6')-le		
	aac(6')-If		
	aac(6')-lg		
	aac(6')-lh		
	aac(6')-li	Tob, Amk	

AAC(6')-APH(2")	aac(6')-aph(2")	Gm, Tob, Amk	Bifunctional enzyme thought to be restricted to gram positive bacteria. (staphylococci and enterococci)
ANT(2")-I	ant(2")-la ant(2")-lb ant(2")-lc	Gm, Tob, Km	Widespread among all gram- negative bacteria
ANT(3")-I	ant(3")-la	Sm, Spcm	
ANT(4')-I	ant(4')-la	Tob, Amk	
ANT(4')-II	ant(4')-lla	Tob, Amk	
ANT(6)-I	ant(6)-la	Sm	Found in gram-positive organisms
APH(3")-I	aph(3")-Ia aph(3")-Ib	Sm	Cloned from Streptomyces griseus
APH(6)-I	aph(6)-la aph(6)-lb aph(6)-lc	Sm	Cloned from Streptomyces spp.


Examples of aminoglycoside resistance phenotypes of *Enterobacteriaceae*

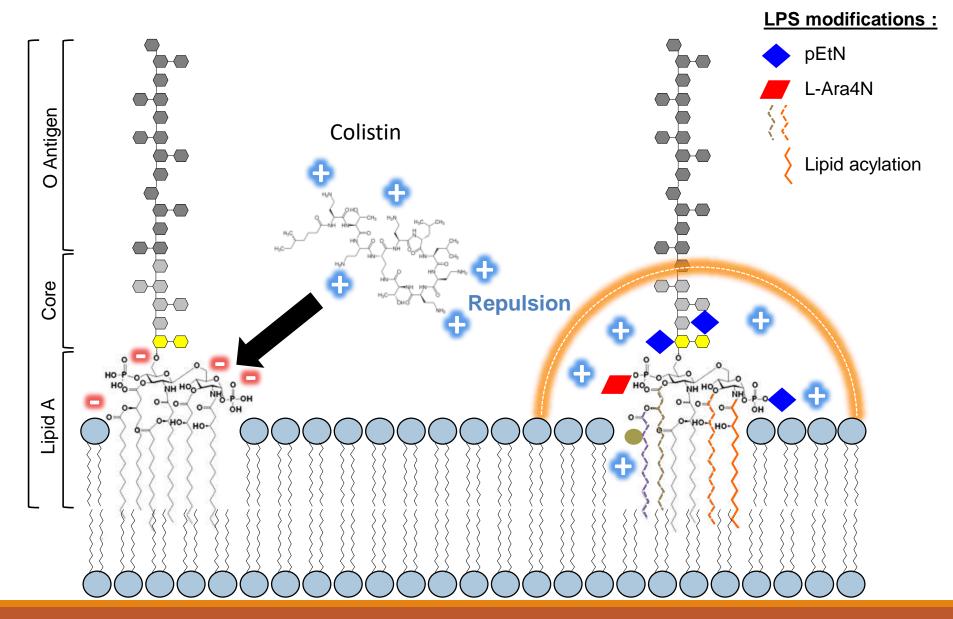
Phenotype	Wild	AAC(3)I	AAC(3)II	AAC(3)IV	AAC(6')	ANT(2')	APH(3')
Gentamicin	S	R	R	R	S/r	R	S
Netilmicin	S	S	R	R	R	S	S
Tobramycin	S	S	R	R	R	R	S
Amikacin	S	S	S	S	R	S	S
Kanamycin	S	S	R	r	R	R	R
Neomycn	S	S	S	R	R	S	R

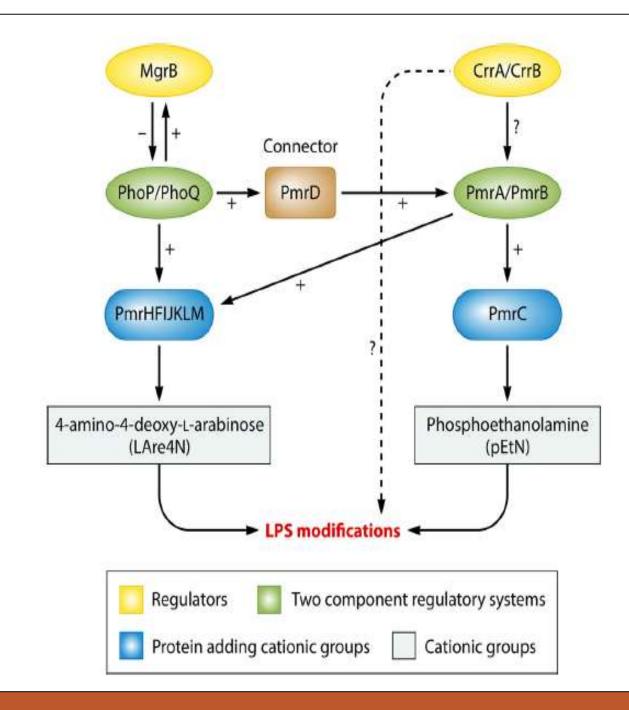
Plasmid-Mediated 16S rRNA Methylases Responsible for aminoglycoside Resistance

- It confers very-high level resistance to all aminoglycosides that are currently available for parenteral formulation.
- Six distinct genes, *rmtA*, *rmtB*, *rmtC*, *rmtD*, *armA*, and *npmA*
- <u>NpmA</u> is the only enzyme among them that methylates residue <u>A1408</u>, whereas the others methylate residue G1405, both within the aminoacyl site (A site) of the 16S rRNA

Colistin resistance

2. Displacement of divalent cation (Ca^{2+} et Mg^{2+})


3. Destabilisation of the outer membrane


4. Penetration throughout the inner membrane and inhibition of the respiratory enzymes NDH2

LPS modifications : the main mechanism of resistance to colistin

- Addition of 4-amino-4-deoxy-L-arabinose (LAra4N) and or phosphoethanolamine (pEtN) to lipid A → Increase of positive charges → decreased affinity for LPS
- Synthesis of L-Ara4N and pEtN mediated by PmrA / PmrB, PhoP / PhoQ, and mgrB gene

Mechanisms of resistance to colistin

Modification of LPS by **chromosomal encoded** resistance mechanisms

- Complex regulation pathways of LPS modification in Gram-negative
- Several genes/operons involved in modification of LPS

(addition of cationic groups)

Mutations in two-component systems or deletions/insertions in regulators →Increased expression of proteins adding cationic groups

Diminution of negative charge of LPS leads to decrease affinity of colistin to LPS and to resistance

Addition of 4-Amino-4deoxy-L-ARA leads to higher resistance rate than addition of pEtn Since november 2015, acquired resistance to colistin involved **ALSO plasmid** mediated resistance

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu*, Yang Wang*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

MCR-1

Plasmid encoded phosphoethanolamine transferase