

TP Structure des ordinateurs et applications

Corrigé de la série de TP N°2

Corrigé de l'exercice N°01 :

Simplifier à l'aide des propriétés de l'algèbre de Boole, les expressions des fonctions logiques suivantes :

1)
$$F_1 = a.(a + b)$$

$$F_1 = aa + ab$$

avec
$$a.a = a$$

$$F_1 = a + ab = a(1+b)$$

avec
$$1 + b = 1$$

$F_1 = a$

Ou bien

D'après les propriétés de l'algèbre de Boole on a :

$$x.(x + y) = x$$
 donc $F_1 = a.(a + b) = a$

2)
$$F_2 = a + abc + \bar{a}bc + \bar{a}b + ad + a\bar{d}$$

$$F_2 = a + bc(\underline{a} + \overline{a}) + \overline{a}b + a(\underline{d} + \overline{d})$$

$$F_2 = \frac{a}{a} + bc + \bar{a}b + \frac{a}{a}$$

avec
$$a + a = a$$

$$F_2 = bc + a + \bar{a}b$$

avec $a + \bar{a}b = a + b$ d'après le théorème d'allongement

avec $a + \bar{a} = 1$ et $d + \bar{d} = 1$

$$F_2 = bc + a + b$$

$$F_2 = a + bc + b = a + b(c + 1)$$

avec
$$c + 1 = 1$$

$F_2 = a + b$

3)
$$F_3 = (a + b)(\bar{a} + \bar{b})$$

$$F_3 = a\bar{a} + a\bar{b} + \bar{a}b + b\bar{b}$$

avec
$$a\bar{a} = 0$$
 et $b\bar{b} = 0$

$F_3 = a\bar{b} + \bar{a}b$

$F_3 = a \oplus b$

4)
$$F_4 = (a + b)(\bar{a} + b)$$

$$F_4 = \frac{a\bar{a}}{a} + ab + \bar{a}b + bb$$

$$avec \ a\overline{a} = 0 \ et \ bb = b$$

$$F_4 = ab + \bar{a}b + b$$

$$F_4 = b(a + \bar{a}) + b$$

avec
$$a + \bar{a} = 1$$

$$F_4 = b + b$$

$$avec b + b = b$$

$F_4 = b$

5)
$$F_5 = abc + a\bar{b}c + \bar{a}$$

$$F_5 = ac(b + \bar{b}) + \bar{a}$$

avec
$$b + \bar{b} = 1$$

$$F_5 = ac + \bar{a} = \bar{a} + ac$$

avec
$$\bar{a} + ac = \bar{a} + c$$
 d'après le théorème d'allongement

$F_5 = \bar{a} + c$

6)
$$F_6 = (\bar{a} + b)(a + b + d)\bar{d}$$

$$F_6 = (\bar{a} + b)(a\bar{d} + b\bar{d} + d\bar{d})$$

$$F_6 = \overline{a}a\overline{d} + \overline{a}b\overline{d} + \overline{a}d\overline{d} + ab\overline{d} + bb\overline{d} + bd\overline{d}$$
 avec $a\overline{a} = 0$ et $d\overline{d} = 0$ et $bb = b$

avec
$$a\bar{a} = 0$$
 et $d\bar{d} = 0$ et $bb = b$

$$F_6 = \bar{a}b\bar{d} + ab\bar{d} + b\bar{d}$$

$$F_6 = b\bar{d}(\bar{a} + a) + b\bar{d}$$

avec
$$\bar{a} + a = 1$$

$$F_6 = b\bar{d} + b\bar{d}$$

avec
$$b\bar{d} + b\bar{d} = b\bar{d}$$

$F_6 = b\bar{d}$

Corrigé de l'exercice N°02 :

$$1) F_1 = ab + bc + ac$$

$$F_1 = ab(c + \overline{c}) + (a + \overline{a})bc + a(b + \overline{b})c$$

$$F_1 = abc + ab\bar{c} + abc + \bar{a}bc + abc + a\bar{b}c$$

$$F_1 = abc + ab\bar{c} + \bar{a}bc + a\bar{b}c$$

Première forme

$$F_1 = \sum 7,6,3,5$$

canonique

7,**6**,**5**,**4**,**3**,**2**,**1**,**0**

$$\overline{F_1} = \sum_{i=1}^{n} 0,1,2,4$$

$$F_1 = \prod 7,6,5,3$$

$F_1 = (a+b+c).(a+b+\bar{c}).(a+\bar{b}+c).(\bar{a}+b+c)$	
	.

Chiffre en octal	Chiffre équivalent en binaire				
	$(2^2 \ 2^1 \ 2^0)$				
0	0 0 0				
1	0 0 1				
2	0 1 0				
3	0 1 1				
4	1 0 0				
5	1 0 1				
6	1 1 0				
7	1 1 1				

Deuxième forme canonique

2)
$$F_2 = (a + b)(\bar{a} + b + d)$$

$$F_2 = (a + b + d).(a + b + \bar{d}).(\bar{a} + b + d)$$

7,6,5,4,<mark>3</mark>,2,1,0

 $\overline{F_2} = \boxed{0,1,2,4,5}$

Deuxième forme canonique

$$F_2 = \sum 7,6,5,3,2$$

$$F_2 = abc + ab\bar{c} + a\bar{b}c + \bar{a}bc + \bar{a}b\bar{c}$$

3)
$$F_3 = \overline{a+b+\bar{c}d}$$

$$F_3 = \bar{a}\bar{b}\bar{c}\bar{d}$$

$$F_3 = \bar{a}\bar{b}(c + \bar{d})$$

$$F_3 = \bar{a}\bar{b}c + \bar{a}\bar{b}\bar{d}$$

$$F_3 = \bar{a}\bar{b}c(d + \bar{d}) + \bar{a}\bar{b}(c + \bar{c})\bar{d}$$

$$F_3 = \bar{a}\bar{b}c\mathbf{d} + \bar{a}\bar{b}c\mathbf{d} + \bar{a}\bar{b}\mathbf{c}d + \bar{a}\bar{b}\mathbf{c}\bar{d}$$

$$F_3 = \bar{a}\bar{b}c\mathbf{d} + \bar{a}\bar{b}c\mathbf{d} + \bar{a}\bar{b}\mathbf{c}\bar{d}$$

$$F_3 = \sum 3,2,0$$

$$\overline{F_3} = \sum 1,4,5,6,7,8,9,A,B,C,D,E,F$$

$$F_3 = \prod_{i=1}^{n} 0,1,2,3,4,5,6,7,8,9,A,B,E$$

Deuxième forme canonique

$$F_{3} = (\bar{a} + \bar{b} + \bar{c} + \bar{d}).(\bar{a} + \bar{b} + \bar{c} + \bar{d}).(\bar{a} + \bar{b} + c + \bar{d}).(\bar{a} + \bar{b} + c + \bar{d}).(\bar{a} + b + \bar{c} + \bar{d}).(\bar{a} + b + c + \bar{d}).(\bar{a} + \bar{b} + \bar{c} + \bar{d}).(\bar{a} + \bar{b} + \bar{c} + \bar{d}).(\bar{a} + \bar{b} + c + \bar{d})$$

Corrigé de l'exercice N°03 :

1) La fonction booléenne simplifiée de la table de vérité suivante :

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$F = \bar{A} B \bar{C} + \bar{A} B C + A \bar{B} C + A B \bar{C}$$

$$F = \overline{A} B (\overline{C} + C) + A \overline{B} C + A B \overline{C}$$

avec
$$\bar{C} + C = 1$$

$$F = \overline{A} B + A \overline{B} C + A B \overline{C}$$

2) Retrouver ce résultat à l'aide de la table de Karnaugh

C	00	01	11	10
0		1	1	
1		1		1

 $F = \overline{A}B + B\overline{C} + A\overline{B}C$

Corrigé de l'exercice N°04 :

1.1. Réalisation de la fonction logique NOT en utilisant que des portes logiques NAND

$$S = \overline{X} = \overline{X.X}$$

 $X \longrightarrow \bar{X}$

 $X \longrightarrow \overline{X.X} = \overline{X}$

1.2. Réalisation de la fonction logique NOT en utilisant que des portes logiques NOR

$$S = \overline{X} = \overline{X + X}$$

 $X \longrightarrow \bar{X}$

 \iff

 $X \longrightarrow \overline{X + X} = \overline{X}$

2.1. Réalisation de la fonction logique AND en utilisant que des portes logiques NAND

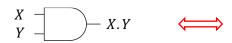
$S = X.Y = \overline{\overline{X.Y}}$

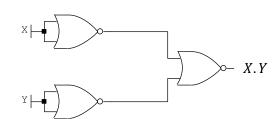
 $X \longrightarrow X.Y$

X Y X o X o X o

2.2. Réalisation de la fonction logique AND en utilisant que des portes logiques NOR

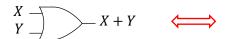
$S = X.Y = \overline{\overline{X.Y}} = \overline{\overline{X} + \overline{Y}}$

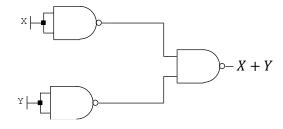




3.1. Réalisation de la fonction logique **OR** en utilisant que des portes logiques NAND

$S = X + Y = \overline{\overline{X + Y}} = \overline{\overline{X} \cdot \overline{Y}}$





3.2. Réalisation de la fonction logique **OR** en utilisant que des portes logiques NOR

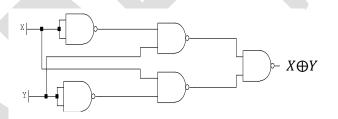
$S = X + Y = \overline{\overline{X + Y}}$

$$X \longrightarrow X + Y \longrightarrow X + Y$$

4.1. Réalisation de la fonction logique XOR en utilisant que des portes logiques NAND

$$S = X \oplus Y = \overline{X}Y + X\overline{Y} = \overline{\overline{X}Y + X\overline{Y}} = \overline{\overline{X}Y \cdot \overline{X}\overline{Y}}$$

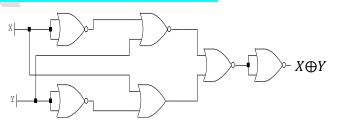
$$X \rightarrow X \rightarrow XY + X\bar{Y} = X \oplus Y$$



4.2. Réalisation de la fonction logique XOR en utilisant que des portes logiques NOR

$$S = X \oplus Y = \overline{X}Y + X\overline{Y} = \overline{\overline{X}Y + X\overline{Y}} = \overline{\overline{X}Y + X\overline{Y}} = \overline{\overline{X}Y \cdot X\overline{Y}} = \overline{X + \overline{Y}} + \overline{X} + Y = \overline{\overline{X} + \overline{Y}} + \overline{\overline{X} + Y}$$

$$\begin{array}{c} X \\ Y \end{array} \longrightarrow \overline{X}Y + X\overline{Y} = X \oplus Y \qquad \Longleftrightarrow \qquad$$



Corrigé de l'exercice N°05 :

Simplifier les fonctions logiques à l'aide de la table de Karnaugh

1)
$$F_1(a,b,c,d) = \bar{a}\bar{c}d + \bar{a}cb + \bar{b}\bar{c}d + \bar{a}\bar{b}cd$$

$$F_1(a,b,c,d) = \bar{a}(b+\bar{b})\bar{c}d + \bar{a}bc(d+\bar{d}) + (a+\bar{a})\bar{b}\bar{c}d + \bar{a}\bar{b}cd$$

$$F_1(a,b,c,d) = \bar{a}b\bar{c}d + \bar{a}\bar{b}\bar{c}d + \bar{a}bcd + \bar{a}bc\bar{d} + a\bar{b}\bar{c}d + \bar{a}\bar{b}\bar{c}d + \bar{a}\bar{b}\bar{c}d$$

$$F_1(a,b,c,d) = \bar{a}b\bar{c}d + \bar{a}\bar{b}\bar{c}d + \bar{a}bcd + \bar{a}bc\bar{d} + a\bar{b}\bar{c}d + \bar{a}\bar{b}cd$$

$$F_1(a, b, c, d) = \sum 5,1,7,6,9,3$$

ab cd	00	01	11	10
00				
01	1	1		1
11	1	1		
10		1		

 $F_1(a,b,c,d) = \bar{a}d + \bar{b}\bar{c}d + \bar{a}bc$

2) $F_2(a, b, c) = \sum 0.3,4,6,7$

c ab	00	01	11	10
0	1		1	1
1		1	1	

$F_2(a,b,c) = ab + \bar{b}\bar{c} + bc$

Ou bien

ab c	00	01	11	10
0	1		1	1
1		1	1	

$F_2(a,b,c) = a\bar{c} + \bar{b}\bar{c} + bc$

3) $F_3(a,b,c) = \sum 0.1.3$

c	00	01	11	10
0	1			
1	1	1		

 $F_3(a,b,c) = \bar{a}\bar{b} + \bar{a}c$

4) $F_4(a, b, c, d) = \sum 5,7,13,15$

ab				
cd	00	01	11	10

00			
01	1	1	
11	1	1	
10			

 $F_4(a,b,c,d) = bd$

5) $F_5(a, b, c, d) = \sum 0.5.9.10$ et Φ pour 2, 3, 8, 15

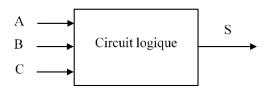
ab cd	00	01	11	10
00	1			Φ
01	7	1		1
11	Φ		Ф	
10	Φ			1

 $F_5(a,b,c,d) = \bar{a}b\bar{c}d + \bar{b}\bar{d} + a\bar{b}\bar{c}$

Corrigé de l'exercice N°06 :

Soit la table de vérité suivante :

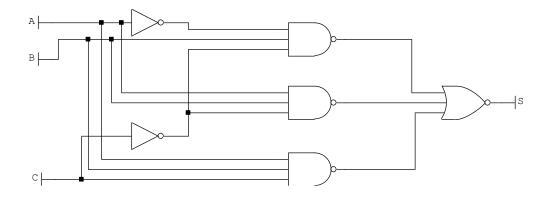
A	В	С	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1



1) L'expression logique de la sortie S en fonction des entrées A, B et C

$S = \bar{A}B\bar{C} + AB\bar{C} + ABC$

2) Représentation de logigramme de ce système logique



3) Simplification algébrique de l'expression S

$$S = \bar{A}B\bar{C} + AB\bar{C} + ABC$$

$$S = B\bar{C}(\bar{A} + A) + ABC$$

avec
$$\bar{A} + A = 1$$

$$S = B\bar{C} + ABC = B(\bar{C} + CA)$$

avec
$$\bar{C} + CA = \bar{C} + A$$
 d'après le théorème d'allongement

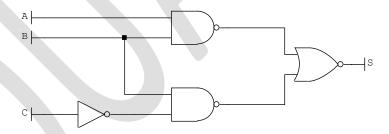
$$S = B\bar{C} + BA = AB + B\bar{C}$$

4) Simplifier l'expression S en utilisant la méthode de karnaugh

C	00	01	11	10
0		1	1	
1			1	

$S = AB + B\bar{C}$

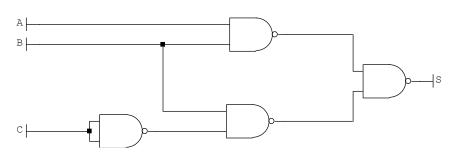
5) Réalisation de système logique simplifié (question d) en utilisant les portes logiques nécessaires



6) Réalisation de système logique simplifié (question d) en utilisant que des portes NAND

$$S = AB + B\bar{C}$$

$$\overline{\bar{S}} = \overline{\overline{AB} + B\bar{C}} = \overline{\overline{AB}.\overline{B}\bar{C}}$$



Corrigé de l'exercice N°07 :

1) Les fonctions logiques de sortie correspondantes aux circuits :

$$S1 = E1E2 + \overline{E1}E2 + E1\overline{E2}$$

$$S2 = \overline{E1} + \overline{E1 + E2}$$

$$S3 = E1E2 + E2 + E1\overline{E2}$$

$$S4 = \overline{E1}E2 + E1E2 + E1\overline{E2}$$

2) Simplification des expressions trouvées :

$$S1 = E1E2 + \overline{E1}E2 + E1\overline{E2}$$

$$S1 = E2(E1 + \overline{E1}) + E1\overline{E2}$$

$$S1 = E2 + E1\overline{E2}$$
 avec $E2 + \overline{E2}E1 = E2 + E1$ d'après le théorème d'allongement

S1 = E1 + E2

$$S2 = \overline{E1} + \overline{E1 + E2}$$

$$S2 = \overline{E1} + \overline{E1} \overline{E2}$$

$$S2 = \overline{E1}(1 + \overline{E2})$$

$S2 = \overline{E1}$

$$S3 = E1E2 + E2 + E1\overline{E2}$$

$$S3 = E1(E2 + \overline{E2}) + E2$$

S3 = E1 + E2

$$S4 = \overline{E1}E2 + E1E2 + E1\overline{E2}$$

$$S4 = E2(\overline{E1} + E1) + E1\overline{E2}$$

$$S4 = E2 + E1\overline{E2}$$
 avec $E2 + \overline{E2}E1 = E2 + E1$ d'après le théorème d'allongement

S4 = E1 + E2

Corrigé de l'exercice N°08 : Commande d'une serrure

1) La table de vérité de la serrure S.

A	В	C	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2) L'expression de la sortie S

$$S = \bar{A}BCD + A\bar{B}CD + AB\bar{C}\bar{D} + AB\bar{C}D + AB\bar{C}\bar{D} + AB\bar{C}\bar{D}$$

3) Simplification de l'expression de S avec le tableau de Karnaugh

AB CD	00	01	11	10
00			1	
01			1	
11		1		1
10			1	

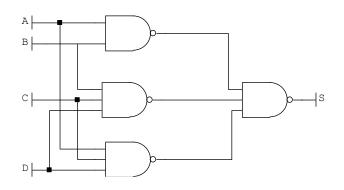
S = BCD + ACD + AB

4) Le logigramme de la serrure S à l'aide des portes NAND uniquement

$$S = BCD + ACD + AB$$

$$S = \overline{S} = \overline{BCD + ACD + AB}$$

$$S = \overline{\overline{S}} = \overline{\overline{BCD}.\overline{ACD}.\overline{AB}}$$



Corrigé de l'exercice supplémentaire N°02 : Commande de lampes

3) Les expressions des fonctions binaires R et S

A	В	С	R	S
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

$$\bar{R} = \bar{A}\bar{B}\bar{C}$$

R = A + B + C

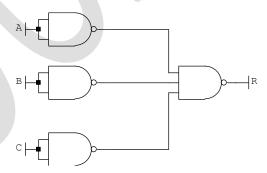
$$S = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

C	00	01	11	10
0			1	
1		1	1	1

$$S = BC + AB + AC$$

4) Les logigrammes à l'aide de portes Non-Et (NAND) uniquement

$$R = A + B + C = \overline{A + B + C} = \overline{A}\overline{B}\overline{C}$$



$$S = BC + AB + AC = \overline{BC + AB + AC} = \overline{BC} \overline{AB} \overline{AC}$$

