Corrigé du rattrapage de Physique 1

Exercice 1 (06 pts)

- 1. en remplaçant t dans x on obtient : $x = \frac{y^2}{4} 1$ ou $y = 2\sqrt{x+1}$ (0.5 pts)

 2. Vitesse : $v(t) = \begin{cases} v_x = \frac{dx}{dt} = 2t \\ v_y = \frac{dy}{dt} = 2 \end{cases}$ donc $\vec{v} = 2t \ \vec{i} + 2 \ \vec{j}$ et $v = 2\sqrt{(t^2+1)}$ (0.5 pts)

 Accélération : $v(t) = \begin{cases} a_x = \frac{dv_x}{dt} = 2 \\ a_y = \frac{dv_y}{dt} = 0 \end{cases}$ donc $\vec{a} = 2 \ \vec{i}$ et $a = 2 \ m/s^2$ (01 pts)

Accélération :
$$v(t) = \begin{cases} a_x = \frac{dv_x}{dt} = 2\\ a_y = \frac{dv_y}{dt} = 0 \end{cases}$$
 donc $\vec{a} = 2\vec{i}$ et $a = 2m/s^2$ (01 pts)

- 3. a est constante et a. v positif donc le mouvement est uniformément accéléré (0.5 pts)
- 4. Accélération tangentielle : $a_t = \frac{dv}{dt} = \frac{2t}{\sqrt{(t^2+1)}}$ (0.75 pts)

Accélération normale :
$$a_n^2 = \sqrt{a^2 - a_t^2} \Rightarrow a_n = \frac{2}{\sqrt{(t^2 + 1)}}$$
 (0.75 pts)

Rayon de courbure
$$a_n = \frac{v^2}{\rho} \Longrightarrow \rho = \frac{v^2}{a_n} = 2 (t^2 + 1)^{\frac{3}{2}}$$
 (0.5 pts)

- 5. Angle entre \overrightarrow{ox} et \overrightarrow{v} : $\sin \alpha = \frac{v_y}{v} = \frac{1}{\sqrt{(t^2+1)}}$ (0.5 pts)
- 6. Sachant que $\sin \alpha = \frac{a_n}{a} \Rightarrow a_n = a \sin \alpha = \frac{2}{\sqrt{(t^2+1)}}$ (0.5 pts)

Exercice 2 (09 pts)

Partie I

1. Condition d'équilibre sur $m_1: \overrightarrow{P_1} + \overrightarrow{R} + \overrightarrow{T_0} + \overrightarrow{F_s} = \overrightarrow{0}$

Projection sur la verticale : $R = P_1 \cos \alpha$ (0.25 pts)

Projection sur la parallèle $T_0 = P_1 sin\alpha + F_s$ (0.25 pts)

Sachant que $F_s = \mu_s R$ donc $T_0 = m_1 g(sin\alpha + \mu_s cos\alpha)$ ---- (1) (0.5 pts)

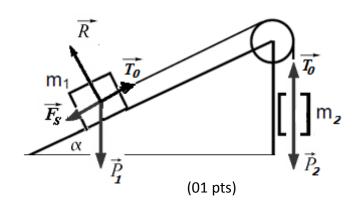
Condition d'équilibre sur m_2 : $\overrightarrow{P_2} + \overrightarrow{T_0} = \overrightarrow{0}$

Donc
$$T_0 = P_2 = m_{2 max} g$$
 ----(2) (0.25 pts)

L'égalité entre (1) et (2) donne :

$$m_{2 max} = m_1(sin\alpha + \mu_s cos\alpha)$$
 (0.5 pts)

D'où :
$$m_{2 max} = 1.1 kg$$
 (0.25 pts)



Partie II

1. PFD sur m₁:
$$\overrightarrow{P_1} + \overrightarrow{R} + \overrightarrow{T_1} + \overrightarrow{F_c} = m_1 \vec{a}$$

Projection sur la parallèle $T_1 - P_1 sin\alpha - F_c = m_1 a$ (0.5 pts)

Sachant que $F_c = \mu_c R$ donc : $m_1 a = T_1 - m_1 g(sin\alpha + \mu_c cos\alpha)$ ---- (3) (0.5 pts)

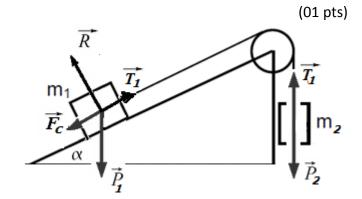
PFD sur m₂:
$$\overrightarrow{P_2} + \overrightarrow{T_1} = m_2 \vec{a}$$

Donc
$$m_2 a = P_2 - T_1$$
 ---- (4) (0.25 pts)

En additionnant (3) et (4) on obtient :

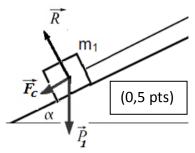
$$a = g \frac{m_2 - m_1(\sin\alpha + \mu_c \cos\alpha)}{m_1 + m_2}$$
 (0.5 pts)

Donc $a = 2.9 \, m/s^2$ (0.25 pts)



En remplaçant cette valeur dans (4) on obtient $T_1=m_2\,(g-a)=~10{,}35N~~(0.5~{\rm pts})$

- 2. Le mouvement est uniformément accéléré pour les deux masses qui auront les mêmes vitesses donc $v_1^2-v_0^2=2~a~h$. Les masses étaient au repos ($v_0=0$) d'où $v_1=\sqrt{2~a~h}$ $v_1=1,1~m/s$ (0.5 pts)
- 3. La masse m₂ s'immobilise et m₁ continue son mouvement



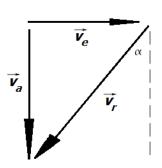
a- PFD sur m₁:
$$\overrightarrow{P_1} + \overrightarrow{R} + \overrightarrow{F_c} = m_1 \overrightarrow{a'}$$
 $m_1 a' = -P_1 sin\alpha - F_c$ donc $a' = -g(sin\alpha + \mu_c cos\alpha)$ (0.5 pts) on obtient $a' = -7,45 \ m/s^2$ (0.25 pts)

b- Durant cette phase de décélération m_1 va parcourir la distance d_1 avant de s'arrêter

$$v_f^2 - v_1^2 = 2 \ a' d_1$$
 puisque $v_f = 0 \implies d_1 = -\frac{v_1^2}{2 \ a'}$ alors $d_1 = 0.08 \ m$ (0.5 pts)
La distance totale parcourue est $D = d + d_1 = 0.28 \ m$ (0.25 pts)

Exercice 3 (2 pts)

La composition des vitesses donne $\vec{v}_a=\vec{v}_e+\vec{v}_r$ (0,5 pts) Sur le schéma on voit bien que :



(0,5 pts)

Année universitaire 2014/2015 Septembre 2015 Durée : 02 heures

Exercice 4 (03 pts)

Sachant que l'on a égalité de la force centrifuge avec la force gravitationnelle centripète:

$$m \frac{v^2}{R} = G \frac{mM}{R^2} \text{ et que } v = \frac{2\pi R}{T} \text{ alors } \frac{4\pi^2 R^2}{T^2} = G \frac{M}{R}$$

$$01 \text{ pts}$$

$$\frac{R^3}{T^2} = \frac{GM}{4\pi^2} \text{ donc } M = \frac{4\pi^2 R^3}{GT^2}$$

$$(01 \text{ pts})$$

Exercice 5 (03 pts)

1.
$$E_p = mgh$$
 alors $E_p = 35.3 \, kJ$ (0.5 pts)

2.
$$\Delta E_m=0 \Rightarrow \Delta E_p=-\Delta E_c$$
 (0,5 pts)
$$\frac{1}{2}mv_t^2=mgh \;\; \text{d'où}\; v_t\;=\sqrt{2\;g\;h} \;\; \text{alors}\; v_t\;=34,3\;m/s \quad \text{(0,5 pts)}$$

3. En bas de la pente on a
$$E_m=E_p+E_c=\frac{1}{2}mv^2$$

$$\Delta E_m=E_{m\;r}-E_{m\;t}=\frac{1}{2}m(v_r^2-v_t^2)\;\; {\rm d'où}\; \Delta E_m=-16,5\; kJ \qquad \text{(0,5 pts)}$$

4. En appliquant le théorème de l'énergie mécanique
$$\Delta E_m = \sum w \ (\overrightarrow{F_{NC}})$$
 (0,5 pts)
Alors : $w \ (\overrightarrow{F_r}) = \frac{1}{2} m v_r^2 - mgh \ \Rightarrow w \ (\overrightarrow{F_r}) = -16,5 \ kJ$ (0,5 pts)