Chapitre 3 : Noyau interphasique

3.1. Généralités

- Le noyau est un organite, présent dans les cellules eucaryotes, contenant le matériel génétique (l'ADN) de la cellule. Il est limité par une enveloppe nucléaire au cours de l'interphase.
- Il a un diamètre variant de 5 à 7 μm, ce qui fait de lui le plus grand des organites. Il se retrouve généralement dans le **centre** de la cellule (**animale**).
- Il a trois fonctions principales :
 - Contrôle des réactions chimiques du cytoplasme par le transport sélectif des molécules à travers les pores nucléaires;
 - 2. Stockage des informations nécessaires à la division cellulaire ;
 - 3. **Responsable** de la **synthèse** des ARNm, des ARNt, et des ARN ribosomaux.

3.2. Structure

Le noyau est limité par une **enveloppe nucléaire** formée de deux membranes séparées par un **espace périnucléaire**. Il contient le **nucléoplasme**, la **chromatine** et les **nucléoles**.

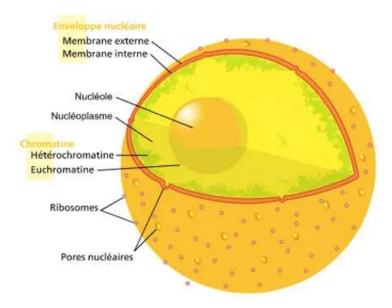


Figure 3.1. Représentation du noyau de la cellule

3.2.1. Enveloppe nucléaire

 L'enveloppe nucléaire est une bicouche lipidique caractéristique des cellules eucaryotes qui sépare et contrôle les échanges entre le noyau et l'hyaloplasme.

- Elle apparait formée de deux membranes tri stratifiée de 75 A° d'épaisseur chacune. Du côté interne, un réseau protéique fibreux appelé la lamina nucléaire, et du côté externe garnie des ribosomes.
- Ces deux membranes sont séparées par un espace péri-nucléaire large de 200 à 400 A°, traversée par des pores nucléaires.

3.2.2. Pores nucléaires -

Les **pores nucléaires** sont des structures **circulaires**, constituées par des zones d'interruption de l'enveloppe nucléaire. Formés par un assemblage de protéines chargées positivement appelées **nucléoporines** intervenant dans le contrôle des **échanges** et du **transport** entre le noyau et le cytoplasme.

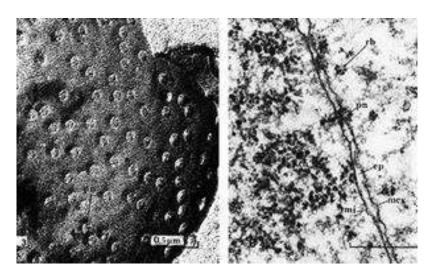


Figure 3.3. Ultrastructure des pores nucléaires.

3.2.3. Nucléoplasme

Le **nucléoplasme** est un liquide de consistance gélatineuse (qui apparaît grisâtre ponctué de noir en microscopie électronique) contenu dans le noyau délimité par l'enveloppe nucléaire. Il contient en moyenne entre **70** et **90%** d'**eau**, des **nucléotides**, des **enzymes**, des **protéines** et des **facteurs de transcription**. Il renferme la quasi-totalité de l'information génétique.

3.2.4. Nucléole -

- Considéré comme un organite nucléaire, visible en microscopie optique et électronique.
- Est une structure dynamique, présente au cours de l'interphase et disparait au cours de la mitose.
- Le nombre peut aller de un à plusieurs par cellule.
- Sa principale fonction est la biogenèse des ribosomes.

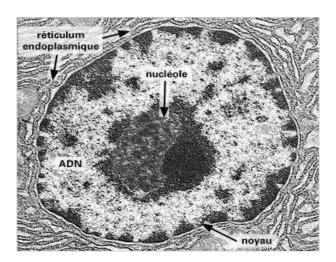


Figure 3.5. Nucléole.

3.2.5. Chromatine

3.2.5.1. Definition

- ◆ La chromatine est la forme sous laquelle se présente l'ADN dans le noyau. C'est la substance de base des chromosomes eucaryotes, elle correspond à l'association : ADN + ARN + Protéines ;
- Les protéines sont de deux types, protéines histones (protéines très riches en acides aminés basiques) et protéines non-histones, non liées à l'ADN;
- Il y a deux types de chromatine : l'euchromatine et l'hétérochromatine.

3.2.5.2. Niveaux de compaction de la chromatine

Le niveau de compaction de la chromatine permet de réguler l'accessibilité à l'ADN enzymes et aux protéines de la transcription.

- a. Le nucléosome constitue le premier niveau de compaction de l'ADN dans le noyau. Cette structure est ensuite régulièrement répétée pour former le nucléofilament (fibre de chromatine) qui peut, lui-même adopter des niveaux d'organisation plus compacts.
- b. Le deuxième niveau de compaction de la chromatine est assuré par l'empilement des nucléosomes en un solénoïde, constitué par l'association de six nucléosomes/tour grâce à l'histone H1.
- c. Les solénoïdes sont eux même organisés en **boucles de chromatine** fixées sur un squelette protéique, formant une hélice une fibre de **30 nm** de diamètre. L'association des nucléosomes n'est pas suffisante pour empaqueter 1 à 2 mètres d'ADN dans un noyau de 5 à 10 µm de diamètre. Des repliements en boucles sont nécessaires, les boucles sont maintenues compactes par un support protéique jouant le rôle d'échafaudage.

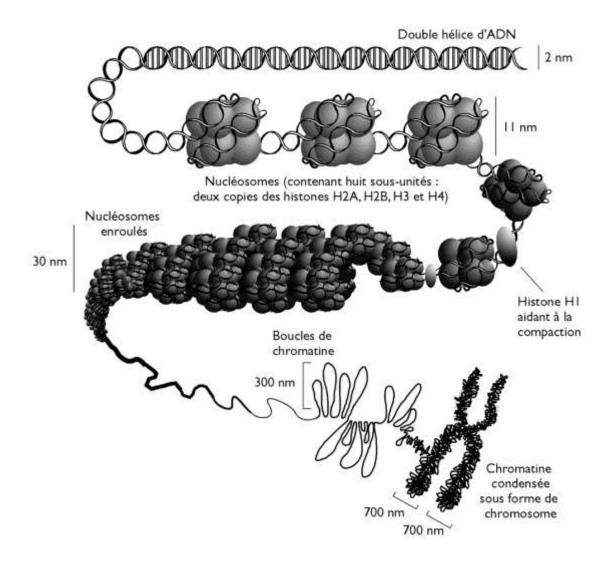


Figure 3.6. Les niveaux de compaction de la chromatine.