
Corrigé de l'EMD 1 Stat 1

Corrigé de l'exercice n°1 (6/6)

xi	ni	ni↑	ni xi	ni xi ²	
1	250	250	250	250	
2	150	400	300	600	
3	140	540	420	1260	
4	130	670	520	2080	
5	30	700	150	750	
total	700		1640	4940	

1) Le diagramme en bâton : (0.5)

2) Calculer la médiane et le mode de la distribution.

• La médiane : Me =
$$\frac{x_{\frac{1}{2}}^{n} + x_{\frac{1}{2}+1}^{n}}{2} (\underline{0.5})$$

 $Me = \frac{X350 + X351}{2} = \frac{2+2}{2} = 2(\underline{0.5})$

Le mode de la série : M_0 =1 car il correspond à l'effectif le plus grand (ni=250) (0.5)

1

3) Calculer la moyenne et l'écart-type.

• La moyenne :
$$\bar{x} = \frac{\sum ni \, xi}{N}$$
 (0.5)
 $\bar{x} = \frac{1640}{700} = 2.343$ (0.5)

$$\bar{x} = \frac{1640}{700} = 2.343 \ (\underline{\mathbf{0.5}})$$
• La variance : $V(x) = \frac{\sum ni \ xi^2}{N} - \bar{x}^2 \qquad (\underline{\mathbf{0.5}})$

$$V(x) = \frac{4940}{700} - 2.343^2 = 1.567 (\underline{\mathbf{0.5}})$$

• L'écart-type :
$$\sigma = \sqrt{v(x)}$$

$$\sigma = \sqrt{1.567} = 1.252 \ (0.5).$$

4) Calculer le coefficient d'asymétrie de Pearson β₁

$$\beta_1 = \frac{\bar{X} - M_o}{\sigma(X)} (\underline{\mathbf{0.5}})$$

$$= \frac{2.343 - 1}{1.252} = 1.073 > 0 \ (\underline{\mathbf{0.5}}).$$

Comme $\beta_1 > 0$ donc la courbe est oblique à gauche (0.5).

Corrigé de l'exercice 2 (8/8):

Salaires nets (MDA)	n_i	n_{ic}	c_i	f_i	$f_i \uparrow$	$n_i c_i$	$n_i c_i^2$	$f_i'(\%)$ $\left(\frac{n_i c_i}{\sum n_i c_i}\right)$	$f'_i \uparrow$ (%)
[20-30[10	10	25	0,1	0,1	250	6250	0,0411	0,0411
[30-50[16	8	40	0,16	0,26	640	25600	0,1052	0,1463
[50-70[34	17	60	0,34	0,6	2040	122400	0,3355	0,4818
[70-80[25	25	75	0,25	0,85	1875	140625	0,3083	0,7901
[80-90[15	15	85	0,15	1	1275	108375	0,2097	1
Total	100	-	100	1	-	6080	403250	1	

1) Le caractère : le salaire net. (0.5) Sa nature : quantitatif continu. (0.5)

2) Calcul de salaire moyen des ouvriers :

$$\bar{X} = \frac{\sum n_i c_i}{N}$$
 (0.5)
= $\frac{6080}{100} = 60.8 MDA$ (0.5)

3) Calcul du salaire modal des ouvriers :

La classe modale est [70 -80].

$$M_0 = X_{\min} + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times ai\left(\underline{0.5}\right)$$

 $M_0 = 70 + \frac{(25-17)}{(25-17)+(25-15)} \times 10 = 74,444 \ MD\left(\underline{0.5}\right)$

4) Calcul de salaire médian des ouvriers :

La classe médiane est la classe [50-70[

$$Me = X \frac{0.5 - f_{i_{Me-1}}^{\uparrow}}{f_{i_{Me}}} (\underline{0.5})$$

$$M_e = 50 + \frac{0.5 - 0.26}{0.34} \times 20 = 64,117 MDA(\underline{0.5})$$

5) Calcul de la médiale

La classe médiale est la classe [70-80[

$$Ml = X_{min} + \frac{0.5 - f_{i_{Ml-1}}^{'}}{f_{i_{Ml}}^{'}} \times ai \ (\underline{\textbf{0.5}})$$

$$M_{l} = 70 + \frac{0.5 - 0.4818}{0.3083} \times 10 = 70,59 \ MDA \ (\underline{\textbf{0.5}})$$

Interprétation :50% de la masse salariale totale va aux ouvriers qui gagnent un salaire net supérieur ou égal à 70590 DA (<u>0.5</u>)

6) Mesure de la concentration

On calcule d'abord l'écart ΔM (médiale – médiane)

$$\Delta M = M_l - M_e = 70,59 - 64,117 = 6,473 MDA (0.5)$$

Cet écart ΔM traduit la concentration. On le compare à l'étendue.

Etendue =
$$X_{max} - X_{min} = 90 - 20 = 70 MDA$$
 (0.5)

On remarque que : ΔM est petit par rapport à l'étendue, donc la concentration des salaires nets est faible. Dans notre exemple, nous avons : $\frac{\Delta M}{E} = \frac{6,473}{70}$ (0.5)

$$= 9,24\%. (0.5)$$

Comme la concentration des salaires nets est l'ordre de 9,24%, donc elle est faible. (0.5)

Corrigé de l'exercice 3 :

Le tableau suivant donne les prix et les quantités de certains produits achetés entre 2005 et 2007.

produits	P05	Q05	P07	Q07	P05*Q05	P05*Q07	P07*Q05	P07*Q07	CB 2005	CB 2007
Pommes de terre	30	500	55	400	15000	12000	27500	22000	0.612	0.667
Tomate	25	200	40	150	5000	3750	8000	6000	0.204	0.182
Orange	30	150	50	100	4500	3000	7500	5000	0.184	0.151
Total					24500	18750	43000	33000	1	1

- 1. Calculer les coefficients budgétaires : (voir le tableau) (0.5)+(0.5)
- 2. Calculer pour les oranges les indices élémentaires (prix et quantité) de l'année 2007, en considérant l'année de base 2005.

> Prix:

$$I_{07/05}^{P} = \frac{p07}{p05}$$
 (**0.5**)
 $\frac{50}{30} * 100 = 166,67\%$ (**0.5**)

Interprétation : Les prix des oranges ont augmenté de 66%.(0.5)

Quantité :

$$I_{07/05}^{q} = \frac{q07}{q05} \quad (0.5)$$

$$\frac{100}{150} * 100 = 66,67\% \quad (0.5)$$

Interprétation : Les quantités des oranges ont diminué de $33.33\%.(\underline{0.5})$

3. Calculer les indices de Laspeyres et de Paasche du prix de l'année 2007 en considérant l'année de base 2005.

> Laspeyres prix :
$$L_{07/05}^{P} = \frac{\Sigma p07q05}{\Sigma p05q05} *100 \ (\underline{\textbf{0.5}})$$

= $\frac{43000}{24500} *100 = 175.5\% \ (\underline{\textbf{0.5}})$

Paasche prix :
$$P_{07/05}^{P} = \frac{\Sigma p07q07}{\Sigma p05q07} *100 \ (\underline{\textbf{0.5}})$$
$$= \frac{33000}{18750} *100 = 176\% \ (\underline{\textbf{0.5}})$$