Université A. MIRA de Béjaia
Faculté Sciences Exactes L2
Département de Recherche Opérationnele

Série TD n°2 Analyse complexe (2023-2024)

Exercice 1:

Soit
$$f(z) = z^2$$

$$g(z) = \begin{cases} z^2 & \text{si } z \neq i \\ 0 & \text{si } z = i \end{cases}$$

1- Calculer $\lim_{z \to i} f(z)$ et $\lim_{z \to i} g(z)$.

2- Montrer que la fonction $h(z) = \frac{z}{|z|}$ n'admet pas de limite au point z = 0.

Exercice 2:

1- Etudier la continuité des fonctions
$$f(z) = z^2$$
; $g(z) = \begin{cases} z^2 & \text{si } z \neq i \\ 0 & \text{si } z = i \end{cases}$

Exercice 3:

- a) Calculer la limite suivante : $\lim_{z \to -i\frac{\pi}{2}} \frac{e^{2z}+1}{e^z+i}$.
- **b)** Montrer que $\lim_{z\to 0} \frac{\overline{z}}{z}$ n'existe pas.

Exercice 4:

Résoudre dans \mathbb{C} , l'équation suivante: $2\cos(z) - e^{-iz} = 1 + 2i$.

Exercice 5:

Calculer a) Log
$$(1+i)$$
, b) i^{i} , c) $(1-i)^{3-3i}$.

Exercice 6:

Résoudre dans \mathbb{C} l'équation suivante: $e^z = -2$.

Exercice 7:

Montrer que la fonction f définie dans \mathbb{C} par $f(z) = z \operatorname{Re}(z)$, est seulement dérivable au point z = 0. Calculer f'(0).

Exercice 8:

À l'aide de la définition calculer la dérivée de $f(z) = z^2 - z$.

Exercice 9:

Montrer que les fonctions complexes suivantes ne sont pas dérivables aux points indiqués.

a)
$$f(z) = \overline{z}$$
, pour $z \in \mathbb{C}$, b) $f(z) = \operatorname{Re} z$, pour $z \in \mathbb{C}$, c) $f(z) = \operatorname{Im} z$, pour $z \in \mathbb{C}$.

Exercice 10:

Examiner si les fonctions suivantes sont holomorphes sur le domaine indiqué.

a)
$$f(z) = e^{-y} (\cos x + i \sin y)$$
, sur \mathbb{C} , b) $f(z) = \frac{x}{x^2 + y^2} + i \frac{y}{x^2 + y^2}$, sur $\mathbb{C} \setminus \{0\}$,

c)
$$f(z) = x^2 - y^2 + 2ixy$$
, sur \mathbb{C} , d) $f(z) = (x^2 - y^2 - 2xy) + i(x^2 - y^2 + 2xy)$, sur \mathbb{C} .

Exercce 11:

Soit $g: \mathbb{C} \backslash \{0\} \to \mathbb{C}$ définie par

$$g(x+iy) = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2}.$$

La fonction g est-elle holomorphe sur $\mathbb{C}\setminus\{0\}$?