TABLES DES ÉLÉMENTS (AMILE)

Pour une information plus détaillée, le lecteur est invité à consulter les ouvrages mis en référence à la fin du chapitre 4.

CONVENTION

Définition A1.1

On considère ici les conventions de notation assez classiques suivantes :

$$x_{ij} = x_i - x_j$$
$$y_{ij} = y_i - y_j$$
$$z_{ij} = z_i - z_i$$

ÉLÉMENT 1D LINÉAIRE

Élément et élément de référence

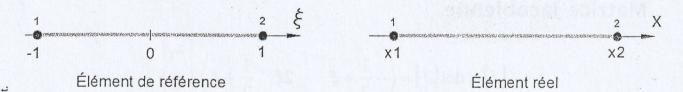
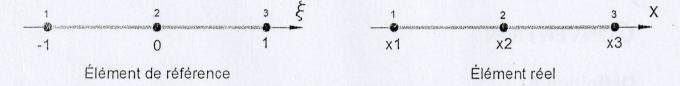


Tableau A1.1 - Table de l'élément 1D linéaire.


j	N_i	$\frac{\partial N_{j}}{\partial \xi}$
1	<u>1 − ξ</u>	$\frac{-1}{2}$
2	1 + \xi \cdot 2	1/2

Matrice Jacobienne

$$[J] = \det[J] = \frac{x_2 - x_1}{2} = \frac{x_{21}}{2} = \frac{L}{2}$$

 $[j] = [J]^{-1} = \frac{2}{L}$

ÉLÉMENT 1D QUADRATIQUE

Élément et élément de référence

Fonctions d'interpolation et dérivées

Tableau A1.2 - Table de l'élément 1D quadratique.

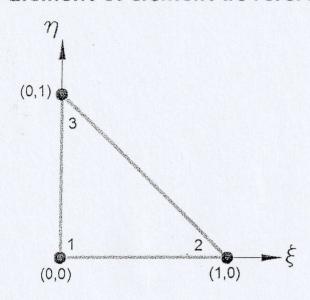
i	N_j	$\frac{\partial N_i}{\partial \xi}$
1	$\frac{-\xi}{2}(1-\xi)$	$\frac{-1}{2} + \xi$
2	$1-\xi^2$	-2 <i>ξ</i>
3	$\frac{\xi}{2}(1+\xi)$	$\frac{1}{2} + \xi$

Matrice Jacobienne

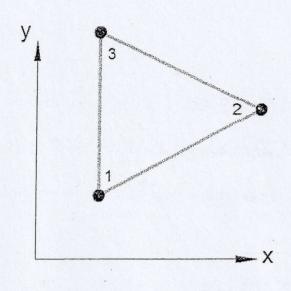
$$[J] = \det[J] = \left\langle -\frac{1}{2} + \xi - 2\xi \quad \frac{1}{2} + \xi \right\rangle \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix}$$
$$[j] = [J]^{-1} = \frac{1}{[J]}$$

ÉLÉMENT ID CUBIQUE

Élément et élément de référence



Élément de référence


Élément réel

ÉLÉMENT DE TYPE TRIANGLE LINÉAIRE

Élément et élément de référence

Élément de référence

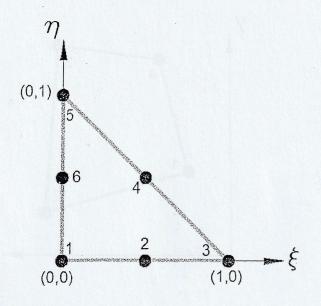
Élément réel

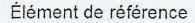
Fonctions d'interpolation et dérivées

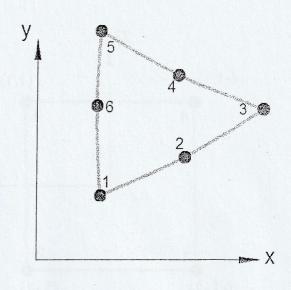
Tableau A1.7 - Table du triangle linéaire.

	N_i	$\frac{\partial N_{j}}{\partial \xi}$	$\frac{\partial N_j}{\partial \eta}$
1	$1-\xi-\eta$	-1	-1
2	ξ	1	0
3	η	0	1

Matrice Jacobienne

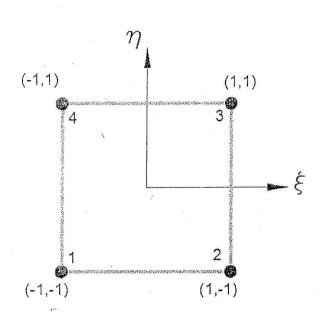

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} x_{21} & y_{21} \\ x_{31} & y_{31} \end{bmatrix}$$

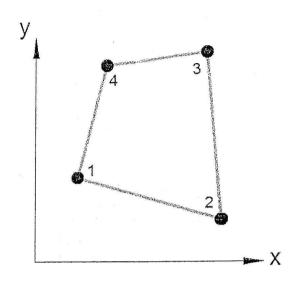

 $\det[J] = 2.A = x_{21}. y_{31} - x_{31}. y_{21}$ où A est l'aire du triangle réel


$$[j] = \frac{1}{x_{21} \cdot y_{31} - x_{31} \cdot y_{21}} \begin{bmatrix} y_{31} & -y_{21} \\ -x_{31} & x_{21} \end{bmatrix}$$

ÉLÉMENT DE TYPE TRIANGLE QUADRATIQUE

Élément et élément de référence


Élément réel

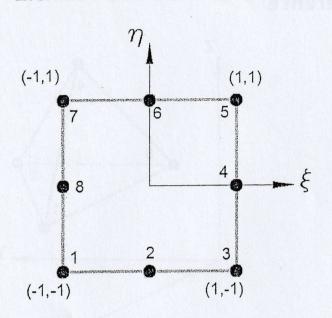

Tableau A1.8 - Table du triangle quadratique.

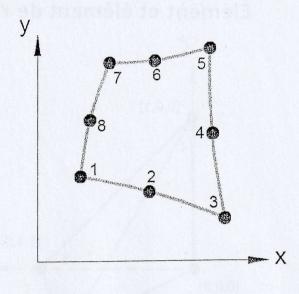
	N_{j}	∂ N j ∂ξ	$\frac{\partial N_j}{\partial \eta}$
1	$(-1 + \xi + \eta).(-1 + 2\xi + 2\eta)$	$-3+4\xi+4\eta$	-3+4 <i>5</i> +4 <i>η</i>
2	4 ξ. (1 – ξ – η)	4-8ξ-4η	-4 <i>ξ</i>
3	- <i>ξ</i> (1 – 2 <i>ξ</i>)	-1+45	0
4	4 <i>ξη</i>	4 η	4 5
5	$-\eta(1-2\eta)$	0	-1 + 4 <i>ŋ</i>
6	$4\eta.(1-\xi-\eta)$	-4 η	4-4ξ-8η

ÉLÉMENT DE TYPE QUADRANGLE LINÉAIRE

Élément et élément de référence

Élément de référence

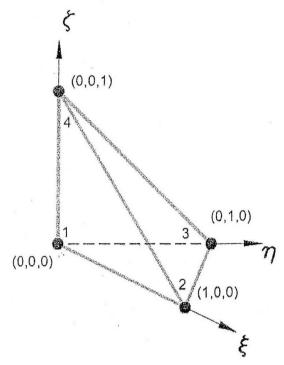

Élément réel


Tableau A1.9 - Table du quadrangle linéaire.

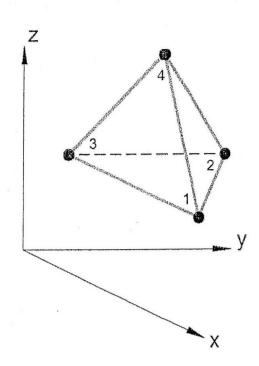
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N _i	<u></u>	$\frac{\partial N_j}{\partial \eta}$
1	$\frac{1}{4}(1-\xi).(1-\eta)$	$\frac{1}{4} \left(-1 + \eta\right)$	$\frac{1}{4} \left(-1 + \xi\right)$
2	$\frac{1}{4}(1+\xi).(1-\eta)$	$\frac{1}{4} (1 - \eta)$	$\frac{1}{4} (-1 - \xi)$
3	$\frac{1}{4}(1+\xi).(1+\eta)$	$\frac{1}{4}(1+\eta)$	$\frac{1}{4} (1 + \xi)$
4	$\frac{1}{4}(1-\xi).(1+\eta)$	$\frac{1}{4} (-1 - \eta)$	$\frac{1}{4}(1-\xi)$

ÉLÉMENT DE TYPE QUADRANGLE QUADRATIQUE

Élément et élément de référence


Élément de référence

Élément réel


Tableau A1.10 - Table du quadrangle quadratique.

	N_{i}	$\frac{\partial N_{j}}{\partial \xi}$	$\frac{\partial N_{j}}{\partial \eta}$
1	$-\frac{1}{4}(1-\xi).(1-\eta).(1+\xi+\eta)$	$\frac{1}{4}(1-\eta).(2\xi+\eta)$	$\frac{1}{4}(1-\xi).(\xi+2\eta)$
2	$\frac{1}{2}(1-\xi^2).(1-\eta)$	$-\xi(1-\eta)$	$-\frac{1}{2}(1-\xi^2)$
3	$-\frac{1}{4}(1+\xi)(1-\eta).(1-\xi+\eta)$	$\frac{1}{4}(1-\eta).(2\xi-\eta)$	$-\frac{1}{4}(1+\xi).(\xi-2\eta)$
4	$\frac{1}{2}(1+\xi)(1-\eta^2)$	$\frac{1}{2}(1-\eta^2)$	$-(1+\xi)\eta$
5	$-\frac{1}{4}(1+\xi)(1+\eta).(1-\xi-\eta)$	$\frac{1}{4}(1+\eta).(2\xi+\eta)$	$\frac{1}{4}(1+\xi).(\xi+2\eta)$
6	$\frac{1}{2}(1-\xi^2)(1+\eta)$	$-\xi(1+\eta)$	$\frac{1}{2}(1-\xi^2)$
7	$-\frac{1}{4}(1-\xi)(1+\eta).(1+\xi-\eta)$	$\frac{1}{4}(1+\eta).(2\xi-\eta)$	$-\frac{1}{4}(1-\xi).(\xi-2\eta)$
-8	$\frac{1}{2}(1-\xi)(1-\eta^2)$	$-\frac{1}{2}(1-\eta^2)$	$-(1+\xi)\eta$

ÉLÉMENT DE TYPE TÉTRAÈDRE LINÉAIRE Élément et élément de référence

Élément de référence

Élément réel

Fonctions d'interpolation et dérivées

Tableau A1.11 - Table du tétraèdre linéaire.

	<i>i</i> -	N_j	<u> </u>	$\frac{\partial N_{\tilde{l}}}{\partial \eta}$	$\frac{\partial N_i}{\partial \zeta}$
1		$1-\xi-\eta-\zeta$	-1	-1	-1
2	1	<i>ţ</i>	1	0	0
3		η	0	1	0
4	*****	5	0	0	1 .

Matrice Jacobienne

$$[J] = \begin{bmatrix} x_{21} & y_{21} & z_{21} \\ x_{31} & y_{31} & z_{31} \\ x_{41} & y_{41} & z_{41} \end{bmatrix}$$

$$\det [J] = 6.V = x_{41}.(y_{21}.z_{31} - z_{21}.y_{31}) + x_{31}.(z_{21}.y_{41} - y_{21}.z_{41}) + x_{21}.(y_{31}.z_{41} - z_{31}.y_{41})$$

V est le volume du tétraèdre réel.

$$[j] = [J]^{-1} = \begin{bmatrix} j_{11} & j_{12} & j_{13} \\ j_{21} & j_{22} & j_{23} \\ j_{31} & j_{32} & j_{33} \end{bmatrix} = \frac{1}{6.V} \begin{bmatrix} y_{31} \cdot z_{41} - z_{31} \cdot y_{41} & z_{21} \cdot y_{41} - y_{21} \cdot z_{41} & y_{21} \cdot z_{31} - z_{21} \cdot y_{31} \\ -x_{31} \cdot z_{41} + x_{41} \cdot z_{31} & -x_{41} \cdot z_{21} + x_{21} \cdot z_{41} & -x_{21} \cdot z_{31} + x_{31} \cdot z_{21} \\ -x_{41} \cdot y_{31} + x_{31} \cdot y_{41} & -x_{21} \cdot y_{41} + x_{41} \cdot y_{21} & -x_{31} \cdot y_{21} + x_{21} \cdot y_{31} \end{bmatrix}$$

ÉLÉMENT DE TYPE TÉTRAÈDRE QUADRATIQUE Élément et élément de référence

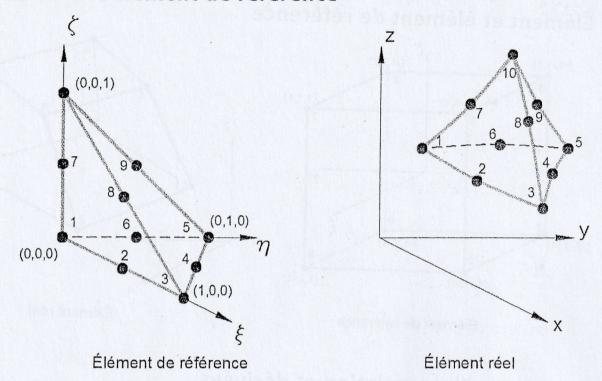
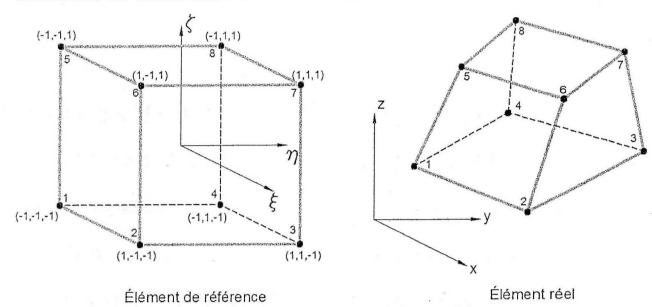
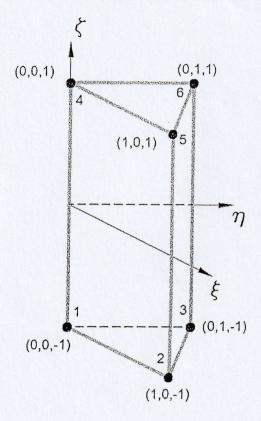


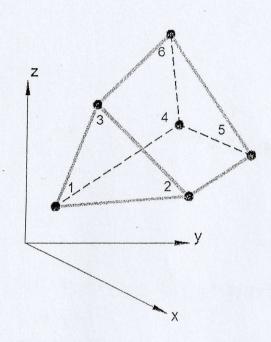
Tableau A1.12 - Table du tétraèdre quadratique.

	N _I	<u>∂Nj</u> <u>∂ξ</u>	∂ N _j ∂η	$\frac{\partial N_j}{\partial \zeta}$
1	$(-1 + \xi + \eta + \zeta)$. $(-1 + 2\xi + 2\eta + 2\zeta)$	$-3 + 4 \xi + 4 \eta + 4 \zeta$	$-3 + 4\xi + 4\eta + 4\zeta$	$-3 + 4\xi + 4\eta + 4\zeta$
2	4 \xi(1 - \xi - \eta - \xi)	4-85-47-45	-45	-45
3	- <i>ξ</i> (1 – 2 <i>ξ</i>)	-1 + 4 <i>ξ</i>	0	0
4	4 ξ η	4 η	4 5	0
5	$-\eta(1-2\eta)$	0	$-1 + 4 \eta$	0
6	$4\eta(1-\xi-\eta-\zeta)$	-4 η	4-45-87-45	-4 η
7	4 ζ(1 – ξ – η – ζ)	-4 <i>Ç</i>	-45	4-45-47-85
8	4 <i>55</i>	45	0	4 <i>ξ</i>
9	4 ηζ	0	4 <i>Ç</i>	4 η
10	<i>-ζ</i> (1 <i>-</i> 2 <i>ζ</i>)	0	0	-1+45

ÉLÉMENT DE TYPE HEXAÈDRE LINÉAIRE

Élément et élément de référence


Tableau A1.13 - Table de l'hexaèdre linéaire.

i.	Nj	$\frac{\partial \mathbf{N}_{i}}{\partial \xi}$	$\frac{\partial N_j}{\partial \eta}$	$\frac{\partial N_j}{\partial \mathcal{L}}$
1	$\frac{1}{8}(1-\xi).(1-\eta).(1-\zeta)$	$-\frac{1}{8}(1-\eta).(1-\zeta)$	$-\frac{1}{8}(1-\xi).(1-\zeta)$	$-\frac{1}{8}(1-\xi).(1-\eta)$
2	$\frac{1}{8}(1+\zeta).(1-\eta).(1-\zeta)$	$\frac{1}{8}(1-\eta).(1-\zeta)$	$-\frac{1}{8}(1+\xi).(1-\zeta)$	$-\frac{1}{8}(1+\xi).(1-\eta)$
3	$\frac{1}{8}(1+\zeta).(1+\eta).(1-\zeta)$	$\frac{1}{8}(1+\eta).(1-\zeta)$	$\frac{1}{8}(1+\zeta).(1-\zeta)$	$-\frac{1}{8}(1+\xi).(1+\eta)$
4	$\frac{1}{8}(1-\xi).(1+\eta).(1-\zeta)$	$-\frac{1}{8}(1+\eta).(1-\zeta)$	$\frac{1}{8}(1-\xi).(1-\zeta)$	$-\frac{1}{8}(1-\xi).(1+\eta)$
5	$\frac{1}{8}(1-\xi).(1-\eta).(1+\zeta)$	$-\frac{1}{8}(1-\eta).(1+\zeta)$	$-\frac{1}{8}(1-\xi).(1+\zeta)$	$\frac{1}{8}(1-\xi).(1-\eta)$
6	$\frac{1}{8}(1+\xi).(1-\eta).(1+\zeta)$	$\frac{1}{8}(1-\eta).(1+\zeta)$	$\frac{1}{8}(1-\xi).(1+\zeta)$	$\frac{1}{8}(1+\xi).(1-\eta)$
7	$\frac{1}{8}(1+\zeta).(1+\eta).(1+\zeta)$	$\frac{1}{8}(1+\eta).(1+\zeta)$	$\frac{1}{8}(1+\zeta).(1+\zeta)$	$\frac{1}{8}(1+\xi).(1+\eta)$
8	$\frac{1}{8}(1-\xi).(1+\eta).(1+\zeta)$	$-\frac{1}{8}(1+\eta).(1+\zeta)$	$\frac{1}{8}(1-\xi).(1+\zeta)$	$\frac{1}{8}(1-\xi).(1+\eta)$

ÉLÉMENT DE TYPE PENTAÈDRE LINÉAIRE

Élément et élément de référence

Élément de référence

Élément réel

Tableau A1.14 - Table du pentaèdre linéaire.

i	N_j	∂ N j ∂ξ	$\frac{\partial N_j}{\partial \eta}$	$\frac{\partial N_j}{\partial \zeta}$
1	$\frac{1}{2}(1-\xi-\eta).(1-\zeta)$	$-\frac{1}{2}(1-\zeta)$	$-\frac{1}{2}(1-\zeta)$	$-\frac{1}{2}(1-\xi-\eta)$
2	$\frac{1}{2}\xi.(1-\zeta)$	$\frac{1}{2}(1-\zeta)$	0	<u>_1</u> 5
3	$\frac{1}{2}\eta.(1-\zeta)$	0	$\frac{1}{2}(1-\zeta)$	$-\frac{1}{2}\eta$
4	$\frac{1}{2}(1-\xi-\eta).(1+\zeta)$	$-\frac{1}{2}(1+\zeta)$	$-\frac{1}{2}(1+\zeta)$	$\frac{1}{2}(1-\xi-\eta)$
5	$\frac{1}{2}\xi.(1+\zeta)$	$\frac{1}{2}(1+\zeta)$	0	<u>1</u>
6	$\frac{1}{2}\eta.(1+\zeta)$	0	$\frac{1}{2}(1+\zeta)$	$\frac{1}{2}\eta$