This Appendix contains the statistical tables you will need to perform sampling operations or to verify the results of a statistical test. We have ensured that the tables are referenced in the sessions where they appear.
This Appendix contains thirteen statistical tables that you will need to perform sampling operations or to verify the results of a statistical test. We have ensured that the tables are referenced in the sessions where they appear.
The random number table is a statistical tool used to select random samples from a population. It consists of columns and rows filled with digits that are chosen randomly.
Generate a Random Number Table with Python
In Python, you can generate random numbers using the random
module (refer to the online compiler Trinket, available since Session 1 of Block II), which offers a variety of functions for generating random numbers in different contexts.
Here is the procedure to follow to generate random numbers:
First, you need to import the random
module:
import random
Use random.randint(a, b)
to generate a random integer N
such that a <= N <= b
.
import random
# Generate a random integer between 1 and 10
random_number = random.randint(1, 10)
print(random_number)
Use random.uniform(a, b)
to generate a random floating-point number N
such that a <= N <= b
.
import random
# Generate a random floating-point number between 0 and 1
random_number = random.uniform(0, 1)
print(random_number)
Use random.random()
to generate a random floating-point number between 0 and 1.
import random
# Generate a random floating-point number between 0 and 1
random_number = random.random()
print(random_number)
Use random.gauss(mu, sigma)
to generate a random number following a normal distribution with mean mu
and standard deviation sigma
.
import random
# Generate a number following a normal distribution with mean 0 and standard deviation 1
random_number = random.gauss(0, 1)
print(random_number)
Use random.choice(sequence)
to select a random element from a sequence (such as a list or a string).
import random
# Example list
list_example = [1, 2, 3, 4, 5]
# Select a random element from the list
random_element = random.choice(list_example)
print(random_element)
Use random.shuffle(sequence)
to randomly shuffle the elements of a list.
import random
# Example list
list_example = [1, 2, 3, 4, 5]
# Shuffle the list
random.shuffle(list_example)
print(list_example)
Use random.sample(population, k)
to generate a list of k
unique elements randomly chosen from a population.
import random
# Example list
population = list(range(1, 101)) # 1 to 100
# Generate a list of 10 unique elements randomly chosen
random_sample = random.sample(population, 10)
print(random_sample)
# | Number 1 | Number 2 | Number 3 | Number 4 | Number 5 | Number 6 |
---|
The table of the cumulative distribution function of the standard normal distribution, also known as the standard normal table or the standard normal cumulative distribution table, is a statistical tool used to find probabilities associated with specific values of a random variable following a standard normal distribution.
Definition of the Standard Normal Distribution
The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1. Its cumulative distribution function is denoted by \( \Phi(z) \) and gives the probability that a random variable \( Z \) following this distribution is less than or equal to a value \( z \). Mathematically, it is written as:
\[ \Phi(z) = P(Z \leq z) \]
where \( Z \) follows a standard normal distribution, i.e., \( Z \sim \mathcal{N}(0,1) \).
Using the Table
The table of the cumulative distribution function of the standard normal distribution provides the values of \( \Phi(z) \) for different values of \( z \). Here is how to use it:
\[ P(Z > z) = 1 - \Phi(z) \]
\(x\) | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
The standard normal distribution (or standard normal distribution) is a normal distribution with a mean of 0 and a standard deviation of 1. The Z-table provides the cumulative distribution function of this standard normal distribution, indicating the probability that a random variable is less than or equal to a given value.
The Z-table is used to determine the probabilities associated with a random variable following a standard normal distribution. It allows you to find the probability that the random variable is less than a certain value \(z\) by looking up the value in the table. \(z\) values are often used for statistical tests and confidence interval calculations.
α | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | ∞ | 2.576 | 2.326 | 2.170 | 2.054 | 1.960 | 1.881 | 1.812 | 1.751 | 1.695 |
0.1 | 1.645 | 1.598 | 1.555 | 1.514 | 1.476 | 1.440 | 1.405 | 1.372 | 1.341 | 1.311 |
0.2 | 1.282 | 1.254 | 1.227 | 1.200 | 1.175 | 1.150 | 1.126 | 1.103 | 1.080 | 1.058 |
0.3 | 1.036 | 1.015 | 0.994 | 0.974 | 0.954 | 0.935 | 0.915 | 0.896 | 0.878 | 0.860 |
0.4 | 0.842 | 0.824 | 0.806 | 0.789 | 0.772 | 0.755 | 0.739 | 0.722 | 0.703 | 0.690 |
0.5 | 0.674 | 0.659 | 0.643 | 0.628 | 0.613 | 0.598 | 0.583 | 0.568 | 0.553 | 0.539 |
0.6 | 0.524 | 0.510 | 0.496 | 0.482 | 0.468 | 0.454 | 0.440 | 0.426 | 0.412 | 0.399 |
0.7 | 0.385 | 0.372 | 0.358 | 0.345 | 0.332 | 0.319 | 0.305 | 0.292 | 0.279 | 0.266 |
0.8 | 0.253 | 0.240 | 0.228 | 0.215 | 0.202 | 0.189 | 0.176 | 0.164 | 0.151 | 0.138 |
0.9 | 0.126 | 0.113 | 0.100 | 0.088 | 0.075 | 0.063 | 0.050 | 0.038 | 0.025 | 0.013 |
Student's t-distribution Table
The Student's t-distribution (or t-distribution) is used to estimate statistical parameters in the context of small samples when the population variance is unknown. The Student's t-distribution table provides the critical values of the t-distribution based on degrees of freedom and confidence level.
Using the Student's t-distribution Table
To use the Student's t-distribution table, follow these steps:
\(V\) \(\alpha\) |
0.90 | 0.50 | 0.30 | 0.20 | 0.10 | 0.05 | 0.02 | 0.01 | 0.001 |
---|---|---|---|---|---|---|---|---|---|
1 | 0.158 | 1.000 | 1.963 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 636.619 |
2 | 0.142 | 0.816 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 31.598 |
3 | 0.137 | 0.765 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 12.924 |
4 | 0.134 | 0.741 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 8.610 |
5 | 0.132 | 0.727 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 6.869 |
6 | 0.131 | 0.718 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.959 |
7 | 0.130 | 0.711 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 5.408 |
8 | 0.130 | 0.706 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 5.041 |
9 | 0.129 | 0.703 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.781 |
10 | 0.129 | 0.700 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.587 |
11 | 0.128 | 0.697 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.437 |
12 | 0.128 | 0.695 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 4.318 |
13 | 0.128 | 0.694 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 4.221 |
14 | 0.128 | 0.692 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 4.140 |
15 | 0.128 | 0.691 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 4.073 |
16 | 0.128 | 0.690 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 4.015 |
17 | 0.128 | 0.689 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.965 |
18 | 0.127 | 0.688 | 1.069 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.922 |
19 | 0.127 | 0.688 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.883 |
20 | 0.127 | 0.687 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.850 |
21 | 0.127 | 0.686 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.819 |
22 | 0.127 | 0.686 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.792 |
23 | 0.127 | 0.685 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.767 |
24 | 0.127 | 0.685 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.745 |
25 | 0.127 | 0.684 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.725 |
26 | 0.127 | 0.684 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.707 |
27 | 0.127 | 0.684 | 1.058 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.690 |
28 | 0.127 | 0.683 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.674 |
29 | 0.127 | 0.683 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.659 |
30 | 0.127 | 0.683 | 1.055 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.646 |
40 | 0.126 | 0.681 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.551 |
80 | 0.126 | 0.679 | 1.046 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.460 |
120 | 0.126 | 0.677 | 1.041 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.373 |
∞ | 0.126 | 0.674 | 1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.291 |
The Chi-Square Distribution (\(\chi^2\)), or Pearson's Chi-Square, is a statistical distribution primarily used for hypothesis testing. It is used to assess the goodness of fit between an observed distribution and a theoretical distribution, as well as to test the independence between two qualitative variables in a contingency table.
If \(Y\) is a random variable following the Chi-Square Distribution (\(\chi^2\)) with \(v\) degrees of freedom, the table provides for a chosen \(\alpha\) the number \(\chi_{\alpha}^{2}\) such that \(P(Y \geq \chi_{\alpha}^{2}) = \alpha\).
\(V\) \(\alpha\) |
0,99 | 0,975 | 0,95 | 0,9 | 0,1 | 0,05 | 0,025 | 0,01 | 0,001 |
---|---|---|---|---|---|---|---|---|---|
1 | 0.0002 | 0.001 | 0.004 | 0.016 | 2.71 | 3.84 | 5.02 | 6.63 | 10.83 |
2 | 0.02 | 0.05 | 0.1 | 0.21 | 4.61 | 5.99 | 7.38 | 9.21 | 13.82 |
3 | 0.12 | 0.22 | 0.35 | 0.58 | 6.25 | 7.81 | 9.35 | 11.34 | 16.27 |
4 | 0.3 | 0.48 | 0.71 | 1.06 | 7.78 | 9.49 | 11.14 | 13.28 | 18.47 |
5 | 0.55 | 0.83 | 1.15 | 1.61 | 9.24 | 11.07 | 12.83 | 15.09 | 20.52 |
6 | 0.87 | 1.24 | 1.64 | 2.2 | 10.64 | 12.59 | 14.45 | 16.81 | 22.46 |
7 | 1.24 | 1.69 | 2.17 | 2.83 | 12.02 | 14.07 | 16.01 | 18.47 | 24.32 |
8 | 1.65 | 2.18 | 2.73 | 3.49 | 13.36 | 15.51 | 17.53 | 20.09 | 26.13 |
9 | 2.09 | 2.7 | 3.33 | 4.17 | 14.68 | 16.92 | 19.02 | 21.67 | 27.88 |
10 | 2.56 | 3.25 | 3.94 | 4.87 | 15.99 | 18.31 | 20.48 | 23.21 | 29.59 |
11 | 3.05 | 3.82 | 4.57 | 5.58 | 17.27 | 19.67 | 21.92 | 24.72 | 31.26 |
12 | 3.57 | 4.4 | 5.23 | 6.30 | 18.55 | 21.03 | 23.34 | 26.22 | 32.91 |
13 | 4.11 | 5.01 | 5.89 | 7.04 | 19.81 | 22.36 | 24.74 | 27.69 | 34.53 |
14 | 4.66 | 5.63 | 6.57 | 7.79 | 21.06 | 23.68 | 26.12 | 29.14 | 36.12 |
15 | 5.23 | 6.26 | 7.26 | 8.55 | 22.31 | 25.00 | 27.49 | 30.58 | 37.70 |
16 | 5.81 | 6.91 | 7.96 | 9.31 | 23.54 | 26.30 | 28.84 | 32.00 | 39.25 |
17 | 6.41 | 7.56 | 8.67 | 10.08 | 24.77 | 27.59 | 30.19 | 33.41 | 40.79 |
18 | 7.01 | 8.23 | 9.39 | 10.86 | 25.99 | 28.87 | 31.53 | 34.80 | 42.31 |
19 | 7.63 | 8.91 | 10.12 | 11.65 | 27.20 | 30.14 | 32.85 | 36.19 | 43.82 |
20 | 8.26 | 9.59 | 10.85 | 12.44 | 28.41 | 31.41 | 34.17 | 37.57 | 45.32 |
21 | 8.90 | 10.28 | 11.59 | 13.24 | 29.61 | 32.67 | 35.48 | 38.93 | 46.80 |
22 | 9.54 | 10.98 | 12.34 | 14.04 | 30.81 | 33.92 | 36.78 | 40.29 | 48.27 |
23 | 10.20 | 11.69 | 13.09 | 14.85 | 32.01 | 35.17 | 38.08 | 41.64 | 49.73 |
24 | 10.86 | 12.40 | 13.85 | 15.66 | 33.20 | 36.41 | 39.37 | 42.98 | 51.18 |
25 | 11.52 | 13.12 | 14.61 | 16.47 | 34.38 | 37.65 | 40.65 | 44.31 | 52.62 |
26 | 12.20 | 13.84 | 15.38 | 17.29 | 35.56 | 38.88 | 41.92 | 45.64 | 54.05 |
27 | 12.88 | 14.57 | 16.15 | 18.11 | 36.74 | 40.11 | 43.19 | 46.96 | 55.48 |
28 | 13.57 | 15.31 | 16.93 | 18.94 | 37.92 | 41.34 | 44.46 | 48.28 | 56.89 |
29 | 14.26 | 16.05 | 17.71 | 19.77 | 39.09 | 42.56 | 45.72 | 49.59 | 58.30 |
30 | 14.95 | 16.79 | 18.49 | 20.60 | 40.26 | 43.77 | 46.98 | 50.89 | 59.70 |
The Snedecor table, or F-distribution table, is used in hypothesis testing to compare the variances of two populations. The F-distribution is the distribution of the F-statistic, which is the ratio of two estimated variances.
The Snedecor table is primarily used in analysis of variance (ANOVA) and F-tests. It helps determine whether the observed differences between groups are statistically significant.
If \(F\) is a random variable following the Snedecor-Fisher distribution with degrees of freedom (\(v_{1}, v_{2}\)), the table provides the number \(f_\alpha\) such that \(P(F \geq f_{\alpha}) = \alpha = 0.025\).
To use the Snedecor table:
\(v_{1}\) \(v_{2}\) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 30 | ∞ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 647.7 | 799.5 | 864.1 | 899.5 | 921.8 | 937.1 | 948.2 | 956.6 | 963.2 | 968.6 | 976.7 | 984.8 | 993.1 | 1001 | 1018 |
2 | 38.50 | 39.00 | 39.16 | 39.24 | 39.29 | 39.33 | 39.35 | 39.37 | 39.38 | 39.39 | 39.41 | 39.43 | 39.44 | 39.46 | 39.49 |
3 | 17.44 | 16.04 | 15.43 | 15.10 | 14.88 | 14.73 | 14.62 | 14.53 | 14.47 | 14.41 | 14.33 | 14.25 | 14.16 | 14.08 | 13.90 |
4 | 12.21 | 10.64 | 9.979 | 9.604 | 9.364 | 9.197 | 9.074 | 8.979 | 8.904 | 8.843 | 8.751 | 8.656 | 8.559 | 8.461 | 8.257 |
5 | 10.00 | 8.433 | 7.763 | 7.387 | 7.146 | 6.977 | 6.853 | 6.757 | 6.681 | 6.619 | 6.524 | 6.427 | 6.328 | 6.227 | 6.015 |
6 | 8.813 | 7.259 | 6.598 | 6.227 | 5.987 | 5.819 | 5.695 | 5.599 | 5.523 | 5.461 | 5.366 | 5.268 | 5.168 | 5.065 | 4.849 |
7 | 8.072 | 6.541 | 5.889 | 5.522 | 5.285 | 5.118 | 4.994 | 4.899 | 4.823 | 4.761 | 4.665 | 4.567 | 4.466 | 4.362 | 4.142 |
8 | 7.570 | 6.059 | 5.416 | 5.052 | 4.817 | 4.651 | 4.528 | 4.433 | 4.357 | 4.295 | 4.199 | 4.101 | 3.999 | 3.894 | 3.670 |
9 | 7.209 | 5.714 | 5.078 | 4.718 | 4.484 | 4.319 | 4.197 | 4.102 | 4.026 | 3.963 | 3.868 | 3.769 | 3.666 | 3.560 | 3.333 |
10 | 6.936 | 5.456 | 4.825 | 4.468 | 4.236 | 4.072 | 3.949 | 3.854 | 3.779 | 3.716 | 3.620 | 3.521 | 3.418 | 3.311 | 3.080 |
11 | 6.724 | 5.255 | 4.630 | 4.275 | 4.044 | 3.880 | 3.758 | 3.663 | 3.587 | 3.525 | 3.429 | 3.329 | 3.226 | 3.118 | 2.883 |
12 | 6.553 | 5.095 | 4.474 | 4.121 | 3.891 | 3.728 | 3.606 | 3.511 | 3.435 | 3.373 | 3.277 | 3.177 | 3.072 | 2.963 | 2.725 |
13 | 6.414 | 4.965 | 4.347 | 3.995 | 3.766 | 3.604 | 3.482 | 3.388 | 3.312 | 3.249 | 3.153 | 3.052 | 2.947 | 2.837 | 2.595 |
14 | 6.297 | 4.856 | 4.241 | 3.891 | 3.663 | 3.501 | 3.379 | 3.285 | 3.209 | 3.146 | 3.050 | 2.949 | 2.843 | 2.732 | 2.487 |
15 | 6.199 | 4.765 | 4.152 | 3.804 | 3.576 | 3.414 | 3.293 | 3.198 | 3.122 | 3.060 | 2.963 | 2.862 | 2.755 | 2.644 | 2.395 |
16 | 6.115 | 4.686 | 4.076 | 3.729 | 3.502 | 3.340 | 3.219 | 3.124 | 3.048 | 2.986 | 2.889 | 2.787 | 2.680 | 2.568 | 2.316 |
17 | 6.042 | 4.618 | 4.011 | 3.664 | 3.437 | 3.276 | 3.155 | 3.061 | 2.984 | 2.922 | 2.824 | 2.723 | 2.615 | 2.502 | 2.247 |
18 | 5.978 | 4.559 | 3.953 | 3.608 | 3.382 | 3.220 | 3.099 | 3.005 | 2.929 | 2.866 | 2.768 | 2.666 | 2.559 | 2.445 | 2.187 |
19 | 5.921 | 4.507 | 3.903 | 3.558 | 3.332 | 3.171 | 3.050 | 2.956 | 2.880 | 2.817 | 2.719 | 2.617 | 2.508 | 2.394 | 2.133 |
20 | 5.871 | 4.461 | 3.858 | 3.514 | 3.289 | 3.128 | 3.007 | 2.912 | 2.836 | 2.773 | 2.675 | 2.573 | 2.464 | 2.349 | 2.085 |
21 | 5.826 | 4.419 | 3.818 | 3.475 | 3.250 | 3.089 | 2.968 | 2.874 | 2.797 | 2.734 | 2.636 | 2.533 | 2.424 | 2.308 | 2.042 |
22 | 5.786 | 4.382 | 3.782 | 3.440 | 3.215 | 3.054 | 2.933 | 2.839 | 2.762 | 2.699 | 2.601 | 2.498 | 2.389 | 2.272 | 2.003 |
23 | 5.749 | 4.349 | 3.750 | 3.408 | 3.183 | 3.023 | 2.902 | 2.807 | 2.731 | 2.668 | 2.569 | 2.466 | 2.356 | 2.239 | 1.968 |
24 | 5.716 | 4.318 | 3.721 | 3.379 | 3.154 | 2.994 | 2.873 | 2.779 | 2.702 | 2.639 | 2.541 | 2.437 | 2.327 | 2.209 | 1.935 |
25 | 5.686 | 4.290 | 3.694 | 3.353 | 3.128 | 2.968 | 2.847 | 2.753 | 2.676 | 2.613 | 2.514 | 2.411 | 2.300 | 2.182 | 1.906 |
26 | 5.658 | 4.265 | 3.669 | 3.328 | 3.104 | 2.944 | 2.824 | 2.729 | 2.652 | 2.589 | 2.490 | 2.386 | 2.275 | 2.157 | 1.878 |
27 | 5.633 | 4.242 | 3.647 | 3.306 | 3.082 | 2.922 | 2.802 | 2.707 | 2.630 | 2.567 | 2.468 | 2.364 | 2.253 | 2.133 | 1.853 |
28 | 5.609 | 4.220 | 3.626 | 3.286 | 3.062 | 2.902 | 2.782 | 2.687 | 2.610 | 2.547 | 2.448 | 2.343 | 2.232 | 2.112 | 1.829 |
29 | 5.587 | 4.200 | 3.607 | 3.267 | 3.043 | 2.884 | 2.763 | 2.668 | 2.591 | 2.528 | 2.429 | 2.324 | 2.213 | 2.092 | 1.807 |
30 | 5.567 | 4.182 | 3.589 | 3.249 | 3.026 | 2.866 | 2.746 | 2.651 | 2.574 | 2.511 | 2.412 | 2.307 | 2.195 | 2.074 | 1.787 |
40 | 5.423 | 4.051 | 3.463 | 3.126 | 2.903 | 2.744 | 2.623 | 2.528 | 2.451 | 2.388 | 2.288 | 2.181 | 2.067 | 1.943 | 1.637 |
60 | 5.285 | 3.925 | 3.342 | 3.007 | 2.786 | 2.627 | 2.506 | 2.411 | 2.334 | 2.270 | 2.169 | 2.061 | 1.944 | 1.815 | 1.482 |
120 | 5.152 | 3.804 | 3.226 | 2.894 | 2.674 | 2.515 | 2.394 | 2.299 | 2.221 | 2.157 | 2.054 | 1.945 | 1.824 | 1.690 | 1.310 |
∞ | 5.023 | 3.688 | 3.116 | 2.785 | 2.566 | 2.408 | 2.287 | 2.191 | 2.113 | 2.048 | 1.944 | 1.832 | 1.708 | 1.566 | 1.000 |
The Snedecor table, or F-distribution table, is a statistical table that provides the critical values of the F-distribution. This distribution is used to compare the variances of two populations and for hypothesis testing in analysis of variance (ANOVA).
If \(F\) is a random variable following the Snedecor-Fisher distribution with degrees of freedom (\(v_{1}, v_{2}\)), the table provides the number \(f_\alpha\) such that \(P(F \geq f_{\alpha}) = \alpha = 0.05\).
The Snedecor table is used in F-tests and analysis of variance (ANOVA) to determine whether the observed differences between groups are statistically significant. It helps to check the homogeneity of variances and to compare multiple means.
\(v_{2}\) \(v_{1}\) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 20 | 30 | ∞ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 161.4 | 199.5 | 215.7 | 224.5 | 230.1 | 233.9 | 236.7 | 238.8 | 240.5 | 241.8 | 243.9 | 245.9 | 248.0 | 250.0 | 254.3 |
2 | 18.51 | 19.00 | 19.16 | 19.24 | 19.29 | 19.32 | 19.35 | 19.37 | 19.38 | 19.39 | 19.41 | 19.42 | 19.44 | 19.46 | 19.49 |
3 | 10.12 | 9.552 | 9.276 | 9.117 | 9.013 | 8.940 | 8.886 | 8.845 | 8.812 | 8.785 | 8.744 | 8.702 | 8.660 | 8.616 | 8.526 |
4 | 7.708 | 6.944 | 6.591 | 6.388 | 6.256 | 6.163 | 6.094 | 6.041 | 5.998 | 5.964 | 5.911 | 5.857 | 5.802 | 5.745 | 5.628 |
5 | 6.607 | 5.786 | 5.409 | 5.192 | 5.050 | 4.950 | 4.875 | 4.818 | 4.772 | 4.735 | 4.677 | 4.618 | 4.558 | 4.495 | 4.365 |
6 | 5.987 | 5.143 | 4.757 | 4.533 | 4.387 | 4.283 | 4.206 | 4.146 | 4.099 | 4.060 | 3.999 | 3.938 | 3.874 | 3.808 | 3.668 |
7 | 5.591 | 4.737 | 4.346 | 4.120 | 3.971 | 3.866 | 3.787 | 3.725 | 3.676 | 3.636 | 3.574 | 3.510 | 3.444 | 3.375 | 3.229 |
8 | 5.317 | 4.459 | 4.066 | 3.837 | 3.687 | 3.580 | 3.500 | 3.438 | 3.388 | 3.347 | 3.283 | 3.218 | 3.150 | 3.079 | 2.927 |
9 | 5.117 | 4.256 | 3.862 | 3.633 | 3.481 | 3.373 | 3.292 | 3.229 | 3.178 | 3.137 | 3.072 | 3.006 | 2.936 | 2.863 | 2.706 |
10 | 4.964 | 4.102 | 3.708 | 3.478 | 3.325 | 3.217 | 3.135 | 3.071 | 3.020 | 2.978 | 2.913 | 2.845 | 2.774 | 2.699 | 2.537 |
11 | 4.844 | 3.982 | 3.587 | 3.356 | 3.203 | 3.094 | 3.012 | 2.948 | 2.896 | 2.853 | 2.787 | 2.718 | 2.646 | 2.570 | 2.404 |
12 | 4.747 | 3.885 | 3.490 | 3.259 | 3.105 | 2.996 | 2.913 | 2.848 | 2.796 | 2.753 | 2.686 | 2.616 | 2.543 | 2.466 | 2.296 |
13 | 4.667 | 3.805 | 3.410 | 3.179 | 3.025 | 2.915 | 2.832 | 2.766 | 2.714 | 2.671 | 2.603 | 2.533 | 2.458 | 2.380 | 2.206 |
14 | 4.600 | 3.738 | 3.343 | 3.112 | 2.958 | 2.847 | 2.764 | 2.698 | 2.645 | 2.602 | 2.534 | 2.463 | 2.387 | 2.308 | 2.130 |
15 | 4.543 | 3.682 | 3.287 | 3.055 | 2.901 | 2.790 | 2.706 | 2.640 | 2.587 | 2.543 | 2.475 | 2.403 | 2.327 | 2.246 | 2.065 |
16 | 4.494 | 3.633 | 3.238 | 3.006 | 2.852 | 2.741 | 2.657 | 2.591 | 2.537 | 2.493 | 2.424 | 2.352 | 2.275 | 2.193 | 2.009 |
17 | 4.451 | 3.591 | 3.196 | 2.964 | 2.810 | 2.698 | 2.614 | 2.548 | 2.494 | 2.449 | 2.380 | 2.307 | 2.230 | 2.147 | 1.960 |
18 | 4.413 | 3.554 | 3.159 | 2.927 | 2.772 | 2.661 | 2.576 | 2.510 | 2.456 | 2.411 | 2.342 | 2.268 | 2.190 | 2.107 | 1.916 |
19 | 4.380 | 3.521 | 3.127 | 2.895 | 2.740 | 2.628 | 2.543 | 2.476 | 2.422 | 2.377 | 2.308 | 2.234 | 2.155 | 2.071 | 1.878 |
20 | 4.351 | 3.492 | 3.098 | 2.866 | 2.710 | 2.599 | 2.514 | 2.447 | 2.392 | 2.347 | 2.277 | 2.203 | 2.124 | 2.039 | 1.843 |
21 | 4.324 | 3.466 | 3.072 | 2.840 | 2.684 | 2.572 | 2.487 | 2.420 | 2.366 | 2.321 | 2.250 | 2.175 | 2.096 | 2.010 | 1.811 |
22 | 4.300 | 3.443 | 3.049 | 2.816 | 2.661 | 2.549 | 2.463 | 2.396 | 2.341 | 2.296 | 2.225 | 2.150 | 2.070 | 1.984 | 1.783 |
23 | 4.279 | 3.422 | 3.028 | 2.795 | 2.640 | 2.527 | 2.442 | 2.374 | 2.320 | 2.274 | 2.203 | 2.128 | 2.047 | 1.960 | 1.757 |
24 | 4.259 | 3.402 | 3.008 | 2.776 | 2.620 | 2.508 | 2.422 | 2.355 | 2.300 | 2.254 | 2.183 | 2.107 | 2.026 | 1.939 | 1.733 |
25 | 4.241 | 3.385 | 2.991 | 2.758 | 2.603 | 2.490 | 2.404 | 2.337 | 2.282 | 2.236 | 2.164 | 2.088 | 2.007 | 1.919 | 1.711 |
26 | 4.225 | 3.369 | 2.975 | 2.742 | 2.586 | 2.474 | 2.388 | 2.320 | 2.265 | 2.219 | 2.147 | 2.071 | 1.989 | 1.901 | 1.690 |
27 | 4.210 | 3.354 | 2.960 | 2.727 | 2.571 | 2.459 | 2.373 | 2.305 | 2.250 | 2.204 | 2.132 | 2.055 | 1.973 | 1.884 | 1.671 |
28 | 4.196 | 3.340 | 2.946 | 2.714 | 2.558 | 2.445 | 2.359 | 2.291 | 2.236 | 2.190 | 2.117 | 2.041 | 1.958 | 1.868 | 1.654 |
29 | 4.183 | 3.327 | 2.934 | 2.701 | 2.545 | 2.432 | 2.346 | 2.278 | 2.222 | 2.176 | 2.104 | 2.027 | 1.944 | 1.854 | 1.637 |
30 | 4.170 | 3.315 | 2.922 | 2.689 | 2.533 | 2.420 | 2.334 | 2.266 | 2.210 | 2.164 | 2.092 | 2.014 | 1.931 | 1.840 | 1.622 |
40 | 4.084 | 3.231 | 2.838 | 2.606 | 2.449 | 2.335 | 2.249 | 2.180 | 2.124 | 2.077 | 2.003 | 1.924 | 1.838 | 1.744 | 1.508 |
60 | 4.001 | 3.150 | 2.758 | 2.525 | 2.368 | 2.254 | 2.166 | 2.097 | 2.040 | 1.992 | 1.917 | 1.836 | 1.748 | 1.649 | 1.389 |
120 | 3.920 | 3.071 | 2.680 | 2.447 | 2.289 | 2.175 | 2.086 | 2.016 | 1.958 | 1.910 | 1.833 | 1.750 | 1.658 | 1.554 | 1.253 |
∞ | 3.841 | 2.995 | 2.604 | 2.371 | 2.214 | 2.098 | 2.009 | 1.938 | 1.879 | 1.830 | 1.752 | 1.666 | 1.570 | 1.459 | 1.000 |
The Mann-Whitney test, also known as the Wilcoxon-Mann-Whitney test, is a non-parametric statistical test used to determine if two independent samples come from the same population. It is often used when the data do not follow a normal distribution.
The table provides the value \(m_\alpha\) such that \(P(M \leq m_{\alpha}) = \alpha = 0.05\) for two samples with sizes \(n_1\) and \(n_2\) where \(n_{1} \leq n_{2}\).
The Mann-Whitney test is useful for comparing two groups when the conditions for using parametric tests, such as Student's t-test, are not met. It does not require the data to be normally distributed and can be used with samples of different sizes.
\(n_{1}\) \(n_{2}\) |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | - | - | - | - | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
3 | - | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 7 | 7 | 8 |
4 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 11 | 12 | 13 | 14 |
5 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | 13 | 14 | 15 | 17 | 18 | 19 | 20 | |
6 | 5 | 6 | 8 | 10 | 11 | 13 | 14 | 16 | 17 | 19 | 21 | 22 | 24 | 25 | 27 | ||
7 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | |||
8 | 13 | 15 | 17 | 19 | 22 | 24 | 26 | 29 | 31 | 34 | 36 | 38 | 41 | ||||
9 | 17 | 20 | 23 | 26 | 28 | 31 | 34 | 37 | 39 | 42 | 45 | 48 | |||||
10 | 23 | 26 | 29 | 33 | 36 | 39 | 42 | 45 | 48 | 52 | 55 | ||||||
11 | 30 | 33 | 37 | 40 | 44 | 47 | 51 | 55 | 58 | 62 | |||||||
12 | 37 | 41 | 45 | 49 | 53 | 57 | 61 | 65 | 69 | ||||||||
13 | 45 | 50 | 54 | 59 | 63 | 67 | 72 | 76 | |||||||||
14 | 55 | 59 | 64 | 69 | 74 | 78 | 83 | ||||||||||
15 | 64 | 70 | 75 | 80 | 85 | 90 | |||||||||||
16 | 75 | 81 | 86 | 92 | 98 | ||||||||||||
17 | 87 | 93 | 99 | 105 | |||||||||||||
18 | 99 | 106 | 112 | ||||||||||||||
19 | 113 | 119 | |||||||||||||||
20 | 127 |
The table provides the value \(m_\alpha\) such that \(P(M \leq m_{\alpha}) = \alpha = 0.01\) for two samples with sizes \(n_1\) and \(n_2\) where \(n_{1} \leq n_{2}\).
\(n_{1}\) \(n_{2}\) |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | 0 |
3 | - | - | - | - | - | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 |
4 | - | - | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 7 | 8 |
5 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
6 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | 13 | 15 | 16 | 17 | 18 | ||
7 | 4 | 6 | 7 | 9 | 10 | 12 | 13 | 15 | 16 | 18 | 19 | 21 | 22 | 24 | |||
8 | 7 | 9 | 11 | 13 | 15 | 17 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | ||||
9 | 11 | 13 | 16 | 18 | 20 | 22 | 24 | 27 | 29 | 31 | 33 | 36 | |||||
10 | 16 | 18 | 21 | 24 | 26 | 29 | 31 | 34 | 37 | 39 | 42 | ||||||
11 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | |||||||
12 | 27 | 31 | 34 | 37 | 41 | 44 | 47 | 51 | 54 | ||||||||
13 | 34 | 38 | 42 | 45 | 49 | 53 | 57 | 60 | |||||||||
14 | 42 | 46 | 50 | 54 | 58 | 63 | 67 | ||||||||||
15 | 51 | 57 | 60 | 64 | 68 | 73 | |||||||||||
16 | 60 | 65 | 70 | 74 | 79 | ||||||||||||
17 | 70 | 75 | 81 | 86 | |||||||||||||
18 | 81 | 87 | 92 | ||||||||||||||
19 | 93 | 99 | |||||||||||||||
20 | 105 |
The Wilcoxon test compares the differences between pairs of values in matched samples. It assesses whether the observed differences are significantly different from zero. The test is also used to determine if the median of a symmetric distribution differs from a hypothetical value.
The table provides the value \(w_{\alpha}\) such that \(P (W \leq w_{\alpha}) = \alpha\), for cases \(\alpha = 0.05\) and \(\alpha = 0.01\).
The Wilcoxon test is used in the following situations:
\(\alpha\) \(N\) |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.05 | 2 | 4 | 6 | 8 | 11 | 14 | 17 | 21 | 25 | 30 | 35 | 40 | 46 | 52 | 59 | 66 | 73 | 81 | 89 |
0.01 | - | 0 | 2 | 3 | 5 | 7 | 10 | 13 | 16 | 20 | 23 | 28 | 32 | 38 | 43 | 49 | 55 | 61 | 68 |
The table of the linear correlation coefficient provides critical values that help assess the statistical significance of \(r\). These values depend on the sample size (\(n\)) and the significance level (\(\alpha\)).
The table of the linear correlation coefficient is used to:
\(d.f.\) | \(\alpha\) | ||
---|---|---|---|
0,10 | 0,05 | 0,01 | |
1 | 0,9877 | 0,9969 | 0,9999 |
2 | 0,9000 | 0,9500 | 0,9900 |
3 | 0,8054 | 0,8783 | 0,9587 |
4 | 0,7293 | 0,8114 | 0,9172 |
5 | 0,6694 | 0,7545 | 0,8745 |
6 | 0,6215 | 0,7067 | 0,8343 |
7 | 0,5822 | 0,6664 | 0,7977 |
8 | 0,5494 | 0,6319 | 0,7646 |
9 | 0,5214 | 0,6020 | 0,7348 |
10 | 0,4973 | 0,5760 | 0,7079 |
11 | 0,4762 | 0,5529 | 0,6835 |
12 | 0,4575 | 0,5324 | 0,6614 |
13 | 0,4409 | 0,5139 | 0,6411 |
14 | 0,4259 | 0,4973 | 0,6226 |
15 | 0,4124 | 0,4821 | 0,6055 |
16 | 0,4000 | 0,4683 | 0,5897 |
17 | 0,3887 | 0,4555 | 0,5751 |
18 | 0,3783 | 0,4438 | 0,5614 |
19 | 0,3687 | 0,4329 | 0,5487 |
20 | 0,3598 | 0,4227 | 0,5368 |
25 | 0,3233 | 0,3809 | 0,4869 |
30 | 0,2960 | 0,3494 | 0,4487 |
35 | 0,2746 | 0,3246 | 0,4182 |
40 | 0,2573 | 0,3044 | 0,3932 |
45 | 0,2428 | 0,2875 | 0,3721 |
50 | 0,2306 | 0,2732 | 0,3541 |
60 | 0,2108 | 0,2500 | 0,3248 |
70 | 0,1954 | 0,2319 | 0,3017 |
80 | 0,1829 | 0,2172 | 0,2830 |
90 | 0,1726 | 0,2050 | 0,2673 |
100 | 0,1638 | 0,1946 | 0,2540 |
The Spearman's Rank Correlation Coefficient table provides critical values for assessing the statistical significance of the Spearman correlation coefficient (\(\rho\)). This coefficient measures the strength and direction of the monotonic relationship between two ordinal or quantitative variables. The values of \(\rho\) range from -1 to 1, where -1 indicates a perfect negative correlation, 1 indicates a perfect positive correlation, and 0 indicates no correlation.
The Spearman's Rank Correlation Coefficient table is used to:
The table provides the value \(r_{\alpha}\) such that \(P(|R_{s}| > r_{\alpha}) = \alpha\).
\(\alpha\) | \(n\) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
0,10 | 0,99 | 0,87 | 0,77 | 0,69 | 0,64 | 0,59 | 0,56 | 0,53 | 0,51 | 0,49 |
0,05 | - | 0,95 | 0,85 | 0,78 | 0,73 | 0,68 | 0,64 | 0,61 | 0,59 | 0,56 |
0,02 | - | 0,99 | 0,93 | 0,87 | 0,82 | 0,77 | 0,73 | 0,70 | 0,67 | 0,64 |
0,01 | - | - | 0,97 | 0,91 | 0,86 | 0,82 | 0,79 | 0,75 | 0,72 | 0,70 |
The Kruskal-Wallis test table provides critical values needed to assess the results of the eponymous test. It is used to determine whether three or more samples come from the same distribution.
The Kruskal-Wallis test is used in the following situations:
The table provides the value \(h_{\alpha}\) such that \(P(H \geq h_{\alpha}) = \alpha\).
Sample Size | \(\alpha = 0,05\) | \(\alpha = 0,01 \) |
---|---|---|
3 3 2 | 4,71 | |
3 3 1 | 5,10 | |
3 2 2 | 5,22 | 6,26 |
3 3 3 | 5,60 | 6,50 |
4 2 1 | 4,94 | |
4 2 2 | 5,15 | 6,30 |
4 3 1 | 5,21 | |
4 3 2 | 5,42 | 6,35 |
4 3 3 | 5,73 | 6,75 |
4 4 1 | 4,93 | 6,67 |
4 4 2 | 5,45 | 6,90 |
4 4 3 | 5,60 | 7,14 |
4 4 4 | 5,70 | 7,60 |
5 2 1 | 5,00 | |
5 2 2 | 5,10 | 6,40 |
5 3 1 | 4,91 | 6,42 |
5 3 2 | 5,25 | 6,82 |
5 3 3 | 5,66 | 7,03 |
5 4 1 | 4,92 | 6,90 |
5 4 2 | 5,27 | 7,12 |
5 4 3 | 5,63 | 7,44 |
5 4 4 | 5,62 | 7,75 |
5 5 1 | 5,00 | 7,08 |
5 5 2 | 5,27 | 7,30 |
5 5 3 | 5,64 | 7,55 |
5 5 4 | 5,64 | 7,80 |
5 5 5 | 5,72 | 7,98 |