Travaux pratiques N°1

Exercice 1

a- Graphe de la série

Figure N°1 : Graphe de la série vente

Source : Réalisé par l'auteur avec le logiciel Eviews 9

Le graphe montre un mouvement saisonnier ou les ventes augmentent dans le deuxième et le quatrième trimestre et baissent dans le deuxième et le troisième trimestre.

b- Test de saisonnalité

Estimer l'équation suivante :

vente @seas(1) @seas(2) @seas(3) @seas(4)

Le nombre de coefficients @seas (...) est fonction de la périodicité de la série. Ainsi, pour une série semestrielle, nous aurons deux coefficients, pour une série trimestrielle, nous aurons quatre coefficients...

Tableau N°1 : Résultats du test de saisonnalité

Dependent Variable: VENTE Method: Least Squares

Sample (adjusted): 2006Q1 2008Q4 Included observations: 12 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@SEAS(1) @SEAS(2) @SEAS(3) @SEAS(4)	8.333333 10.33333 9.000000 28.00000	0.942809 0.942809 0.942809 0.942809	8.838835 10.96016 9.545942 29.69848	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.974013 0.964268 1.632993 21.33333 -20.47945 1.432292	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		13.91667 8.638796 4.079908 4.241543 4.020065

Source : Réalisé par l'auteur avec le logiciel Eviews 9

Interprétation

Pour valider la présence d'une saisonnalité, il faut que tous les coefficients soient significatifs C'est-à-dire : la Student calculée soit supérieur à la valeur tabulée, ou bien la probabilité soit inférieur au risque (5%).

Tous les coefficients ont une probabilité égale à zéro (p = 0) < au risque 0.05 (5%)

Donc la série est saisonnière.

Remarque :

Il suffit qu'il y est un seul coefficient non significatif pour rejeter l'hypothèse de présence de saisonnalité.

c- Modèle de décomposition de la série (Test de Bays Ballot)

Ce test est basé sur le calcul des moyennes et des écarts types par années.

- a- calcul des moyennes et des écarts types par années
- b- Estimer le modèle suivant $\sigma_i = \alpha + \beta \bar{x}_i + \varepsilon_i$ par les MCO

Tableau N°2 : Résultats du test de Bays Ballot

Dependent Variable: Y Method: Least Squares Date: 01/26/21 Time: 18 Sample: 2006 2008 Included observations: 3	8:59			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X	10.91041 -0.194521	3.760842 0.269536	2.901055 -0.721688	0.2113 0.6020
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.342466 -0.315068 0.470080 0.220975 -0.344341 0.520833 0.602027	Mean depende S.D. depende Akaike info cri Schwarz critel Hannan-Quin Durbin-Watso	lent var int var iterion rion n criter. on stat	8.203333 0.409919 1.562894 0.961969 0.354958 1.020548

Source : Réalisé par l'auteur avec le logiciel Eviews 9

Le modèle estimé est : $\hat{\sigma}_{i=10.91-0.19\bar{x}_i}$

$$\begin{cases} H0: \beta = 0 \rightarrow modèle additif \\ H1: \beta \neq 0 \rightarrow modèle multiplicatif \end{cases}$$

$$T_{n-2}^{\alpha/2} = T_1^{0.025} = 12.71$$

Tc = 0.72

Tc < Tt ou bien probabilité = 0.60 > au risque (0.05) \rightarrow on accepte H0 donc **le modèle de** décomposition de la série est additif.

d- Dessaisonalisation de la série

Ouvrir la série $y \rightarrow \text{procs} \rightarrow \text{Exponencial smoothing} \rightarrow \text{choisir no season} \rightarrow \text{nommer la}$ nouvelle série corrigée (ventecorrige) $\rightarrow \text{OK}$

Figure N°2 : Graphe de la série corrigée

Source : Réalisé par l'auteur avec le logiciel Eviews 9

L'effet saisonnier a été corrigé

e- Calcul de la prévision

Ouvrir la série vente \rightarrow procs \rightarrow Exponencial smoothing \rightarrow choisir le modèle de décomposition de la série (additif) \rightarrow nommer la nouvelle série corrigée (venteprev) \rightarrow OK

Remarque : Si vous prévoyez le calcul de prévisions, lorsque vous créez le fichier de travail, il faut inclure les périodes pour lesquelles vous voulez faire une prévision.

Les données de la série vente sont disponibles de 2006 à 2008, donc lorsqu'on veut faire une prévision pour l'année suivante, il faut ajouter l'année 2009.

Les prévisions de la série vente pour l'année 2009, en tenant compte de l'effet saisonnier.

Figure N° 3 : Prévision de la série vente

	VENTEPREV
	Last updated: 01/26/21 -
	Modified: 2006Q1 2008Q4 // vente.sn
2006Q1	8.916667
2006Q2	11.24172
2006Q3	9.835859
2006Q4	28.28501
2007Q1	8.957876
2007Q2	10.07037
2007Q3	8.115819
2007Q4	27.38112
2008Q1	7.725096
2008Q2	10.10763
2008Q3	9.342103
2008Q4	28.53951
2009Q1	8.835960
2009Q2	10.83596
2009Q3	9.502627
2009Q4	28.50263

Source : Réalisé par l'auteur avec le logiciel Eviews 9

Exercice 2 :

a- Graphe de la série

Source : Réalisé par l'auteur avec le logiciel Eviews 9

b- Test de saisonnalité

Estimer l'équation : V @seas(1) @seas(2) @seas(3) @seas(4) par les MCO

Tableau N°3 : Résultats du test de saisonnalité

Dependent Variable: V Method: Least Squares Date: 01/26/21 Time: 20:34 Sample (adjusted): 2013Q1 2016Q4 Included observations: 16 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@SEAS(1) @SEAS(2) @SEAS(3) @SEAS(4)	75.00000 51.75000 99.50000 128.2500	13.33112 13.33112 13.33112 13.33112 13.33112	5.625934 3.881895 7.463739 9.620347	0.0001 0.0022 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.602599 0.503249 26.66224 8530.500 -72.93353 0.302730	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		88.62500 37.82922 9.616692 9.809839 9.626582

Source : Réalisé par l'auteur avec le logiciel Eviews 9

Les probabilités des quatre coefficients [@seas(1); @seas(2); @seas(3); @seas(4)] sont égale respectivement à (0.0001; 0.0022; 0.0000; 0.0000)

La probabilité de tous les coefficients est inférieur au risque 0.05 donc on accepte l'hypothèse de présence de saisonnalité

c- Test de décomposition du modèle (Test de Bays Ballot)

- Calculer les moyennes et les écarts types par année
- Estimer le modèle : $\sigma_i = \alpha + \beta \bar{x}_i + \varepsilon_i$ par les MCO

Tableau N° 4: Résulta	ts du te	est de Bays	Ballot
-----------------------	----------	-------------	--------

Method: Least Squares Date: 01/26/21 Time: 2 Sample: 2013 2016 Included observations: 4	1:13 F			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X	-0.181043 0.322804	0.181639 0.001989	-0.996723 162.2713	0.4239 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.999924 0.999886 0.087423 0.015285 5.458542 26331.96 0.000038	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	lent var ent var iterion rion n criter. on stat	28.42750 8.190712 -1.729271 -2.036124 -2.402637 3.398201

Source : Réalisé par l'auteur avec le logiciel Eviews 9

Le modèle estimé est : $\hat{\sigma}_{i} = -0.18 + 0.32 \bar{x}_{i}$

Dependent Variable: Y

$$\begin{cases} H0: \beta = 0 \rightarrow modèle \ additif \\ H1: \beta \neq 0 \rightarrow modèle \ multiplicatif \end{cases}$$

 $T_{n-2}^{\alpha/2} = T_2^{0.025} = 4.303$

Tc = 162.27; probabilité = 0

Tc > Tt ou bien probabilité < au risque $(0.05) \rightarrow$ on accepte H1 donc le modèle de décomposition de la série est multiplicatif.

d- Dessaisonalisation de la série

Pour la dessaisonalisation de la série, il existe deux méthodes :

Première méthode : moyenne mobile, cette méthode exige que le nombre d'année soit supérieur ou égal à 4 ans et que la série soit trimestrielle ou mensuelle.

▶ Ouvrir la série \rightarrow Proc \rightarrow seasonal ajustement \rightarrow mooving average method

Cocher la case type du modèle (dans ce cas c'est multiplicatif) et nommer la nouvelle série dessaisonnalisée. (vcorrige), cliquer sur OK

La série ajustée (corrigée) des variations saisonnières (vcorrige) est créée dans l'espace de travail.

Source : Réalisé par l'auteur avec le logiciel Eviews 9

L'effet saisonnier a été corrigé

La deuxième méthode : lissage exponentiel : cette méthode peut être utilisée pour n'importe quelle série saisonnière et pour faire une prévision en tenant compte de l'effet saisonnier.

a- Corriger la série de l'effet saisonnier

Ouvrir la série V \rightarrow Proc \rightarrow exponential Smoothing \rightarrow no seasonal \rightarrow nommer la nouvelle série corrigée (Vajuste) \rightarrow cliquer sur OK

La nouvelle série corrigée Vajuste sans l'effet saisonnier est créée dans l'espace de travail

Figure N°6 : Graphe de la série « V » corrigée avec la méthode lissage exponentiel

Source : Réalisé par l'auteur avec le logiciel Eviews 9

b- Calculer une prévision pour l'année 2017 en tenant compte de l'effet saisonnier

Ouvrir la série V \rightarrow Proc \rightarrow exponential Smoothing \rightarrow choisir le type de décomposition de la série (multiplicatif) \rightarrow nommer la nouvelle série corrigée (vprev) \rightarrow cliquer sur OK La première fenêtre qui s'affiche c'est les coefficients saisonniers

Figure N°7 : Coefficients saisonniers

Date: 01/26/21 Time: 20 Sample: 2013Q1 2016Q4 Included observations: 16 Method: Holt-Winters Mult Original Series: V Forecast Series: VSM	:48 	sonal	
Parameters: Alpha Beta Gamma Sum of Squared Residua Root Mean Squared Error	ls		1.0000 0.8400 0.0000 9.864595 0.785199
End of Period Levels:	Mean Trend Seasonals:	2016Q1 2016Q2 2016Q3 2016Q4	129.2009 6.964237 0.939863 0.609430 1.103967 1.346740

Source : Réalisé par l'auteur avec le logiciel Eviews 9

Les prévisions sont calculées dans la nouvelles série "Vprev » créée dans l'espace de travail

	Last updated: 01/26/21 - 20:47				
	Modified: 2013Q1 2016Q4 // v.smooth(m) vp	prev			
2013Q1	50.89946				
2013Q2	37.30117				
2013Q3	69.72388				
2013Q4	88.93469				
2014Q1	65.47215				
2014Q2	44.06962				
2014Q3	86.41394				
2014Q4	110.4626				
2015Q1	81.65321				
2015Q2	54.88247				
2015Q3	107.4185				
2015Q4	139.6362				
2016Q1	102.1358				
2016Q2	69.39199				
2016Q3	133.6208				
2016Q4	174.4179				
2017Q1	127.9765				
2017Q2	87.22726				
2017Q3	165.6983				
2017Q4	211.5161				

Figure N°8 : Prévisions de la série « V »

Source : Réalisé par l'auteur avec le logiciel Eviews 9