Exercice1. I- Dans chacun des cas, déterminer les trois premiers termes de la suite (u_n) :

$$\blacksquare u_n = \frac{1}{2}n^2 - 2n + 3 \ \blacksquare u_n = \frac{2n+1}{4n+5} \blacksquare u_n = (3n+1)(2n+5) - 2n.$$

$$\text{II- M\^e} \text{me question pour ces cas} \quad \blacksquare \begin{cases} u_0 = -3 \\ u_{n+1} = 2u_n + 3n - 4 \end{cases} \quad \blacksquare \begin{cases} u_0 = 2 \\ u_{n+1} = 2(n+3)u_n \end{cases} \quad \blacksquare \begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n}{u_n + 2} \end{cases}$$

Exercice2. Calculer la limite de la suite (u_n) dans les cas suivants :

$$\blacksquare u_n = -3n^2 - 2n + 3 \quad \blacksquare u_n = \frac{n-2n^3}{3n^2+1} \quad \blacksquare u_n = \frac{2n^4+1}{3n^2-5n^4} \quad \blacksquare u_n = \frac{-3n^3+1}{3n^2+5n^4} \quad \blacksquare u_n = 3^n e^{-3n} \quad \blacksquare u_n = \frac{3^n+2^n}{(-4)^n} \quad \blacksquare u_n = \frac{3^n+2^n}{(-$$

$$\blacksquare u_n = \left(\frac{3}{2}\right)^n \left(\frac{2}{3}\right)^{n-1} \blacksquare u_n = \frac{a^n - b^n}{a^n + b^n}, a, b \in]0, +\infty[.$$

Exercice3. Etudier la monotonie de la suite (u_n) définie par les cas suivants :

$$\blacksquare u_n = -2n + 5 \blacksquare u_n = \frac{3n}{2n+1} \blacksquare u_n = \left(\frac{2}{3}\right)^n \blacksquare u_n = (-1)^n \blacksquare \begin{cases} u_0 = 1 \\ u_{n+1} = u_n - n^2 \end{cases} \qquad \blacksquare \begin{cases} u_0 = -1 \\ u_{n+1} = u_n (1 + 3u_n) \end{cases}$$

Exercice4. Soit la suite (u_n) telle que: $u_0 = 2$, $u_{n+1} = 5 - \frac{16}{u_n + 3}$.

- 1. Montrer que pour tout entier $n, u_n \ge 1$.
- 2. Vérifier que pour tout entier $n, u_{n+1} u_n = -\frac{(u_n-1)^2}{u_n+3}$, puis déduire la monotonie de (u_n) .
- 3. La suite (u_n) est-t-elle convergente ? Si oui, donner sa limite.

Exercice5. Soit la suite (u_n) définie par : $u_0 = 1$, $u_{n+1} = u_n + \frac{1}{u_n}$.

- 1. Montrer que pour tout entier $n, u_n > 0$, puis déduire que (u_n) est croissante.
- 2. Montrer que (u_n) ne peut être majorée. Donner alors la limite de (u_n) .

Exercice6. Soient les suites (u_n) et (v_n) définies par : $\begin{cases} u_0 = 4 \\ u_{n+1} = \frac{5u_n}{3u_n - 4} \end{cases}$ et $v_n = \frac{u_n - 3}{u_n}$.

- 1. Montrer que la suite (v_n) est géométrique. On précisera son premier terme et sa raison.
- 2. Exprimer v_n puis u_n en fonction de n.
- 3. En déduire la limite de la suite (v_n) puis celle de la suite (u_n) .

Exercice7. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique telle que : $u_{20}=-52$ et $u_{51}=-145$.

Déterminer sa raison r et son premier terme u_0 , puis calculer la somme suivante:

$$S = u_{20} + u_{21} + \dots + u_{51} = \sum_{k=20}^{51} u_k$$

<u>Exercice8</u>. Un montant de 1000 euros rapporte 5% par an. Quelle valeur aurait-il atteint après (a) 10 ans, (b) 50 ans, si l'intérêt est composé et si l'intérêt est simple.

Exercice9. I-Déterminer le montant du capital qu'il fallait placer au 1^{er} janvier au taux annuel de 4% avec intérêts composés pour disposer d'un capital de 100 000 DA au bout de 10 ans.

II-Déterminer à quel taux annuel il faut placer à intérêts composés, une somme de 30000 DA Pour que sa valeur acquise au bout de 3 ans de placement soit 32 520 DA.

III-Déterminer au bout de combien d'années un capital de 7000 DA placé au taux annuel de 6% avec intérêts simples acquiert une valeur acquise de 10642,59 DA.