
Informatique 1

République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieure et de la
Recherche Scientifique

Université Abderrahmane Mira de Bejaia

Faculté de la Technologie

Département de Technologie

Dr. Cylia AMRANE

cylia.amrane@univ-bejaia.dz
Mai 2024

file:///C:/Users/DELL/Documents/opale3.7/CoursInformatique1AMRANECylia/~gen/CoursAMRANECylia/CoursAMRANECylia_papier.publi/printPs/co/cylia.amrane@univ-bejaia.dz

Table des matières

I - Notion d'algorithme et de programme 3

1. Objectifs 3

2. Introduction 3

3. Concept d'un algorithme 3

4. La démarche et analyse d'un problème 4

5. Structure d'un algorithme 4
5.1. L'Entête 5
5.2. La partie déclarative 5
5.3. Le corps de programme 7

6. Types d'intructions 7
6.1. Instructions d'Entrées/Sorties (Lecture / Écriture) 7
6.2. Instruction d'affectation 8
6.3. Structures de contrôles 9

7. Correspondance Algorithme-Pascal 14

8. Représentation en organigramme 16
8.1. Les symboles d'organigramme 16

9. Représentation des primitives algorithmiques 16
9.1. L'enchaînement 16
9.2. La structure alternative simple 17
9.3. La structure alternative double 17
9.4. La structure itérative POUR (Boucle POUR) 18
9.5. La structure itérative Tant-que (Boucle Tant-que) 18
9.6. La structure itérative Répéter (Boucle Répéter) 19

10. Exercices corrigés 20

...

...

...

...

...
..

...
..

..
..

...
...

...

..
...

..
...

...
..

...
...

...

...

2 Dr AMRANE Cylia

1 https://youtu.be/z9WVh2K0svU?feature=shared

Notion d'algorithme et de programme I

1. Objectifs

A l'issu de ce chapitre, l'apprenant sera capable de :

➢ Comprendre la définition et le rôle des algorithmes dans la résolution de problèmes informatiques.

➢ Identifier les différentes étapes d'un algorithme, de la spécification à l'exécution.

➢ Appréhender les concepts de variables, de types de données et d'opérations élémentaires dans la
programmation.

➢ Analyser des exemples concrets d'algorithmes simples et comprendre comment ils sont traduits en
programmes exécutables.

2. Introduction

Un Algorithme est une séquence d'instructions ordonnées, qui permet de résoudre un problème. Le
terme “Algorithme ” vient de l'arabe ّالخُوَارِزْمِي , nom du mathématicien perse Al-Khwarizmi.

Un algorithme prend, en entrée, un ensemble de données (Inputs) et délivre (produit, renvoie) un
ensemble de données en sortie (Outputs), afin de résoudre un problème.

3. Concept d'un algorithme

Un algorithme1 peut être schématisé comme suit :

Figure II.1 : Structure d'un algorithme

Donc, un algorithme représente une solution pour un problème donné. Cette solution est spécifiée à
travers un ensembles d'instructions (séquentielles avec un ordre logique) qui manipulent des données.
Une fois l'algorithme est écrit (avec n'importe quelle langues : français, anglais, arabe, etc.), il sera
transformé, après avoir choisi un langage de programmation, en un programme code source qui sera
compilé (traduit) et exécuté par l'ordinateur.

Dr AMRANE Cylia 3

https://youtu.be/z9WVh2K0svU?feature=shared
https://youtu.be/z9WVh2K0svU?feature=shared

Pour le langage de programmation qui sera utilisé, ça sera le langage PASCAL.

4. La démarche et analyse d'un problème

Un algorithme représente une solution à un problème donné. La résolution de ce problème applique un
processus d'analyse et de résolution qui est constitué des étape suivantes :

1. Définition du problème à traiter : Cette phase demande plus d'attention à l'utilisateur :

- Un problème bien posé est déjà à moitié résolue, et d'autre part il faut savoir si le problème se prête à
être résolu ou non sur ordinateur.

- La formulation mathématique du problème doit être définie.

- Définition de toutes les données ainsi que le choix des unités. La précision désirée, les résultats
attendus et le contrôle des erreurs.

2. Établissement de l'algorithme : On formule la résolution du problème sous forme d'une succession
logique d'instructions pour passer des données aux résultats.

3. Établissement de l'organigramme : C'est la représentation symbolique (graphique) de
l'algorithme.

4. Programmation : C'est la traduction de l'algorithme en langage évolué.

5. Compilation : Correction de toutes les erreurs de programmation.

6. Exécution : jeu d'essai.

7. Vérification des résultats : Consiste à vérifier si les résultats obtenus correspondent aux solutions du
problème.

5. Structure d'un algorithme

Un algorithme se compose de trois parties principales :

- L'Entête : dans cette partie on déclare le nom de l'algorithme à travers un identificateur.

- La partie déclarative : dans cette partie on déclare toutes les données utilisées par l'algorithme.

- Le corps de programme : représente la séquence d'actions (instructions) Pour écrire un algorithme.

Ces parties doivent respecter une syntaxe bien déterminée, définie comme suit :

Tableau II.1 : Structure d'un algorithme

Notion d'algorithme et de programme

4 Dr AMRANE Cylia

Tableau II.2 : Structure d'un programme en Pascal

5.1. L'Entête

L'entête sert à donner un nom à l'algorithme en utilisant un identificateur. Ce dernier est précédé par le
mot clé “Algorithme”. Alors qu'est-ce qu'un identificateur ?

Identificateur : Un identificateur est une chaîne de caractère qui permet de donner un nom
unique à un programme (algorithme), une constante, une variable, une procédure ou une
fonction. Cette chaîne doit commencer soit par un caractère alphabétique ou par un tiret du 8 (_
) et ne peut contenir que des caractères alphanumériques. Aussi, les mots réservés (mots-clés)
d'un langage de programmation ne peuvent être utilisés comme identificateurs. Voici quelques
mots réservés au langage Pascal: Begin, end, program, var, const, real, integer, char, if, then, else,
while, for, do, repeat.

Exemple

Tableau II.3 : Exemples d'identificateurs valides et non valides

5.2. La partie déclarative

La partie déclarative sert à déclarer les différentes données que l'algorithme utilise (Constantes,
variables,.. etc.). Une donnée non déclarée et utilisée par l'algorithme engendre une erreur lors de la
compilation. Alors qu'est-ce qu'une variable et qu'est-ce qu'une constante ?

Constantes : une constante est un objet contenant une valeur qui ne peut jamais être modifiée.
Son objectif est d'éviter d'utiliser une valeur d'une manière direct. Imaginons qu'un algorithme
utilise la valeur 3.14 une dizaines de fois (le nombre d'occurrences de la valeur 3.14 est par
exemple 15) et qu'on veut modifier cette valeur par une autre valeur plus précise : 3.14159.
Dansce cas on est amené à modifier toutes les occurrences de 3.14. Par contre, si on utilise une
constante PI=3.14 on modifier une seule fois cette constante.

Notion d'algorithme et de programme

Dr AMRANE Cylia 5

Exemple

Ci-dessous quelques exemples de déclarations de constantes :

Const PI = 3.14 ; → Constante réelle.

Const MAX = 10 ; → Constante entière.

Const cc = 'a' ; → Constante caractère.

Const ss = 'algo '; → Constante chaîne de caractère.

Const b1 = true ; → Constante booléenne.

Const b2 = false ; → Constante booléenne.

Variables : une variable est un objet contenant une valeur pouvant être modifiée.

Le tableau II.4 résume les 5 types de variables :

Tableau II.4 : Les 5 types de base

Exemple

Tableau II.5 : Exemples de variables

Remarque

- Pour commenter un programme Pascal, on écrit les commentaires entre les accolades { }. Par exemple
: {Ceci est un commentaire}.

- Dans un programme Pascal, on déclare les constantes dans une section qui commence parle mot clé
const.

- Dans un programme Pascal, on déclare les variables dans une section qui commence parle mot clé
var.

- En plus des constantes et des variables, il est possible de déclarer de nouveaux types, des étiquettes,
et (dans un programme Pascal) des fonctions et des procédures.

Notion d'algorithme et de programme

6 Dr AMRANE Cylia

5.3. Le corps de programme

Le corps d'un algorithme est constitué d'un ensemble d'actions / instructions ordonnées de manière
séquentielle et logique. Ces instructions se divisant en cinq types distincts:

- Lecture : Cette opération consiste à introduire des données dans l'algorithme. Une lecture consiste à
donner une valeur arbitraire à une variable.

- Écriture : Cette opération implique l'affichage de données. Elle permet d'afficher des résultats ou des
messages.

- Affectation : Elle permet de modifier les valeurs des variables en leur assignant de nouvelles valeurs.

- Structures de contrôle : Ces structures permettent de modifier la séquentialité de l'algorithme. Elles
sont utilisées pour sélectionner différents chemins d'exécution ou pour répéter un traitement.

→ Structure de Test alternatif simple / double

→ Structure répétitives (itérative)

Dans le langage Pascal, chaque instruction se termine par un point-virgule. Sauf à la fin du
programme, on met un point.

6. Types d'intructions

Toutes les instructions d'un programme sont écrites dans le corps du prgramme. (entre Début et Fin,
i.e. Begin et End.). On peut regrouper ces instructions en trois types : les entrées/sorties (saisi de
valeurs et l'affichage des résultat), l'affectation et les structures de contrôles (tests et les boucles)

6.1. Instructions d'Entrées/Sorties (Lecture / Écriture)
a) Entrées (Lecture)

Une instruction d'entrée nous permet dans un programme de donner une valeur quelconque à une
variable. Ceci se réalise à travers l'opération de lecture.

La syntaxe et la sémantique d'une lecture est comme suit :

Tableau II.6 : La syntaxe et la sémantique d'une lecture

Remarque

Il est important de noter que l'instruction de lecture concerne uniquement les variables, on peut pas
lire des constantes ou des valeurs. Lors de la lecture d'une variable dans un programme Pascal, le
programme se bloque en attendant la saisie d'une valeur via le clavier. Une fois la valeur saisie, on
valide par la touche entrée, et le programme reprend l'exécution avec l'instruction suivante.

Notion d'algorithme et de programme

Dr AMRANE Cylia 7

Exemple

Tableau II.7 : Exemples d'entrées

b) Sorties (Écriture)

Une instruction de sortie nous permet dans un programme d'afficher un résultat (données traitées) ou
bien un message (chaîne de caractères). Ceci se réalise à travers l'opération d'écriture.

La syntaxe et la sémantique d'une écriture est comme suit :

Tableau II.8 : La syntaxe et la sémantique d'une écriture

Remarque

Il est à noter que l'instruction d'écriture ne concerne pas uniquement les variables, on peut écrire des
constantes, valeurs ou des expressions (arithmétiques ou logiques). On peut afficher unevaleur et
sauter la ligne juste après à travers l'instruction : writeln.

Exemple

Tableau II.9 : Exemples de sorties

6.2. Instruction d'affectation

Une affectation consiste à donner une valeur (immédiate, constante, variable ou calculée à travers une
expression) à une variable.

La syntaxe d'une affectation est comme suit :

Tableau II.10 : La syntaxe d'une affectation

Une affectation possède deux parties : la partie gauche qui représente toujours une variable, et la
partie droite qui peut être : une valeur, variable ou une expression. La condition qu'une affectation soit
correcte est que : la partie droite doit être du même type (ou de type compatible) avec la partie gauche.

Notion d'algorithme et de programme

8 Dr AMRANE Cylia

Exemple

Tableau II.11 : Exemples d'affectation

6.3. Structures de contrôles

En générale, les instructions d'un programme sont exécutés d'une manière séquentielle : la première
instruction, ensuite la deuxième, après la troisième et ainsi de suite. Cependant, dans plusieurs cas, on
est amené soit à choisir entre deux ou plusieurs chemins d'exécution (un choix entre deux ou plusieurs
options), ou bien à répéter l'exécution d'un ensemble d'instructions, pour cela nous avons besoins de
structures de contrôle pour contrôler et choisir les chemins d'exécutions ou refaire un traitement
plusieurs fois. Les structures de contrôle sont de deux types : Structures de contrôles conditionnelles et
structures de contrôle répétitives (itératives).

a) Structures de contrôle conditionnelle

Ces structures sont utilisées pour décider de l'exécution d'un bloc d'instruction : est ce que ce bloc est
exécuté ou non. Ou bien pour choisir entre l'exécution de deux blocs différents. Nous avons deux types
de structures conditionnelles :

i) Test alternatif simple

Un test simple contient un seul bloc d'instructions. Selon une condition (expression logique), on décide
est ce que le bloc d'instructions est exécuté ou non. Si la condition est vraie, on exécute le bloc, sinon
on l'exécute pas.

La syntaxe d'un test alternatif simple est comme suit :

Tableau II.12 : La syntaxe d'un test alternatif simple

Exemple

Tableau II.13 : Exemple d'un test alternatif simple

Remarque

Dans le langage Pascal, un bloc est délimité par les deux mots clés begin et end.

Si le bloc contient une seule instruction, begin et end sont facultatifs (on peut les enlever).

Notion d'algorithme et de programme

Dr AMRANE Cylia 9

ii) Test alternatif double

Un test double contient deux blocs d'instructions : on est amené à décider entre le premier bloc ou le
seconds. Cette décision est réalisée selon une condition (expression logique ou booléenne) qui peut
être vraie ou fausse. Si la condition est vraie on exécute le premier bloc, sinon on exécute le second.

La syntaxe d'un test alternatif double est comme suit :

Tableau II.14 : La syntaxe d'un test alternatif double

Exemple

Tableau II.15 : Exemple d'un test alternatif double

Remarque

- Dans le langage Pascal, il faut jamais mettre de point-virgule avant else.

- Dans l'exemple précédent, on peut enlever begin end du if et ceux du else puisqu'il y a une seule
instruction dans les deux blocs.

Notion d'algorithme et de programme

10 Dr AMRANE Cylia

b) Structures de contrôle répétitives

Les structures répétitives nous permettent de répéter un traitement un nombre fini de fois. Par
exemple, on veut afficher tous les nombre premier entre 1 et N (N nombre entier positif donné). Nous
avons trois types de structures itératives (boucles) :

i) Boucle Pour (For)

La structure de contrôle répétitive pour (for en langage Pascal) utilise un indice entier qui varie (avec un
incrément = 1) d'une valeur initiale jusqu'à une valeur finale. À la fin de chaque itération, l'indice est
incrémenté de 1 d'une manière automatique (implicite).

La syntaxe de la boucle pour est comme suit :

Tableau II.16 : La syntaxe de la boucle pour

<indice> : variable entière

<vi> : valeur initiale

<vf> : valeur finale

La boucle pour contient un bloc d'instructions (les instructions à répéter). Si le bloc contient une seule
instruction, le begin et end sont facultatifs.

Le bloc sera répété un nombre de fois = (<vf> <vi> + 1) si la valeur finale est supérieure ou égale à la
valeur initiale. Le bloc sera exécuté pour <indice> = <vi>, pour <indice> = <vi>+1, pour <indice> = <vi>+2,
..., pour <indice> = <vf>.

Attention

Il ne faut jamais mettre de point-virgule après le mot clé do.

ii) Boucle Tant-que (While)

La structure de contrôle répétitive tantque (while en langage Pascal) utilise une expression logique ou
booléenne comme condition d'accès à la boucle : si la condition est vérifiée (elle donne un résultat vrai
: TRUE) donc on entre à la boucle, sinon on la quitte.

La syntaxe de la boucle tantque est comme suit :

Tableau II.17 : La syntaxe de la boucle tantque

<condition> : expression logique qui peut être vraie ou fausse.

On exécute le bloc d'instructions tant que la condition est vraie. Une fois la condition est fausse, on
arrête la boucle, et on continue l'exécution de l'instruction qui vient après fin Tant que (après end).

Comme la boucle for, il faut jamais mettre de point-virgule après do.

Notion d'algorithme et de programme

Dr AMRANE Cylia 11

Remarque

Il est possible de remplacer toute boucle "pour" par une boucle "tantque", cependant, l'inverse n'est
pas toujours réalisable.

iii) Boucle Répéter (Repeat)

La structure de contrôle répétitive répéter (repeat en langage Pascal) utilise une expression logique ou
booléenne comme condition de sortie de la boucle : si la condition est vérifiée (elle donne un résultat
vrai : TRUE) on sort de la boucle, sinon on y accède (on répète l'exécution du bloc).

La syntaxe de la boucle répéter est comme suit :

Tableau II.18 : La syntaxe de la boucle répéter

<condition> : expression logique qui peut être vraie ou fausse.

On exécute le bloc d'instructions jusqu'à avoir la condition correcte. Une fois la condition est vérifiée,
on arrête la boucle, et on continue l'exécution de l'instruction qui vient après jusqu'à (après until).
Dans la boucle repeat on utilise pas begin et end pour délimiter le bloc d'instructions (le bloc est déjà
délimité par repeat et until).

La différence entre la boucle répéter et la boucle tantque est :

- La condition de répéter et toujours l'inverse de la condition tantque : pour répéter c'est la condition
de sortie de la boucle, et pour tantque c'est la condition d'entrer.

- Le teste de la condition est à la fin de la boucle (la fin de l'itération) pour répéter. Par contre, il est au
début de l'itération pour la boucle tantque. C'est-à-dire, dans tantque on teste la condition avant
d'entrer à l'itération, et dans répéter on fait l'itération après on teste la condition.

c) Structure de contrôle de branchements / sauts (l'instruction Goto)

Une instruction de branchement nous permet de sauter à un endroit du programme et continuer
l'exécution à partir de cet endroit. Pour réaliser un branchement, il faut tout d'abord indiquer la
cibledu branchement via une étiquette <num_etiq> : . Après on saute à cette endroit par l'instruction
aller à <num_etiq> (en pascal : goto <num_etiq>).

La syntaxe d'un branchement est comme suit :

Tableau II.19 : La syntaxe d'un branchement

Remarque

- Une étiquette représente un numéro (nombre entier), exemple : 1, 2, 3, etc.

- Dans un programme Pascal, il faut déclarer les étiquettes dans la partie déclaration avec le mot clé
label. (on a vu const pour les constantes var pour les variables)

Notion d'algorithme et de programme

12 Dr AMRANE Cylia

- Une étiquette désigne un seule endroit dans le programme, on peut jamais indiquer deux endroits
avec une même étiquette.

- Par contre, on peut réaliser plusieurs branchement vers une même étiquette.

- Un saut ou un branchement peut être vers une instruction antérieure ou postérieure (avant ou après
le saut).

Exemple

Tableau II.20 : Exemple de branchement

Dans l'exemple ci-dessus, il y a deux étiquettes : 1 et 2. L'étiquette 1 fait référence la dernière
instruction de l'algorithme / programme (écrire(c) / write(c) ;), et l'étiquette 2 fait référence la troisième
instruction de l'algorithme / programme (c ← a; / c := a;). Pour le déroulement de l'algorithme, on utilise
le tableau suivant (a = 2 et b = 5) :

Tableau II.21 : Déroulement de l'algorithme

Il y a deux types de branchement :

Branchement inconditionnel : c'est un branchement sans condition, il n'appartient pas à un
bloc de si ou un bloc sinon. Dans l'exemple précédent, l'instruction aller à 2 (goto 2) est un saut
inconditionnel.

Notion d'algorithme et de programme

Dr AMRANE Cylia 13

Branchement conditionnel : Par contre, un branchement conditionnel est un saut qui
appartient à un bloc si ou un bloc sinon. L'instruction aller à 1 (goto 1), dans l'exemple précédent
est un saut conditionnel puisque il appartient un bloc si.

[cf.]

7. Correspondance Algorithme-Pascal

Pour traduire un algorithme en programme Pascal, on utilise le tableau récapitulatif suivant pour
traduire chaque structure syntaxique d'un algorithme en structure syntaxique du Pascal.

Tableau II.22 : Correspondance Algorithme-Pascal

Remarque

1. Langage Pascal est insensible à la casse, c'est-à-dire, si on écrit begin, Begin ou BEGIN c'est la même
chose.

2. Lorsque l'action après THEN, ELSE ou un DO comporte plusieurs instructions, on doit
obligatoirement encadrer ces instructions entre BEGIN et END. Autrement dit, on les défini sous forme
d'un bloc. Pour une seule instruction, il n'est pas nécessaire (ou obligatoire) de l'encadrer entre BEGIN
et END (voir en travaux pratiques). Un ensemble d'instructions encadrées entreBEGIN et END, s'appelle
un BLOC ou action composée. On dit qu'un programme Pascal est structurée en blocs.

Notion d'algorithme et de programme

14 Dr AMRANE Cylia

1 https://openclassrooms.com/fr/

3. Il est interdit de chevaucher deux structures de boucles ou de blocs. Par exemple :

On a eu la forme suivante :

Ce qui est interdit.

Les boucles et blocs ne doivent en aucun cas chevaucher, ils doivent êtres imbriqués.

→ structures autorisées :

Conseil

Pour une initiation à la programmation avec le langage PASCAL, je vous invite à consulter
OPENCLASSROOMS1.

Notion d'algorithme et de programme

Dr AMRANE Cylia 15

https://openclassrooms.com/fr/
https://openclassrooms.com/fr/

8. Représentation en organigramme

Un organigramme est la représentation graphique de la résolution d'un problème. Il est similaire à un
algorithme. Chaque type d'action dans l'algorithme possède une représentation dans l'organigramme.

Il est préférable d'utiliser la représentation algorithmique que la représentation par organigramme
notamment lorsque le problème est complexe.

Les inconvénients qu'on peut rencontrer lors de l'utilisation des organigrammes sont :

- Quand l'organigramme est long et tient sur plus d'une page,

- Problème de chevauchement des flèches,

- Plus difficile à lire et à comprendre qu'un algorithme.

8.1. Les symboles d'organigramme

Les symboles utilisés dans les organigrammes sont illustrés dans le tableau II.23

Tableau II.23 : Les symboles d'organigramme

9. Représentation des primitives algorithmiques

9.1. L'enchaînement

L'enchaînement permet d'exécuter une série d'actions dans l'ordre le leur apparition. Soit A1, A2, ...,An
une série d'actions, leur enchaînement est représenté comme suit :

A1, A2, ...,An : peuvent être des actions élémentaires ou complexes.

Notion d'algorithme et de programme

16 Dr AMRANE Cylia

9.2. La structure alternative simple

La syntaxe et l'organigramme de la structure alternative simple sont présentés dans le tableau II.24.

Tableau II.24 : La syntaxe et l'organigramme de la structure alternative simple

Les condition utilisées pour les teste (simple ou double) sont des expression logique ou booléennes, ça
veut dire des expression dont leur évaluation donne soit TRUE (Vrai) ou FALSE (faux). Toute
comparaison entre deux nombre représente un expression logique. On peut former desexpressions
logiques à partir d'autres expressions logique en utilisant les opérateurs suivant : Not, Or et And.

Exemple

(x >= 5) : est une expression logique, elle est vrai si la valeur de x est supérieur ou égale à 5. elle est
fausse dans le cas contraire.

Not (x >= 5) : E.L. qui est vrai uniquement si la valeur de x est inférieur à 5.

(x >=5) And (y<=0) : E.L. qui est vrai si x est supérieur ou égale à 5 et y inférieur ou égale à 0.

9.3. La structure alternative double

La syntaxe et l'organigramme de la structure alternative double sont présentés dans le tableau II.25 :

Tableau II.25 : La syntaxe et l'organigramme de la structure alternative double

Notion d'algorithme et de programme

Dr AMRANE Cylia 17

9.4. La structure itérative POUR (Boucle POUR)

La syntaxe et l'organigramme de la structure itérative POUR sont présentés dans le tableau II.26.

Tableau II.26 : La syntaxe et l'organigramme de la structure itérative POUR

Dans la boucle POUR, on exécute le bloc <acitons> (<vf> - <vi> + 1) fois. Ceci dans le cas où <vf> est
supérieur ou égale à <vi>. Dans le cas contraire, le bloc d'actions ne sera jamais exécuté. Le
déroulement de la boucle POUR est exprimé comme suit :

1. La variable entière <cpt> (le compteur) prends la valeur initiale <vi> ;

2. on compare la valeur de <cpt> à celle de <vf> ; si <cpt> est supérieur à <vf> on sort de laboucle ;

3. Si <cpt> est inférieur ou égale à <vf> on exécute le bloc <action(s)> ;

4. La boucle POUR incrémente automatiquement le compteur <cpt>, c'est-à-dire elle lui ajoute un
(<cpt> <cpt> + 1);

5. On revient à 2 (pour refaire le teste <cpt> <= <vi> C'est pour cela qu'on dit la boucle);

Remarque

La boucle POUR est souvent utilisée pour les structures de données itératives (les tableaux et les
matrices – variables indicées).

9.5. La structure itérative Tant-que (Boucle Tant-que)

La syntaxe et l'organigramme de la structure itérative Tant-que sont présentés dans le tableau II.27.

Tableau II.27 : La syntaxe et l'organigramme de la structure itérative Tant-que

Notion d'algorithme et de programme

18 Dr AMRANE Cylia

On exécute le bloc d'instructions <actions> tant que la <condition> est vérifiée (c'est-à-dire elle est
vraie). Le déroulement de la boucle est comme suit :

1. On évalue la condition :

– si la condition est fausse on sort de la boucle ;

– Si la condition est vraie, on exécute le bloc <actions> ;

2. On revient à 1 ;

3. On continue la suite de l'algorithme

9.6. La structure itérative Répéter (Boucle Répéter)

La syntaxe et l'organigramme de la structure itérative répéter sont présentés dans le tableau II.28.

Tableau II.28 : La syntaxe et l'organigramme de la structure itérative répéter

n répète l'exécution du bloc <action(s)> jusqu'à avoir la condition correcte. Le déroulement est
comment suit :

1. On exécute le bloc <action(s)> ;

2. On évalue la condition : si la condition est vérifiée (elle est vraie) on sort de la boucle (on continue la
suite de l'algorithme);

3. Si la condition n'est pas vérifiée (elle est fausse) on revient à 1.

Remarque

N'importe quelle boucle POUR peut être remplacée par une boucle Tant-que, cependant l'inverse n'est
pas toujours correcte, c'est-à-dire, il y a des cas où la boucle Tant-que ne peut pas être remplacée par
une boucle POUR.

On transforme une boucle POUR à une boucle Tant-que comme suit :

Tableau II.29 : Transformation de la boucle POUR à la boucle Tant-que

Notion d'algorithme et de programme

Dr AMRANE Cylia 19

La boucle Répéter possède une condition de sortie (c'est-à-dire si elle est vraie on sort de la
boucle), alors que la boucle Tant-que possède une condition d'entrée (c'est-à-dire si elle est
vraie onentre dans la boucle).

La boucle Répéter exécute le bloc <action(s)> au moins une fois, le teste vient après l'exécution
du bloc.

La boucle Tant-Que peut ne pas exécuter le bloc <action(s)> (dans le cas où la condition est
fausse dès le début), puisque le teste est avant l'exécution du bloc.

10. Exercices corrigés

Exercice N°1 :

Donner le type des variables suivantes : 2010 ; 124.5 ; 667.0E-8 ; 'A' ; TRUE ; False ; 'division par zéro'.

Solution :

Type des variables

Exercice N°02 : (Identificateurs)

Identifier les identificateurs valides et non valides : 1A ; R? ; K2 ; T280 ; 12R ; Hauteur ; Prix- HT ; Prix_HT
; Exo 04 ; Exo_04 ; Exo-04 ; Program ; read.

Solution :

Les variables valides et non valides :

Notion d'algorithme et de programme

20 Dr AMRANE Cylia

Exercice N°03 : (Enoncé du problème → Algorithme → Programme)

Écrire un algorithme, puis traduit le en programme PASCAL, pour chacun des problèmes suivants :

1) Permuter entre les deux variables X et Y ?

2) Calculer le quotient et le reste de la division euclidienne de a par b ?

Solution :

1) Permuter entre les deux variables X et Y ?

2) Calculer le quotient et le reste de la division euclidienne de a par b ?

Notion d'algorithme et de programme

Dr AMRANE Cylia 21

	Informatique 1
	Table des matières
	Notion d'algorithme et de programme
	Objectifs
	Introduction
	Concept d'un algorithme
	La démarche et analyse d'un problème
	Structure d'un algorithme
	L'Entête
	La partie déclarative
	Le corps de programme

	Types d'intructions
	Instructions d'Entrées/Sorties (Lecture / Écriture)
	Entrées (Lecture)
	Sorties (Écriture)

	Instruction d'affectation
	Structures de contrôles
	Structures de contrôle conditionnelle
	Test alternatif simple
	Test alternatif double

	Structures de contrôle répétitives
	Boucle Pour (For)
	Boucle Tant-que (While)
	Boucle Répéter (Repeat)

	Structure de contrôle de branchements / sauts (l'instruction Goto)

	Correspondance Algorithme-Pascal
	Représentation en organigramme
	Les symboles d'organigramme

	Représentation des primitives algorithmiques
	L'enchaînement
	La structure alternative simple
	La structure alternative double
	La structure itérative POUR (Boucle POUR)
	La structure itérative Tant-que (Boucle Tant-que)
	La structure itérative Répéter (Boucle Répéter)

	Exercices corrigés

