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Preface

The experimentation plays an important role in Science, Engineering, and Industry. The
experimentation is an application of treatments to experimental units, and then measurement of
one or more responses. It is a part of scientific method. It requires observing and gathering
information about how process and system works. In an experiment, some input x’s transform
into an output that has one or more observable response variables y. Therefore, useful results
and conclusions can be drawn by experiment. In order to obtain an objective conclusion an

experimenter needs to plan and design the experiment, and analyze the results.

Design of experiments (DOE) is a formal structured technique for studying any situation
that involves a response that varies as a function of one or more independent variables. DOE is
specifically designed to address complex problems where more than one variable may affect a

response and two or more variables may interact with each other.

There are many types of experiments used in real-world situations and problems. When
treatments are from a continuous range of values then the true relationship between y and x’s
might not be known. The approximation of the response function y = f (x4, X2,...,xi) + ¢ is called

Response Surface Methodology.

The present course is intended for master's students from different specialties of the
Faculty of Natural and Life Sciences either for other faculties as well as for our doctoral students
who want to model and optimize the results of their research works to have the advantage of
organizing their experiments and to reduce the time to carry out their trials, in order to obtain

the maximum amount of information on the process studied.

This course offers the students to introduce and understands the principle and steps of
DOE modeling. The three types of Response Surface Methodology, the first-order and the
second-order models, will be described and explained in this course. Some examples will be
provided mainly for two levels factorial design and Centrale Composite Design (CCD) using
excel software for statistical analysis of the regression. Demonstration how to manipulate with
Minitab computer software and using excel software will be also given. Finally, a series of

exercises are presented too.
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INTRODUCTION TO DESIGN OF EXPERIMENTS

1. Introduction

Investigators perform experiments in virtually all fields of inquiry, usually to discover
something about a particular process or system. Each experimental run is a test. More formally.
we can define an experiment as a test or series of runs in which purposeful changes are made
to the input variables of a process or system so that we may observe and identify the reasons
for changes that may be observed in the output response. We may want to determine which
input variables are responsible for the observed changes in the response, develop a model
relating the response to the important input variables and to use this model for process or system

improvement or other decision-making [1].

In general, experiments are used to study the performance of processes and systems.
The process or system can be represented by a black box model shown in figure 1. We can
usually visualize the process as a combination of operations. Machines, methods, people, and
other resources that transforms some input (often a material) into an output that has one or more
observable response variables. Controllable variables (xi. x2. ...... Xp) can be varied easily
during an experiment and such variables have a key role to play in the process characterization.
Uncontrollable variables (z1. zz. . . . . zq) are difficult to control during an experiment. These
variables or factors are responsible for variability in process performance. It is important to
determine the optimal settings of x’s in order to minimize the effects of z’s. This is the

fundamental strategy of robust design [1, 2].

Controllable factors

.II .'P:';_ .'l.n

Imputs Crutput

—_— Procass ————

Pt

Figure 1 : Black box model [1]
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Experimentation plays an important role in technology commercialization and product
realization activities, which consist of new product design and formulation. manufacturing
process development. and process improvement. The objective in many cases may be to
develop a robust process. that is. a process affected minimally by external sources of variability.
There are also many applications of designed experiments in a nonmanufacturing or non-
product-development setting. such as marketing, service operations. and general business
operations. A well-designed experiment is important because the results and conclusions that
can be drawn from the experiment depend to a large extent on the manner in which the data
were collected [1-4].

Statistical experimental design; also known as design of experiments (DOE); is the
methodology of how to conduct and plan experiments in order to extract the maximum amount
of information with the lowest number of trials. A designed experiment is a tool or set of tools
used for gathering test data. Typical characteristics of an experimental design are planned

testing. data analysis approach. simultaneous factor variability and scientific approach [5].

DOE is a branch of applied statistics that is used for conducting scientific studies of a
system. process or product in which input variables (xi) were manipulated to investigate its
effects on measured response variable (y). The usage of DOE has been expanded across many
industries as part of decision-making process either along a new product development.
manufacturing process and improvement. It is not used only in engineering areas it has been
used in administration. Marketing, hospitals, pharmaceutical. food industry. energy and

architecture, and chromatography [3].

DOE is applied in experimental situations where several independent variables
potentially impact one or more response variable. The experimenter controls the independent
variable in a designed experiment, while the response variable is an observed output of the
experiment. Changing more than one variable simultaneously, rather than changing one
variable at a time, leads to effective results. Interactions between variables can cause problems
that none can see until change has been made. DOE has been applied in many functional areas,
one being research to quantify the inter-relationship between variables and to screen a large

number of variables to identify important ones [2, 6].

The popularity of DOE is due to its tremendous power and efficiency. When used

correctly, DOE can provide the answers to specific questions about the behavior of a system.

2



INTRODUCTION TO DESIGN OF EXPERIMENTS

using an optimum number of experimental observations. Since designed experiments are
structured to answer specific questions with statistical rigor. experiments with too few
observations won’t deliver the desired confidence in the results and experiments with too many
observations will waste resources. DOE gives the answers that we seek with a minimum

expenditure of time and resources [3, 7].

General practical steps and guidelines for planning and conducting DOE are listed below [3]:

1. State the objectives: It is a list of problems that are going to be investigated.

2. Response variable definition: This is measurable outcome of the experiment that is based

on defined objectives.

3. Determine factors and levels: Selection of independent variable (factors) that cause change
in the response variable.

4. Determine experimental design type: e. g. a screening design is needed for significant
factors identification; or for optimization factor-response function is going to be planned.

number of test samples determination.
5. Perform experiment: Using design matrix.
6. Data analysis: Using statistical methods such as regression analysis and ANOVA.

7. Practical conclusions and recommendations: Graphical representation of the results and

validation.

2. Advantages of DOE

Advantages of the design of experiments [3-5]:

* Helps to handle experimental error.

* Helps to determine the important variables that need to be controlled and find the unimportant
variables that need not be controlled.

* Helps to measure interactions. which is very important.

* Allows extrapolation of data and search for the best possible product within the test variable
ranges.

* Allows plotting graphs to depict how variables are related and what level of variables give the

optimum product. Use of statistical models shows us the interrelationship between variables.
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3. Historical perspective

One Factor At a Time (OFAT) was very popular scientific method dominated until early
nineteen century. In this method one variable/factor is tested at a time while the other variables
are constrained except the investigated one. The traditional approach demands considerable
material expense and is more time consuming. The major disadvantage of the OFAT strategy

is that it fails to consider any possible interaction between the factors [3].

Testing multiple variables at a time is better especially in cases where data must be
analyzed carefully. In the 1920s and 1930s Ronald A. Fisher conducted a research in
agriculture. he was the first one who started using DOE. In 1935, he wrote a book on DOE.
Significant use of DOE in the research project was noticed in the late 1960s and 1970s. Thus,
it took about 50 years for the DOE to achieve significant application in the research, since in
this period there were no software packages that would foster its application, DOE had not
signified a strong expansion (figure 2). Thanks to software development in 1990s and later, the

use of DOE in research over various scientific areas has risen sharply [3, 8].

A linear model that represents a rapid increase in the use of DOE in the research projects

is shown in figure 2 and represented by a mathematical linear model.
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Figure 2: Progressive use of DOE as scientific method over past two decades [3]
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4. Terminology

To simplify the communication a few different terms are introduced and defined
4.1. Factors types
Experimental variables that can be changed independently of each other, two types of
factors exist [4, 6, 8]:
v Continuous Variables: Independent variables that can be changed continuously
like pression. temperature. concentration....
v Discrete Variables: Discrete factors can take only particular values. These
values are not necessarily numeric. The color of a product (blue. red. or yellow)
is an example of a discrete factor, for example. size may be represented as large,

medium. or small......

4.2. Factor’s domain

The value given to a factor while running an experimental trial is called a level. The lower
limit is the low level (-1) and the upper limit is the high level (+1). The set containing all the
values between the low and the high level that the factor can take is called the factor’s domain

of variation or. more simply, the factor’s domain (figure 3) [5, 6].

Factor’s domain

/

— F——
-1 +1

Figure 3: Factor’s domain [4]

One continuous factor can be represented by a directed and graduated axis. If there is a
second continuous factor, it is represented by a similar axis drawn orthogonally to the first. This
area is called the experimental space (figure 4). The experimental space is composed of all

the points of the plane factor 1 x factor 2 where each point represents an experimental trial.

Factor 2
A .
i PY o Experimental space
. /
[
Factor 1

Figure 4 : Experimental space [4]
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4.3. Study domain
The study domain is defined as a portion of experimental space to carry out the study, this
domain is defined by the high and low levels of all the factors (figure 5) [4, 9].

Factor 2
A

+1 |

Study domain

> Factor 1

-1 +1
Figure 5 : Study domain [4]

4.4. The Response Surface
The collection of responses that correspond to all the points in the study domain forms the
response surface. To obtain the response surface. it is necessary to interpolate using a

mathematical model (figure 6) [4].
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Figure 6 : Response surface [4]
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4.5. Centered and Scaled Variables

When the lower level of a factor is represented by (-1) and the upper level is represented by
(+1), two important changes occur. these two changes involve the introduction of new variables
called centered and scaled variables. The conversion of the original variables A; to the coded
variables x; (and vice versa) is given by the following formula. where Ao is thex central value
[1, 4, 5].

. _ 4i—4o
Where: Xj = Step (1)
With:
_ Ay tA _Ay1—A,
Ay = —— Step = —
Example 1:

An experimenter chooses for the temperature factor to be 20°C at the low level (-1) and
60°C at the high level (+1). In coded units. what is the corresponding temperature for 30°C?
Let’s calculate the step for the speed factor. It’s equal to half the difference between the high

and low levels, so:

60 — 20
= 20°C

Step =

Ao is the center value between the high and low levels; that is, it is half of the sum of
the high and low levels:

60+ 20

Ay = = 40°C
0 2

X_A—A0_30—40_ 05
- Step 20

A temperature of 30 °C is therefore, for this example. equal to -0.5 in coded values.
Example 2:

We may also want the value in original units. knowing the coded value. What is the
value of the temperature factor corresponding to +0.5 in coded units?
Write equation (1):
A—40

0.5 =
* 20

So: A= 40+ (20%0.5) =50
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The coded temperature 0.5 corresponds to a temperature of 50 °C.

The advantage to using coded units lies in their power to present designed experiments in
the same way, regardless of the chosen study domains and regardless of the factors. Seen this

way. DOE theory is quite generalizable.

4.6.Experimental matrix

The experimental matrix (or design matrix) is the table that indicates the number of
experiments to be carried out with how to vary the factors and the order in which the
experiments must be carried out, this table can be arranged using either the original variables
or the coded variables (-1 and +1) [4, 9].

For 2Xdesign. build a table with 2% rows and k columns, the rows are labeled with factor-
level combinations in standard order, and the columns are labeled with the k factors. In
principle, the body of the table contains +1°s and —1’s. with +1 indicating a factor at a high

level, and —1 indicating a factor at a low level [4, 9].

In Table 1, the factorial designs for 2, 3 and 4 experimental variables are shown. for
example, for 2 factors factorial design (22), the first column of the matrix is used to designate
the trials numbers. The second column holds the first factor (x1), with its designated levels listed
in order. The third column holds the second factor (x2) and also lists the experimental runs in

order. The results are written in the fourth column of the experimental matrix.

Table 1: Experimental matrix of factorial designs (2¥)

Two variables 22 Three variables 23 Four variables 2*
N° X1 X2 N° X1 X2 X3 N° X1 X2 X3 X4
1 -1 -1 1 -1 -1 -1 ]1 -1 -1 -1 -1
2 +1 -1 2 +1 -1 112 +1 -1 -1 -1
3 -1 +1 3 -1 +1 -1 13 -1+ -1 -1
4 +1 +1 4 +1 +1 -1 14 +1 +1 -1 -1
5 -1 -1 +1 |5 -1 -1 +1 -1
6 +1 -1 +1 |6 +1 -1 +1 -1
7 -1 +1 +1 |7 -1 +1 +1 -1
8 +1 +1 +1 | 8 +1 +1 +1 -1
9 -1 -1 -1 +1
10 +1 -1 -1 +1
11 -1 +1 -1 +1
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12 +1 +1 -1
13 -1 -1+
14 +1 -1 +1
15 -1 41 +1
16 +1  +1 +1

+1
+1
+1
+1
+1

4.7.Calculation matrix of effects

The calculation matrix of effects used to calculate the model coefficients; it is obtained
by adding to the left of the experiment matrix. a column containing only 1 s, corresponding to
the fictive variable xo. The other columns correspond to the interactions of the different factors,
they are obtained by performing the line by line product of the columns of the corresponding
factors (table 2).

Once the signs for the main effects have been established. the signs for the remaining
columns can be obtained by multiplying the appropriate preceding columns row by row. For

example, the signs in (x1.x2) column are the product of the x1 and x> column signs in each row.

Table 2: Calculation matrix of coefficient for k=3 factors [4, 9]

X0 X1 x2 x3 X1X2 X1X3 X2X3 X1X2X3 Y
1 -1 -1 -1 1 1 1 -1 Y1
1 1 -1 -1 -1 -1 1 1 Y2
1 -1 1 -1 -1 1 -1 1 UK
1 1 1 -1 1 -1 -1 -1 Y4
1 -1 -1 1 1 -1 -1 1 Y5
1 1 -1 1 -1 1 -1 -1 Yo
1 -1 1 1 -1 -1 1 -1 Y7
1 1 1 1 1 1 1 1 ys

Table 2 has several interesting properties: (1) Except for column Xo. every column has
an equal number of plus and minus signs, (2) The sum of the products of the signs in any two
columns is zero, (3) Column xo multiplied times any column leaves that column unchanged, (4)

The product of any two columns yields a column in the table. For example, X1 x X2 = X1 Xo.
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4.8. Factor main effect
The effect of a factor “A” on the response “y” is obtained by comparing the values taken
by “y” when A increases from level (-1) to level (+1). Let y1 and y. are these values (figure
7) [2, 4- 6].

We distinguish:
e Global effect of factor A by (y, — y1).
e Main effect of factor A by (y, — y1)/2.

A main effect plot (figure 7) is a plot of the mean response values at each level of a design
process variable. One can use this plot to compare the relative strength of the effects of various
factors. The sign and magnitude of a main effect would tell us the following:

» The sign of a main effect tells us of the direction of the effect. i.e. if the average response

value increases or decreases.

» The magnitude tells us of the strength of the effect.

If the effect of a design variable is positive, it implies that the average response is higher at
high level than at low level of the parameter setting. In contrast, if the effect is negative, it
means that the average response at the low level setting of the parameter is more than at the
high level [1, 4, 5].

y 4

} Main Effect

.i >  Factor A

y} —_—nd

Global Effect

-1 0 +1

Figure 7: Illustration of global effect and main effect [5, 6].
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4.9. Interaction effect

Interaction occur between two factors A and B if the effect of A on the response
depends on the level of B or vice versa (figure 8). In other words. the effect of A on the response
is different at different levels of B. The interaction between A and B can be computed using the
following equation [1, 2, 4, 8]:

1
Iyp = E (EA.B(+1) - EA.B(—I)) (2)
Where E, p(4+1) is the effect of factor ‘A’ at high level of factor ‘B’ and where E4 g(_y) IS

the effect of factor ‘A’ at low level of factor ‘B’.

: A : : ; A
K 1
Absence of interaction between A and B Low interaction between A and B
y
A
B=-1
B=1
: : > A
1 1

High interaction between A and B

Figure 8 : Interactions plots [1, 2, 4, 8]

5. Mathematical modeling of the response
It is reasonable to assume that the outcome of an experiment is dependent on the
experimental conditions. This means that the result can be described as a function based on the
experimental variable [2, 5-8]:
y =f(xi)+ ¢ ®3)

11
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The function f(xi) is approximated by a polynomial function and represents a good
description of the relationship between the experimental variables and the responses within a

limited experimental domain. This function is expressed as [2, 5-8]:

9 = bo + By by + Xt o1 bugtas + B oy DXy + Bfoy byt (4)

u#j

Where: ¥ is the response also called dependent variable;
¢ 1s the pure error which comes from the response measurement;
Xu represents a level of factor u;
Xj represents a level of factor j;

by, b;, by, buit and b;; are the coefficients of the polynomial model.
This model is called the a priori model, or the postulated model.
Then: y=y+e

Three types of polynomial models will be discussed and exemplified with two variables,
x, and x,.

The simplest polynomial model contains only linear terms and describes only the linear
relationship between the experimental variables and the responses. In a linear model, the two
variables x; and x. are expressed as:

y = b+ bix; + byx; (5)

The next level of polynomial models contains additional terms that describe the
interaction between different experimental variables. Thus. a second order interaction model
contains the following terms:

5} = bo + blxl + bzxz + b12x1x2 (6)

The two models above are mainly used to investigate the experimental system, i.e.. with

screening studies, robustness tests or similar.
To be able to determine an optimum maximum or minimum. quadratic terms have to be

introduced in the model. By introducing these terms in the model, it is possible to determine

non-linear relationships between the experimental variables and responses.

12
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The polynomial function below describes a quadratic model with two variables:

y == bo + b1x1 + bzxz + b12x1x2 + b11X12 + bzzx% (7)

» Linear regression
Parameter estimate in multiple linear regression models is done using least squares method.
In case that there are multiple observations (n) on the response variable yi. y.. ...yn. and that
there is observation at each input variable x;. (i = 1. 2. .... n) than it can be represented as matrix
notation [3, 4, 8]:
y=Xpt+e (8)
where:
Yy is the response vector;
X is the model matrix or the design matrix which depends on the experimental

points used in the design and on the postulated model;

p is the coefficients matrix;

¢ is the error matrix;

The general matrix form of the model becomes as follows:

1l 1 xn xp- Xx][Be] [&
V2| |1 xp1 Xppe Xok|[By|  |%2
Vn I Xpp Xppe Xk |y £n

This system of equations cannot be. in general, solved simply because there are fewer
equations than there are unknowns. To find the solution., we must use special matrix methods
generally based on the criterion of least squares. The results are estimations of the coefficients.

denoted as f.

The algebraic result of the least-squares calculations is [3, 4, 8]:
1
B = [XT.X} IXTy (9)

Where XT is the transpose matrix of X (appendix 1).

Two matrices appear frequently in the theory of experimental design:

13



INTRODUCTION TO DESIGN OF EXPERIMENTS

e The information matrix XTX

e The dispersion matrix [XTX]?!

6. Types of designs of experiments

Different types of designs are available; their choice is determined by the objectives
of the experiment and the current state of knowledge about the experimental environment.
They can be categorized as follows:

» Screening;

» Factorial design;

» Mixture design;

» Response surface design

In this course. we will essentially detail the full factorial design as an example of a first
order model development, and the centered composite design (CCD) as an example for RSM

modeling, for the other designs we will give some principles.

6.1.First order factorial designs

6.1.1. Full (2¥) or fractional (2% factorial experimental designs

Factorial design and fractional factorial design which both of them with two levels for
each factor (k) were commonly used in process of screening design due to their efficiency and

economical consideration.

In a full factorial experiment, responses are measured at all combinations of the
experimental factor levels. The combinations of factor levels represent the conditions at which
responses will be measured. Each experimental condition is a called a "run™ and the response
measurement an observation. The entire set of runs is the "design”. Fractional factorial design
enables the evaluation of a relatively large number of factors in small number of runs or
experiments. This method was designed by fractioning a full factorial design of 2Xcombinations
into 2 " combinations; It should be noted that the fractional factorial design can reduce the
number of runs or experiments but it does not possible to estimate all major and interaction
effect separately [2, 3, 5-10].

14
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The expression of full factorial design regression equation with interactions is as follow [1, 2,
4-11].

P = by + Xy bix; + X, =1 bujXuXy + Xy bujrXuxixy (10)

u#j
Where “ y ’ stands for the predicted response, x;. stands for the settings (factors), bj.byjand byj

are the respective coefficients and bo stands for the intercept of mean.

Majority of factorial experiments are composed of only two-level factors with four
treatment combinations in total (2¥. where k is the number of factors) and are generally called
as 2x2 factorial designs (figure 9 (a)). If there are three factors. the full factorial design points
are at the vertices of a cube (figure 9 (b)) and for more factors. the design points are the vertices
of a hypercube [3, 5, 6, 9, 11].

() b) 5 3
1 2 1

< < 4

§ S

% 2 4

—-— = 8 o‘(’
3 factorB 4 S factor B '@é

Figure 9: 2* factorial designs (a) k=2, 22 factorial design requires four experiments
(b) k=3, 22 factorial design requires eight experiments

e Mean effects coefficients estimation
The simple calculation of the model coefficients comes from the algebraic properties of
the effect’s matrix of the factorial designs. Fisher and Yate showed that an orthogonal
matrix leads to the independence of the model coefficient estimates. The scientist Jacques

Hadamard (appendix 1) demonstrated the following expression [3, 5, 9-11]:
XTI X]=N[1]

Where. [1] is the identity matrix. N the number of experiments and [X]" the transpose matrix of
[X].

The dispersion matrix [XT.XT1 is written as follows:
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UN .. 0

X x['=| . YN
0 .. UN

The calculation of the coefficients is then done by the scalar product of column (y)
by the corresponding column (x;), divided by the number of trials N. Thus, for linear effects.
the values of the coefficients are determined by:

N
b,:%Zx“yi, j=01.k (11)
i=1
1 N
bujz_Z(Xqu)iyi . j=l.k Lu=la.k . j#u (12)
N i=L
1Q (13)
b s =—Z:(xuxjxf )iyi , =1k
N =L
Example 1:

We want to test the influence of Pressure (x1) and Temperature (x2) (two factors) on the
yield (YY) of a chemical reaction (response), for this purpose, a 22 factorial design is used. The
design matrix is as follow (table 3) [4, 6, 14-16].

As the number of trials N= 4. we deduce that:

bo =7 (60 + 78 + 63 + 89) = 72.5
1

by = (-60+78— 63 +89) =11
1

b, =5 (-60~78 +63+89) =3.5

1
byz = (60 —78 — 63 +89) =2

16
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Table 3: Calculation coefficient matrix for k= 2 factors

Xo X1 X2 X1.X2 Y

Trial (%)

1 1 -1 -1 +1 60

2 1 +1 -1 -1 78

3 1 -1 +1 -1 63

4 1 +1 +1 +1 89
Level (-1) 2 bars 50 °C
Level (+1) 4 bars 70 °C

These results allow us to write the model giving chemical reaction yield according to

the levels of the two factors (in coded units):

y=725+11.x; +3.5.x, + 2.x4. x,

The function above is now describing how the experimental variables and their
interactions influence the response Y. The model shows that variable x; (the pression) has the
largest influence on the yield, because its coefficient (b = 11 > b, = 3.5) is the most
important. Besides this, the pression coefficient has positive sign, this means that an increase
of the pression from (-1) to (+1) results in an increase of the reaction yield by 2x11=22%
(2 x Main effect).

Example 2:

Gold-plated jewelry is covered with a thin layer of gold that must look identical to solid
gold. and also have mechanical resistance to ensure a long life. Three variables are chosen to
study their influence on gold deposition speed by electrolysis (electrochemical process). The
low and high levels of factors are summarized in table 4 and the experimental matrix and results
is given in table 5.

The study objective is to carry out the deposition as quickly as possible while

maintaining quality (the response is the speed of gold deposition) [4].

Table 4: Factors and study domain

Factor Low Level (-} High Level (+)
Gold concentration (1) 2g/L 15 g/L
Density of the current (2) 5 Avdm?2 25 A/dm2
Cobalt concentration (3) 0.5 g/l 1.5 g/l
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Table 5: Experimental matrix and results

Gold Density of Cobalt
Concentration  the Current  Concentration Speed
Trial lg/L) (A/dm2! {g/L) (mg/min)
Factor 1 Factor 2 Factor 3
1 -1 -1 -1 53
2 +1 -1 -1 122
3 -1 +1 -1 20
4 +1 +1 -1 125
b -1 =] +1 48
6 41 -1 +1 70
7 -1 +1 +1 68
8 +1 +1 +1 134
—1 Level 2glL 6 A/dm? 0.5g/L
+1 Level 15g/L 25 A/dm?2 1.5g/L

Since we have three factors each taking two levels. and since we think that a linear
model is sufficient to explain the phenomena, a 22 factorial design is used.

Y =by+ bixq + byxy + byxs 4+ biax1X5 + by3X X3 + by3XyX3 + bipgx1X5X5

The different coefficients are calculated and summarized in table 6.

Table 6: Effects and interactions of the factors (coded units)
Response: Deposition speed

Effect Value
Intercept 80
Gold concentration (1) 3275
Current density (2) 6.75
Cobalt concentration (3) 0

1x2 Interaction 10
1x3 Interaction -10.75
23 Interaction 14.25
1x2x3 Interaction 1

These results allow us to write the model giving deposition speed according to the levels

of the three factors (in coded units):

Vpeed =80+ 32.75x, +6.75x;, +10x,x, —10.75x,x, +14.25x, x, + x X, X,
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Factor 1 ( x;: gold concentration) is the most influential followed by Factors 2 (x,). Factor 3
(x3) is not directly influential, but it is influential via the interaction with other factors. The
three second order interaction terms are close to one another except for the difference in sign.

The third-order interaction is small by comparison.

We use this equation to make calculations and to draw graphs using Minitab package

software as applications in this course.

Two diagrams are useful for a deeper understanding of the influence of the factors: the
effect diagram, which indicates the principal effects of the factors. and the interaction
diagram, which shows the second-order interactions among the factors. The different steps to
draw these diagrams of this example using Minitab software package are given in applications

part of this course (example 2).

» Effect Diagram
The prediction profiler shows the principal effects of the factors, i.e., the coefficients of
the first-degree terms of the mathematical model. The diagram can be constructed with coded
units or with original or natural units (figure 10), since the appearance is the same. When
presenting results, it is much easier to use the natural units. which give immediate values for

comparison [1, 4].

1504
125
o 100
E - - .—-—-—""-'-H-_.-

2o 75
s 50
257

ﬂ_ T I T T T L | I T I T ! T I I T T I I

L= Tal émcmawam&mmm-—-mwm

: Q Q : — -

Gold Density of Cobalt
Concentration the Current Concentration

Figure 10: Effect of the factors on the response [1, 4]

The deposition rate grows larger as the solution contains more gold and as the current
density is slightly raised. The cobalt concentration of the electrolytic solution does not seem to
play any part in the reaction. But, to have a complete interpretation of the results, we have to

take the interactions into account, and we have seen that they are not negligible.
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An interaction diagram shows the effects of a factor at low and high levels on another
factor. The diagram in figure 11 can be interpreted as follows.

The response is shown on the y-axis and the scales of the factors are on the x-axis. In
the upper right square, the effect of the current density factor is shown for low (2) and high (15)
levels of gold concentration. In the lower left square. the gold concentration factor is shown for
low (5) and high (25) levels of the current density factor.

If the lines are not parallel. there is a significant interaction. This is the case for two
factors where the slopes of the effects are different. and the lines cross each other.

150
125
100+
75 Gold
50 Concentration — 2
257
0-

15

Speed

150
125
100 - 3

75 Density of

50- = the Current
25

0

25

Speed

Figure 11: Interaction profile illustrating the importance of the interactions [1, 4]

We could also present the interaction plot by taking the interactions two at a time and

drawing them in a single table as in figure 12.

The interaction plot clearly shows that the interactions are not negligible and that they must be

taken into account during the interpretation of the results.
The maximum deposition speed is attained when the three factors are at their high levels:

15 g/L of gold. 1.5 g/L of cobalt in the electrolytic solution. and a current density of 25 A/dm?.

which gives a deposition speed of 134 mg/min.
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¥ Interaction Profiles
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Figure 12: Interaction profiles regrouped into a single table

6.1.2. Plackett Burman design

A popular class of screening designs is the Plackett-Burman design (PBD), developed
by R.L. Plackett and J.P. Burman in 1946. It was designed to improve the quality control process
that could be used to study the effects of design parameters on the system state so that intelligent
decisions can be made. Plackett and Burman (PB) devised orthogonal arrays are useful for
screening, which yield unbiased estimates of all main effects in the smallest design possible.
Various number or ‘n’ factors can be screened in an ‘n + 1’ run PB design (table 7) [1, 2, 5, 6,
10].

Plackett-Burman designs were applied as a screening method to evaluate the most
significant factors with the fewest experiments, they are based on Hadamard matrices in which
the number of experimental runs or trials is a multiple of four, i.e, N=4. 8. 12. 16. . . . and so
on, where N is the number of trials/runs, and the results are interpreted using the first-degree

polynomial model [1-6, 9,10].
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9=b0+ijxj (10)

Where ‘y’ stands for the predicted response, X; stands for the settings (factors), bj are the
respective coefficients and bo stands for the intercept of mean.

For screening designs. experimenters are generally not interested to investigate the
nature of interactions among the factors. The aim is to study as many factors as possible in a
minimum number of trials and identifying those that need to be studied in further rounds of
experimentation [3, 9].

Table 7 illustrates the competed design matrix for 8 run P-B design. this allows one to

study up to 7 factors at 2-levels.

Table 7: An 8 run geometric P—B design

F1 1 1 |
H H H
F1 1 F1 F1 |

1 1 £ 1 F1 {1 |
1 1 1 1 1 1

The pattern for the first row (or column) determines the entire design. Each subsequent
row (or column) is simply the previous row, say, shifted one step to the right, with the final
symbol from the previous row being placed at the start of the next row. As such it is simply a
cyclical arrangement of the first row (or column). The final row (in the example below) is set
to all minus (-) [9].

Example:

We consider a plastic foam extrusion process. A process improvement team was formed
to investigate what effects porosity of plastic parts. After a thorough brainstorming session with
quality engineers, process manager and operators, it was identified that eight process parameters
might have some impact on porosity. Table 8 presents the list of parameters and their levels for
the experiment. Each factor was studied at 2-levels. As the total degrees of freedom for studying

8 factors at 2-levels is equal to 8, it was decided to choose a 12 run P-B design with 11 degrees
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of freedom. The extra 3 degrees of freedom can be used to estimate experimental error. Table

9 shows the experimental design with response [1, 4].

Table 8: List of process parameters and their levels for the experiment

Process parameters Labels Low level (—1) High level (+1)
Temperature profile| A 1 2
Temperature after heating B 210C 170°C
Temperature after expansion C 170°C 150°C
Temperature before coating die D 130°C 115°C
Extrusion speed E 6 m/min 4.5m/min
Adhesive coaling thickness F 0.7 mm 0.4mm
Adhesive coaling temperature G 115°C 100°C
Expansion angle H Max Min

Table 9: Experimental Layout for 12 run P-B design with response values

Run A B C D E F G H Porosity (9)
1 (6) +1 +1 -1 +1 +1 +1 -1 -1 44.8
2(11) +1 -1 +1 +1 +1 -1 -1 -1 37.2
3(9) -1 +1 +1 +1 -1 -1 -1 +1 36.0
4(7) +1 +1 +1 -1 —1 -1 +1 -1 34.8
5(2) +1 +1 -1 -1 -1 +1 -1 +1 46.4
6 (1) +1 -1 -1 -1 +1 -1 +1 +1 24.8
7 (5) -1 -1 -1 +1 -1 +1 +1 -1 43.6
8(12) -1 -1 +1 -1 +1 +1 -1 +1 44.8
9 (3) -1 +1 -1 +1 +1 -1 +1 +1 24.0
10 (8) +1 -1 +1 +1 -1 +1 +1 +1 34.4
11 (4) -1 +1 +1 -1 +1 +1 +1 -1 27.2
12 (10) -1 -1 -1 -1 -1 -1 -1 -1 49.6

Note: Numbers in parentheses represent the random order of experimental runs or trials.

The objective of the experiment was to determine the key parameters which affect

percentage porosity. Minitab software system is used for analysis purposes. Figure 13 illustrates

a standardized Pareto plot of effects for the experiment drawn with Minitab software [1, 4].
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Figure 13: Standardized Pareto plot of effects for the above experiment [4]

Figure 13 shows that process parameters such as G (adhesive coating temperature). E (extrusion

speed) and F (adhesive coating thickness) have significant impact on porosity.

These parameters should be further explored using full fractional designs and more
advanced methods such as response surface methods. if necessary. In the next stage of
experimentation, one should analyses the interactions among the parameters E. F and G. In
order to identify what levels of these parameters yields minimum porosity. we may consider an
effects plot (figure 14). Figure 14 shows that E at high level. F at low level and G at high level

yields minimum porosity.
The figure shows that porosity decreases as temperature is kept at high level (100 °C).

Similarly, porosity decreases as extrusion speed is kept at high level (4.5 m/min) and coating

thickness at low level (0.7 mm).
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A B C D E F G H

Process parameters

Figure 14: Main Effects plot for the experiment [4]

6.1.3. Mixture designs

A mixture design is a particular kind of DOE in which the factors are ingredients or
components of a mixture. Mixtures are different from other types of experimental design
because the proportions of the constituents must add up to 100%. Increasing the level of one
constituent necessarily reduces the level of the others. The constraint that the proportions all of
the ingredients must add up to 100% creates a unique design region that differs from classical

design settings. The additional mixture contraint is as follow [1-4, 11] :

q
0=x;,=1i=1,2,...,q9 in-zl (14)
i=1

where q represents the number of ingredients in the system under study and the proportion of
the i th ingredient in the mixture is denoted by xi.

where X; represents the proportion of the ith component in the mixture.

e Experimental points location
A mixture with three constituents and when there are no constraints, the experiment
points are distributed throughout the study domain (figure 15). Depending on the arrangement
of these points, we distinguish several types of mixing designs:
1. Lattice designs.
2. Simplex centroid designs.

3. Augmented simplex centroid designs.
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Lattice designs Simplex centroid designs Augmented simplex
centroid designs

Figure 15 : Mixture designs types

e Mixture design mathematical models

For first order models with three component mixture. in a given point. the model can be
written [1- 4, 9, 10]:
¥ = by + byxq + byx, + b3x;
But the fundamental mixture constraint must be taken into account. The proportions x; are not

independent. Using the constraint. we know:
xl + xz + X3 = 1
The equation above can then write:

y = bo (xl + xz + x3) + b1x1 + bzXz + b3X3

After regrouping the parameters. we obtain:

y = (bg + b1)x1 + (bo + by)x; + (by + b3)x3

This model has no constant and if we write:
a, = (bo + by) . a, = (by + by) . az = (by + b3)

The model takes the following form:

5} = alxl + azxz + a3x3
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e Second order Models
The second order mathematical model for three component mixture has the following
expression:

§ = by + byxq + byxy + byxs + bipx1 Xy + by3X1X3 + bysXaXs + by X2 + byyx3 + byyx2

Taking into account the fundamental mixture constraint:  x; + x, + x3 =1
which can be written interms of x.: x; =1 —x, — x5
multiplying each side by x:1 gives: xZ = x; (1 — x, — x3)

X12 = X1 T XXy — X1X3

This shows that the squared term is in fact equal to a first-degree term and interaction
term. So, the second-degree model therefore contains only first order and interaction terms, and

can be written: ¥ = a;x; + a,x, + a3x3 + A12X1X, + A13X1X3 + Ap3X,X3

6.2. Second order experimental designs (Response Surface Methodology)

Response Surface Methodology (RSM) is a compilation of statistical and mathematical
techniques useful for modeling and analyzing problems. which predicts the response of interest
influenced by several variables to optimize the product. RSM was first introduced by Box and
Wilson in 1951 and now it is comprehensively used for different purposes in chemical and

biological processes [2, 4, 8, 11].

In many instances. RSM uses the statistical experimental designs like Central
Composite Design (CCD); which will be detailed in this course; and Box Behnken Design
(BBD) to develop empirical models, which relate a response and mathematically depicts the
relationships existing among the independent (inputs or causes. i.e. potential reasons for
variation) and dependent variables (output or outcome. i.e. the values which result from the
independent variables) of the process, the RSM provides contour plots (figure 16(a)) and three-

dimensional graphs (3D) (figure 16 (b)) to visualize the shape of response surface.

In the analysis of data, it is desirable to provide both graphical and statistical analyses.
Plots that illustrate the relative responses of the factor settings under study allow the
experimenter to gain a feel for the practical implications of the statistical results and to

communicate effectively the results of the experiment to others.
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Figure 16: Example of Contour plot (a) and Response surface plot or 3D plot

6.2.1. Central Composite Design (CCD)

The two-level designs were useful to be applied in the screening study. However, the two-
level designs lack information about maxima or any non-linear relationships since its
application lead only on linear models. Performing a full factorial design with the level more
than two will affect the effectiveness of the design itself due to the greater number of
experiments that should be done. Hence, it is important to develop a design which allows greater
level numbers without running every combination experiment. Presented by Box and Wilson
(1951), the CCD becomes solution to overcome these problems [1, 4, 8, 10, 11].

Composite designs lend themselves well to a sequential study. The first part of the study is
a full- or fractional-factorial design supplemented by center points to check the validity of the
first-degree. factorial model. If the validation tests are positive (the response measures at the
center of the field are statistically equal to the predicted value at the same point), the study is
generally completed. If the tests are negative. supplementary trials are undertaken to establish
a second-degree model. The additional trials are represented by the design points located on the
axes of the coordinates and by new central points. The points located on the coordinate axes are
called star points. Composite plans therefore have three parts (figure 17), in the present [5, 8-
11]:
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e Factorial design
This is a full- or fractional-factorial design with two levels per factor. The experimental points
are at the corners of the study domain.

e Star design
The points of a star design are on the axes and are in general, all located at the same distance
from the center of the study domain.

e Center points
There are usually center points, at the center of the study domain for both the factorial designs
and the star designs.

(@) | ? (b) 7

X2

L
@/r

x X4

Figure 17: Hlustration of central composite designs for (a) two factors and (b) three factors

optimization. Every design consists of factorial points (@), star points (=), and central points (o).

To calculate the total number of trials. N, to carry out. sum the following:
e The trials from the star design (N.= 2.k)
e The trials at the center (No)

So, the number of trials for a composite design is given by the equation.
N = N+ No+ No
Star points are at some distance o from the center, based on the properties desired for

the design and the number of factors in the design, the precise value of o are summarized in
table 10 [4, 5, 9].
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Table 10: Values of a and No according to the properties of the composite design [1, 4, 9]

5 5 6 6
K 2 3 4
) | @9 | @) | @
e Orthogonality 8 12 12 17 10 24 15
N, | Uniforme 5 6 7 | 10| 6 | 15| 9
= precison
e Rotatability >1 >1 >1 > 1 >1 > 1 > 1
o 141 | 168 | 200 | 2.00 | 238 | 2.83 | 238
. 16 26 36 59 36 100 59
N e Orthogonality
f
e Uniforme 13 20 31 52 32 91 53
precision

A CCD supports the building of a polynomial equation which takes into account the
individual, interactive and quadratic terms and basically reads as follows [1, 4, 8, 11].

k k k
A 2
y =by +ijxj + Z by; X, X; +ijjxj
1 =

u, j=1
U+ j

k k
Where ijxj is the individual effect of each factor; Z b .x x.indicates the interactions
j=1

ujtu
u,j=1
ugj

Kk
amongst the variables; finally, the term ijjsz takes into account a possible non-
j=1

linear/quadratic effect of some factors.
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Table 11 and 12 and shows a typical scheme for a 2-factor and 3-factor CCD respectively.

Table 11: Calculation matrix of CCD for 2 factors and No= 4 replicates [1, 4]

Trial Xo X1 X2 X1X2 x? x3
1 1 il il 1 1 1
2 1 1 il il 1 1
3 1 il 1 -l 1 1
4 1 1 1 1 1 11
5 1 -1.41 0 0 (-1.41) 0
6 1 1.41 0 0 (1.41)? 0
7 1 0 -1.41 0 0 (-1.41)?
8 1 0 +1.41 0 0 (1.41)?
9 1 0 0 0 0 0
10 1 0 0 0 0 0
11 1 0 0 0 0 0
12 1 0 0 0 0 0

Table 12: Calculation matrix of CCD for 3 factors and No= 4 replicates [1, 4].

Trial | Xo X1 X2 X3 X1 X2 X1 X3 X2 X3 x% x5 x5
1 1 =l =l =l 1 1 1 1 1 1
2 1 1 =l =l =l -1 1 1 1 1
3 1 =l 1 =l =l 1 -1 1 1 1
4 1 1 1 = 1 -1 -1 1 1 1
5 1 -1 -1 1 1 -1 -1 1 1 1
6 1 1 -1 1 -1 1 -1 1 1 1
7 1 il 1 1 = -1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1
9 1 [ -168] 0 0 0 0 0 |[(1682| O 0

10 1 [+168]| 0 0 0 0 0 |[(+168?%| 0O 0
11 1 0 |[-168] O 0 0 0 0 |[(-168?%| 0O
12 1 0 |+168| O 0 0 0 0 |[(+1682| o0
13 1 0 0 | -168 0 0 0 0 0 (-1.68)2
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14 1 0 0 +1.68 0 0 0 0 0 (+1.68)?
15 1 0 0 0 0 0 0 0 0 0
16 1 0 0 0 0 0 0 0 0 0
17 1 0 0 0 0 0 0 0 0 0
18 1 0 0 0 0 0 0 0 0 0

Coefficient estimation

The following expression let us the coefficients estimation of CCD regression

T -1
equation [1, 2, 4-6]. B =[X .X} XT.y

6.2.2. Box Behnken Design

Box-Behnken design (BBD) is a class of rotatable second-order response surface design
based on three-level incomplete factorial design devised by Box and Behnken in 1960. This
design was more efficient and economical than other three-level designs due to its ability to
allow points selection from the three-level factorial arrangement BBD ensures that it does not
contain combinations for which all factors are simultaneously at their highest or lowest levels.
Besides, each factor requires only three levels instead of the five required for CCD, which may
be experimentally more convenient and less expensive than CCD with the same number of
factors but it is not suited for sequential experiments (figure 18) [5, 8].

The number of experiments (N) required for the development of BBD is defined as
N= 2k (k-1) + No, where k is number of factors and No is the number of central points (figure
18) [4, 5, 8, 11].

@ 1 ® w 1 N

Figure 18. Illustration of the two graphical forms for the three factors BBD: (a) the

cube for BBD and (b) three interlocking 22 factorial design [2, 11]
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6.2.3. Doehlert design

Doehlert (1970) developed an alternative experimental design which has several
advantages such as few experimental points, high efficiency and economically effective.
Different from central composite and BBDs, these designs are not rotatable due to their number
of estimations for varied factors. Nevertheless, Doehlert designs have different numbers of
levels for different factors and allow to fill the provided factor space uniformly according to its
possibility. Belonging to a second-order experimental design, Doehlert designs describe
different characteristics for different levels: 1) a circular domain for two variables; 2) spherical
domain for three variables; and 3) hyperspherical domain for four and more variables, which
accents the uniformity of the studied variables in the experimental domain. Figure 19 illustrates
the model of the Doehlert design [2, 5, 11].

« 1 b) |
' >

X
1 X
\ 1

Figure 19: Hlustration of the model of the Doehlert design for the optimization of (a)

two variables and (b) three variables [2, 11]

7. Statistical analysis of the data

After the estimation of the factor regression coefficients and the first order or second

order regression equation is developed, we have to test it validity and adequation.

7.1. Test of coefficients significance
To evaluate the importance of a coefficient. we apply statistical theory that compares

the coefficient (b;) with its standard deviation (S,;) using the ratio ¢; = /Sb—j/. (15)
bj
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This ratio is called Student’s t or the t-ratio [3-5, 9].

Sre
With: Sy = —=2 (16)

JN

The variance of the measurements (or of reproducibility S7,) is estimated generally by that

calculated at the center of the experimental domain:

¢ 2 _ Y0 io—Yo)? (17)
rep ng—1
—_ Z?_Ol:)/io

==i=170 18

Yo g (18)

no: The trials number at the center;

Yio - 1th experimental response value;

Yo: Mean of the trials replicated at the center domain;

Starting with the t-ratio. we can evaluate the probability that the coefficient is different
from zero, or, said another way, if it is or is not significant using. either student table by reading
the tabulated t (a. f=no-1) value to compare it to the calculated one. or by software of DOE, by
the calculus of probability p-value. If the p-value is close to zero (for biologists and chemists.
p-value <0.05), the coefficient is influential and therefore is not equal to zero. If the p-value is
close to one (p-value > 0.05), the coefficient cannot be distinguished from zero and is therefore
not influential [1, 3, 4, 9].

Example:
We consider a chemical reaction yield which depends on two factors. temperature and
pressure. The technician decides to carry out a first order experimental design without

interactions with the following experimental domain (table 13) [1, 4]:

Table 13: Levels and factors values

Low level : -1 | High level :+1
Temperature : T 60°C 80°C
Pression : P 1 bar 2 bars
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The response y studied; yield of the experiment; is given in table 14, for two factors we have
to do 22= 4 trials.

Table 14: Design matrix and response

Trial | T | P |y (%)
1 -11-1| 60

2 +1 | -1 65
3 10 +1| 75
4 |+1|+1| 85

The results of calculating the effects from the effect calculation matrix are given in table 15.

Table 15:; Effect calculation matrix and the calculated effect

Trial Xo T P y (%)
1 +1 -1 -1 60
2 +1 +1 -1 65
3 +1 -1 +1 75
4 +1 +1 +1 85
Divider 4 4 4
Affects | bo=71.25| b1 =3.75 | b, =8.75

The model equationis: ¥ = 71.25 + 3.75x; + 8.75x;,

To test the significance of the coefficients, we need to calculate the residual variance because

of the absence of replicates (S§j = S2,.) then the results of table 16.

Table 16. Residual calculation results

Trials | y (%) |9 (%) ] e e
1 60 58.75 | 1.25 | 1.5625
2 65 66.25 | -1.25 | 1.5625
3 75 76.25 | -1.25 | 1.5625
4 85 83.75 | 1.25 | 1.5625

ei=Yi- i
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Sﬁes——z e’=— Yef= 6.25

e Student test t consist to calculate:

¢ =10/
] Sbj

Bilateral Student test give for significance level a=0.05 and degree of freedom f= N-m
=4-3 (N is the number of trials. m is the coefficient number in the model) (Appendix 2). The
tabulated value t(0.05.1) =12.71

> For the effect by = 3.75 of Temperature. we have t1 = 3 < 12.71, we deduce that the
effect of temperature T is not significant.
> For the effect b, = 8.75 of Pression. we have t, = 7 < 12.71, the effect of Pression P is

not significant.

The conclusion of this study is that we must reject a linear model to explain the yield
of this chemical reaction. It would be necessary to test study with a second-degree

polynomial model.

7.2. Analysis of Variance (ANOVA)

The aim of applying the analysis of variance method is to answer the question: is the
difference between the obtained response means for the tested factors a result of the influence
of tested factors or has it occurred randomly.

Analysis of Variance (ANOVA) consists of finding the source of variation of the
responses. Suppose that the responses have been calculated with a postulated model, by using

the method of least squares [1, 4, 9]:
yi = f(x1,%2,X3, wun .. ,Xn ) e (19)

In this case, the responses are written ¥, and the errors as e. These theoretical errors take
particular values, written as ri, and called residuals. The residuals are therefore particular values
of the errors. We have:

Y= f(x1,%, X3, e e, X, ) (20)
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With the new notation. the equation giving the response can be written as:

yi = f(xq, x5, %3, o .. ,Xn )+ 1y (21)

Classical analysis of variance uses not only the responses themselves but also the
difference between the responses and their mean (y; —y) or (3, —¥). This difference is
designated as “errors about the mean.” In the case of calculated responses, we can also say

“corrected for the mean” [1, 4].

In the case of the method of least squares. the mean of the observed responses is equal
to the mean of the observed responses under the postulated model. Therefore. if y is the mean
of the responses [1, 4].

Yi— Y =y, =yt (22)

Squaring both side of the equation gives:

- =D 0P (23)

This is the fundamental relation of analysis of variance. The left side is the sum of
squares of the errors around the mean of the observed responses. This sum decomposes into
two pieces: the sum of squares of the errors around the mean of the responses calculated with

the model, and the sum of the squares of the residuals.

Suppose a polynomial regression model has been postulated for a given experiment, and
the model assumptions appear to be satisfied, then it is appropriate to proceed with analysis of
the data. The determination of significant factors affecting the dependent variables of interest
(responses) is followed by (ANOVA) which uses tests based on variance ratios to determine
whether or not significant differences exist among the means of several groups of observations.

where each group follows a normal the analysis of the variance distribution [4, 9].

The analysis of variance is used very widely in the biological. social and physical
sciences. The technique was first developed by R. A. Fisher and his colleagues in England in
the 1920s [1, 4, 9].

7.2.1. Test of regression validation
In an F-test. the variance ratio between lack of fit (Srzes) and pure experimental error

(Sfep)- is being compared to tabled values of F-distribution (Appendix 3). If the calculated F
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exceeds the tabled F. then there is a significant lack of fit at the probability level that is chosen

(usually P=0.05) and the model is incorrect [4-9].

12
S2 — Iivzl(yi - yl) (24)
res N _ l
Stes
F= (25)
Szep

I: the number of significant factors in the regression equation

7.2.2. Test of regression significance

In an analysis of variance. ANOVA. the total variation of the response is defined as a
sum of two components; a regression variance (S7,) and a component due to the residuals
(S2,5). The sum of squares of the total variation. corrected for the mean SZ. can thus be written
as[1,4,9]:

ST= Szeg +S1?es (26)
N
Steg = ) Gi= 30 /11 @
i=1

The regression component of the total variation is compared to the residual component.
If the standard deviation of the response explained in the model regression is larger than the
standard deviation of the residuals, then the model is significant at the chosen probability level
(usually P=0.05) [4, 9].

=@ =2 /11 (28)

F= 2
YN (i — 90?2 /N

N

ZYi
~5 _ i=1
YT N

(29)

The F distribution has df (degree of freedom) numerator = |- 1 degrees of freedom and
df denominator = N— | denominator degrees of freedom. At a significance level of a = 0.05,
since F calculated > Fo o5 tabulated. we must conclude that there are no significant differences

between the two variances and the regression is valid [1, 4, 6- 9].
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Software can construct ANOVA tables. The simplest of these tables has five columns
(source of variation. sum of squares, degrees of freedom (df), mean square, and F-ratio) and
four lines (column titles. model corrected for the mean. residuals and observed responses

corrected for the mean) similar to Table 17 [1, 4, 6, 9].

The first column shows the sources of variation.

The second column shows the df (degree of freedom) of each sum of squares.

The third column gives the sums of squares of the errors around the mean.

The mean squares of the fourth column are the sums of squares divided by their df.

YV V. V VYV V

The fifth column shows the F-ratio, which is the ratio of the mean square of the model

to the mean square of the residuals.

F-ration allows the calculation of the probability that the two mean squares are not equal.
In other words, if the F-ratio is high (small probability that the model is only due to the
effect of the mean). the variations of the observed responses are likely due to variations in
the factors. If the F-ratio is near 1 (strong probability that the model is not due to the effects).
the variations of the observed responses are comparable to those of the residuals. The
p-value corresponding to the F-ratio is also shown [1-4, 8- 10].
Table 17: Analysis of variance (ANOVA) table [1, 4]

Analysis of Variance

Source DF Sum of Squares Mean Square  F Ratio
Model 10 965.30000 96,5300 46,3196
Error 5 10.42000 2.0840 Prob>F
C. Total 15 975.72000 0.0003*

7.2.3 The coefficient of determination R?
The analysis of variance allows the calculation of a very useful statistic: R?. This statistic
is the ratio of the sum of squares of the predicted responses (corrected for the mean) to the sum

of squares of the observed responses (also corrected for the mean) [1-4, 6, 9]:

Rl Sum of squares (Model)

" Sum of Squares (Total)
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R =i;1 (30)

Higher value of R? means better fit. If R? = 1 it means that there is perfect fit. However.
having a higher value dos not meat that there is a good fit and that regression model is good
one because adding a new variable to the model (either the variable is significant or not) will
increase R? value. which will lead to poor prediction. To solve this, an adjusted R? is
introduced,which will not always increase with adding a new variable [1-4, 8-10]:

-1

2

R° =Rz —(1-R?) (31)

N—~¢

8. Optimization

Response surfaces are used to determine an optimum. In addition, it is a good way
to graphically illustrate the relation between different experimental variables and the responses.
To be able to determine an optimum it is necessary that the polynomial function contains
quadratic terms, this is done by deriving the predicted response model (y) with respect to all

variables or by the contour and surface response plots.

e Example

The results of modeling of antimicrobial production by a strain using Central
Composite Design (CCD) for four operating factors (x;, x,, x3, x,) allowed to obtain the
following regression equation after its validation [17]:

§ = 12.53 + 1.22x, + 1.46x;x3 + 1.31x,x3 — 1.32x,x, — 0.94x2

x; . KCl concentration (g/l) ;
x5 KoHPO4 concentration (g/l) ;
x5 . MgSO4 concentration (g/l) ;

X, Incubation time (days).

From this model. we are now able to calculate the optimal values of the operating

parameters leading to maximum antibacterial activity against a target germ (Salmonella typhi).
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to do this. simply solve the system of equations below. obtained by deriving the predictive

model with respect to each of the variables x;, x,, x3, x,:

L -0 146x;=0—>x3=0

dxq

%: 0. 1.22+1.31 x5 -132x,=0 — x, =0.92
2

4 . 1.46 x,+1.31 x,— 1.88 x; = 0 — x,= 0

dxs

L 29, 132x,=0—>x,=0

dxy

The resolution of this equations system gives:
e x,=0. corresponding to KCI concentration of 0.5 g/L.
e x,=0. corresponding to K:HPO4 concentration of 1 g/L.

e x3=0. corresponding to MgSO4 .7H20 concentration of 0.5 g/L.

x,=0.92 corresponding to incubation time of 9 days.

The optimal antibacterial activity obtained by replacing the optimal values in the

postulated model is 12.53 mm.

The corresponding 2D (figure a) and 3D (figure b) dimensional response surfaces of the
quadratic models are shown in figures (a, b) bellow. The figures are drawn in KCI (x;)
MgSOs4-7H20 concentration (x3) plan (the most important interaction) using MATLAB 7.0
software. The analysis of these figures shows that in the presence of a moderate KCI
concentration the antimicrobial activity increases with reduced MgSO4-7H2O concentration.
The maximum predicted yield is indicated by the surface confined in the smallest curve of the
contour diagram which is equal to 14.79 mm, corresponding to an economic condition to that
obtained above [17]:

> [KCI]=0.1g.L 2 (x,=—2),

> [K2HPO4] =1 g.L % (X2 =0),

> [MgSO4-7H.0] =0.2 g.L %, (X3 = —1.5),

» Incubation time equal to 9 days (X4= 0.92).

R? was found to be 90,7 % , indicating that the models can explain 90.7% of total variations.

41



INTRODUCTION TO DESIGN OF EXPERIMENTS

Antimicrabial activity (mmi

2 i e =
-2 15 -4 5 i} 0.5 i 1.8 2
Figure (a, b): Response surface and isoresponse plots

9. DOE Software

DOE can be quickly designed and analyzed with the help of suitable statistical software.
For this purpose. there are some commercial and freeware statistical packages. The well-known
commercial packages include: Minitab. Statistica. SPSS. SAS. JMP. Design-Expert.
Statgraphics. Prisma. etc. The most popular commercial packages Minitab and Statistica are

equipped with user friendly interface and very good graphics output [1, 4, 7, 9].
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Also, DOE design and analysis can be done easily in Microsoft Excel, using the

procedure and formulas described above in the present course.

10. Demonstration using Minitab software

The MINITAB program interface is designed to be very simple and easy to use, in addition to
the tools required to design and analyze experiments, this software supports most of the other
statistical analyses and methods that most users need. MINITAB has a powerful graphics
engine with an easy to use interface. Most graph attributes are easy to configure and can be
edited after a graph is created [4, 12-16].

All the manipulation steps described below using Minitab software in this course will

be applied in the form of practical work to students using a microcomputer.

10.1. Starting Minitab [12-16]
To open Minitab follow the following instructions:
> Double-click the Minitab icon (Figure 20).

Figure 20 : Minitab icon

We obtain a worksheet (figure 21) consisting of:
» Menu bar (There are 11 menu headings: File. Edit. Data. Calc. Stat. Graph. Editor.
Tools. Window. Help and Wizard)
» The icon bar
» “Session” window

» Worksheet similar to that of the Excel
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Figure 21: Minitab home window (worksheet)

10.2. Access to design of experiments
» Click on Stat from the main menu. A drop-down menu appears with DOE (Design
of Experiments).
» Click on DOE (Design of Experiments). A new menu appears (Figure 22) in which
there are four choices:
- Factorial design
- Response surface
- Mixture
- Taguchi
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i T e

Stat| Graph Editor Tools Window Help Assistant
Bricsatstic ' Q@E| (ABBOSANMIEDD B
Regression *
ANOVA »
|  DOE M| Factorial »| 11 Create Factorial Design... |
Control Charts » Response Surface  » L"'a Defir
Quality Tools » Micture b3 Seled Create Factorial Design
AR : : , Create a 2-level or full factorial
Reliability/Survival ~ » Taguchi | ] Prek design, or a Plackett-Burman design.
Tmeie o[ % MeOsin | | aosrFecDugn
i Display Design... I1 Analyze Variability...
Tables >
Nonparametrics » {3 Predict..
Equivalence Tests  » po< Eactorial Plots...
Power and Sample Size ¥ (& CubePiot..
[ Contour Piot...
@ SurfacePlot...
pr" Qverlaid Contour Plot...
$2 Response Optimizer...

Figure 22: Menus giving access to design of experiments

10.3 Design of experiments definition
e Global definition
For all the designs. it is necessary to define the responses, the factors, the levels. The

procedures for entering this data are practically the same for all designs (figure 22).

» Click Create factorial design for example. a window appears in which a

choice of designs is offered (Figure 23).
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Type of Design

& 24evel factorial (default generators) (2 to 15 factors)

(" 24evel factorial (specify generators) (2 to 15 factors)

" 24evel split-plot (hard-to<change factors) (2 to 7 factors)

" Plackett-Burman design (2 to 47 factors)

" General full factorial design (2 to 15 factors)

Number of factors: IL Display Available Designs. ..
Degigns, .. Factors, .,
Cplions. .. Results, ..

Hep | oK Cancel

Figure 23: Window offering several types of experimental designs

e Factors number

» Click on the Designs button of figure 23.

» Click the OK button when you have finished your choice (figure 24).

Mumber of center points per blodk: 0 w

Number of replicates for corner points: ,..'
MNumber of blocks: |1 --l

Heipl oK | Cancel

Figure 24: Window allowing you to choose a full or fractional factorial design
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You then return to the Create a factorial design window (Figure 22) in which the
three buttons previously grayed out are now accessible: Factors, Options, Results.

10.4 Factors definition

» Click on the Factors button of figure 23. you obtain figure 25 in which factors appear

with their name (example: Pressure, Temperature, time), their type and their levels.

A -F;fess:;rre

B Temperature | Numeric ¥ 150 180
C Time Numeric | .5 .54
Help OK I Cancel |

Figure 25: Window allowing to define the characteristics of the factors

10.5. Options definition

» Click on the Options button. you get the window in figure 26 in which you can further
model your plan. replicate it or not. You can randomize the trials or not and request

that the analysis results be stored in the worksheet.
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Figure 26: Window allowing to specify the characteristics of the experimental design

» Minitab will create a worksheet containing the DOE array (figure 27):

c1 e | a | o s 6 |
StdOrder | RunOrder| CenterPt | Blocks | Pressure | Temperature, Time
1 ETEY 1 15 150 052
2| 2 1] 1] 18| 150 050
3| 3 1 1 15 180 050
a a 1 1 18 180 052
5 | 5 1] 1 15| 150 052
6| 6| 1| 1 18 150 050
7| 7 1] 1 15| 180 0.50
8 | g 1| 1 18 | 180 052
9 9 1 1 15 | 150 052
10| 10 1 1 18 | 150 050
11 | 1 1] 1| 15 | 180 050
12| 12 1] 1 18 | 180 052

Figure 27: Worksheet of the design created

» The first blank column in the worksheet (here C8) is reserved for the Response values
After running all of the experimental runs enter the results in to the worksheet (figure
28):
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StdOrder Hunﬂrde_r_i_ CenterPt  Blocks Preswm!TmpmaEum' Time IAvemgeFil

2 ¥ 1 1 18 150 0.50 12536
3 3| 1 1 15 180 050 11195
4 4 1 1 18 180 0.52 13.001
5 5 . 1 1 . 15 . 150 . 052 . 11.420
6 5| 1 1] 18 150 050 12851
7 7 1 1 15 180 0.50 10993
8 B . 1 1 . 18 . 180 . 052 . 12799
9 g 1 1] 15 | 150 052 11420
10 10 1 1 18 150 0.50 12948
11 11 1 1 . 15 180 . D.ﬂ]. 10909
12 12 1 1 18 180 052 1289

Figure 28: Worksheet of the design and responses

The second series of steps allow us to analyze the results as well as produce the charts
and graphs that help us communicate our results (figure 29).
» Go to Stat > DOE > Factorial > Analyze Factorial Design

Basic Statistics ' 0@ | glﬁ@ﬂﬂfjﬁlgﬂlﬁj
I ]
i 5 c6 a cs co co0 |
QNOVA ’ -;l-lm Tamnarafiira T Avarana Eill — —— I |
‘ DOE lH Factorial b‘l H  Create Factonal Design...
Control Charts b Response Surface » | L, Define Custom Factorial Design...
Quality Tools L Mixture b| EH Select Optimal Design...
Reliability/Survival ~ » Taguchi | 1] Pre-Process Responses for Analyze Variability...
Multivariat b
RRRTRERN K5 Modify Design.. ([Tl Analyze Factorial Design... ]
: |
s s 4 Display Design... H Ang—
Tables ; 18 180 ——{ Analyze Factorial Design
Nonparametrics 4 1s 150 ~¢ Erfd Eit a model to a factorial design.
Equivalence Tests b = = = [Factomarrors=
Power and Sample Sizek |- 15 I 180 T ) Cube Plot...
7 T | n Contour Plot...
1 1 18 180
! | | ! &) Surface Plot...
=1 Overlaid Contour Plot...
¢ Response Optimizer...

Figure 29: Window allowing the analysis of the design
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» Enter the column (here C8) that contains the response in the open window called
Responses (or just double-click on C8 in the left box) (figure 30).

> Then click on Terms.

C8  Average Fil Responses:

Graphs. .. Results. ., Storage...

Sl

[Es)
Help I oK Cancel

Figure 30: Window allowing response column selection to analysis

» Select the terms you want in the model (figure 31).
» Either double click on the term.
» Then click OK.

Availsble Terms: Selected Terms:
E:Temperature
C:Time - C:Time

Figure 31: Window allowing factors selection to analysis
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The details behind the analysis will be contained in the Minitab Worksheet

> This is the ANOVA table for the experiment:

Results for: DOE 3 factor. MTW
Factorial Regression: Average Fill versus Pressure, Temperature, Time

Analysis of Variance

Source OF BRdj 58 Adj M5 F-Value E-Yalue
Model 3 T.73886 2.57962 141.68 0.00a
Linsar 3 T.738Be 2.57942 141.88 000D
Frassire 1 7.49002 7.45009  411.37 0.000
Temperature 1 0.0%410 0.05410 297 D.123
Time 1 0.19467 0.194587 10.69 0.011
LTOr 5 0.14566 0.01821
Total 11 7.88452

Model Summary
5 B-33 R-ag(ad)) R-agipred)
0.1345935 B9E.1%% 27.46% 95.81

Coded Coefficienta

Term ffect Coef B5E Coef T-Valoe E-Valoe ViF
Conatant 12,0486 6.0380 3069.32 0.000

Frassure 1.5801 0.7800 0.0380 20. €8 0.000 1.00
Temperatupe -0.1343 -0.0871 0.03490 -1.72 0.123 1.00
Time 0.2547 D.1274 0.0330 3.7 2.011 1.00

Regreasion Equation in Uncoded Unita

Average Fill = -2.40 + 0.5267 Fressure - 0.00442 Temparature + 12.74 Tine

10.5. Effects plots in Minitab

The primary goal of screening designs is to identify the "vital" few factors or key
variables that influence the response. Minitab provides two graphs that help you identify these
influential factors: a normal plot and a Pareto chart. These graphs allow you to compare the

relative magnitude of the effects and evaluate their statistical significance [12-16].

» Normal Probability Plot of the Effects
In the normal probability plot of the effects. points that do not fall near the line usually
signal important effects. Important effects are larger and further from the fitted line than
unimportant effects. Unimportant effects tend to be smaller and centered around zero. This plot
shows that terms B, C, and BC are significant [12-16].
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e Choose Stat > DOE > Factorial > Analyze Factorial Design.

e Click Graphs. Under Effects Plots. check Click OK in each dialog box.

MNormal Probability Plot of the Standardized Effects
[responsze is Strength, Alpha = .05)
= Effect Type
:‘;: u] | = Mot Significant
_ o £ m Significant
. [T Factor Marme
E = -y Process
= ig: B Prezsure
. o Speead
5_
1L . . . .
-5 0 5 10 15
Standardized Effect

> Pareto Chart of the Effects
Use a Pareto chart of the effects to determine the magnitude and the importance of an
effect. The chart displays the absolute value of the effects and draws a reference line on the

chart. Any effect that extends past this reference line is potentially important [12-16].

Pareto Chart of the Standardized Effects
[response is Strength, Alpha = 05)

Z.26
ol ' Factor MNarme
B A Process
B Pressure

= 2y o Speead
T A1
= oAb
P -
ABT S

g 2z 4 B & 10 12 14 1F
Standardized Effect
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» Contour plot and a surface plot

e Choose Stat > DOE > Factorial > Contour/Surface Plots.
e Check Contour plot and click Setup. Click OK.
e Check Surface plot and click Setup. Click OK in each dialog box.

Contour Plot of Yield vs Temp, Time Surface Plot of Yield vs Temp, Time

200

Hald Y alues
Catalyst A

- &

B :® 4

Temp

Hold Walues Yield 4
Catalyst &

55
15.5E Temp
150

Time

11. Applications using Minitab 16 software package

Example 1: 22 factorial design [4, 12-16]
A motorist wants to know the gas consumption of his car when he drives with or without
extra weight. while driving fast or slowly. He decides to carry out a complete factorial design

22to study the influence of two factors. their values and levels are given in table 18.

The response is the car's fuel consumption (mph).

Table 18: Factors and study domain

Factor Low Level (-} High Level (+)
Speed (1) 45 mph 70 mph
Additional weight (2) 0 550 |bs
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e DOE construction
As this is a 22 design. the design creation windows are filled like Figure 22 to obtain figure

32 where you choose a number of factors (2 factors).

Type of Design

(" 24evel factorial (default generators) (2 to 15 factors)

" 24evel factorial (spedfy generators) (2 to 15 factors)

~ 24evel spiit-plot (hard-to-change factors) (2 to 7 factors)

" Plackett-Burman design (2 to 47 factors)

" General full factorial design (2 to 15 factors)

Number of factors: | 2 ;' Display Avaiable Designs...
mu . Factors
Opkions, .. Resylts., .

Help | ok | cancel

Figure 32: Window offering several types of experimental designs

» Click the OK button in Figure 32. you get the window in Figure 33.

Mumber of center points per blodk: o -

—

Number of replicates for corner points: '
Number of blocks: |1 --l

Help | oK | Cancel

Figure 33: Window allowing the chgjlce a full factorial design
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e Factors definition
» Click the Factors button in Figure 23 and modify the factor names to obtain a window
similar to figure 34.
» Click the OK button.

r Create Factorial Design

Iﬁ-"; Ll b e ';i::"‘-.ﬁ-‘iii-‘:-h‘:&"'_' T
wirgleE 3 __ '.| . '.,_'- &l ot

Addi weight | Mumeric :l

Help oK | Cancel

Figure 34: Window allowing to specify the factors
» Click on the Options button in Figure 23. you get the window in Figure 35.

» Click the OK button in the Create Factorial Design-Options window.
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Help oK Cancel

Figure 35: Window allowing to specify the experimental design

e Outputs choice

» Click the Results button in the window in Figure 23 and choose the results you want to

print in the window that opens (Figure 36).

(= o b e o s e e R e i s s aia == -'
Create Factorial Design - Results

Printed Results

77 MNone

" Summary table

¢ Summary table, alias table

¢ Summary table, alias table, design table

C Summary table, alias table, design table_, defining relation

Content of Alias Table

(" Default interactions
" Interactions up through order: I v l

Help OK Cancel I

Figure 36: Window allowing to indicate the results of the mathematical analysis
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e The information that is requested are saved in the two windows "Worksheet" (figure

37).

| 141]]
4] | |

ims  Worksheet

C1 (2 3 4 Cd (b 7

Addi

OrdreStd OrdEssai PtCentr | Blocs | Sreed | gignt

Figure 37: Minitab Worksheet for 2 factors

e Statistical analysis of design

When the experiments are carried out and we have all the responses. we can proceed

to the mathematical or statistical analysis of the results. You must first enter the answers in a

new column of the worksheet (figure 38).

# worksheet

+ O (2 3 4 Ch (b 7 g
OrdreStd OrdEssai PtCentr  Blocs Speed  Addi weight Consumption =

1 1 1 1 1 -1 -1 6,3

2 2 z 1 1 1 -1 o7

3 Kk ] 1 1 -1 1 47

] 4 4 1 1 1 1 123

) v

¢ 8.

Figure 38: Responses are entered into the Minitab worksheet
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» Click on Stat from the main menu. you get a drop-down menu (Figure 29) where you
choose Analyze Factorial Design. The window in Figure 39 appears.

Wl Minitab - MAVOITURE, WP

Fcer Edtion Domnées Calc| Stat Graphique Edtew Outls Fendtre Ade Assistant

BH S JBe v Mehkemas O ARBOIIWH COE B

NEEIY R T Regresson '
ANOVA »

I

v i =
--J : DOE (plan dexpériences) ' Plan factoriel 4 [T Créer un plan factoriel..,

Cartes de contrile ¥ Sufacederéponse b B Définr un plan Factoriel personnalisé...

Qutis de la qualté ¥ Mélange '

Fiabilité/Survie Y Taquchi » PV Prétraiter les réponses pour fanalyse de la variabilié, .,
Multivarié 4 B

3o Modfier le plan... @ Analyser un plan Factoriel...

Serie chronologique

D, Affcherleplan... AV Analysera variabité..
Tableaux F
X Diagrammes factorieks...
Tests non paramétriques 4

Analyse exploratoire des données  »
Puissance et effectif de léchantilon »

Figure 39: Drop-down menus allowing you to begin the analysis of the experimental design

> In the Analyze Factorial Design window you must choose the response to analyze. To do

this, highlight C7 Consumption and click on the Select button (figure 40).

Consumption

Terma... Covariates... Optiord. .. Stepwee,..
Resuits

Graghs... Stofage. ..

aibact I
Help | [ 4 Cancel

Figure 40: Window allowing you to specify the analysis methods
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e The plan being very simple we will only use the Terms. Results and Storage buttons.
» Terms
Allows you to choose the mathematical model. Here we choose a polynomial model with

a single interaction. click the OK button after that (figure 40).

Endude terms in the model up through order: m
Avalable Terms: Selacted Terms:

A : Speed
B : Addi weight
2 A.B

&

Hda

I'-' P
-
.
nep | | o Cancel |
-
Figure 41: Window allowing you to choose the mathematical model
> Results

This window allows us to check all the useful results we want to display (like ANOVA.
coefficients....) (figure 42).
e Click the OK button when you have finished making your choices. This window

disappears.
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Analyser un plan factoriel - Résultats @

Affichage des résultats
i Me pas afficher
f* Coefficients et tablean AMOYA
(" Observations aberrantes, en plus des &léments ci-dessus
" Tableau complet des valeurs ajustées et résiduelles, en plus des éléments ci-dessus
AfFficher le tableau des alias
f* Me pas afficher
(" Interacktions par défaut
(" Interactions jusqu'a l'ordre : | |
Afficher les mowvennes issues des moindres carrés
Termes disponibles Termes sélectionnés :

A Mikesse
B:Surcharge
aE

e |

Aide | | (o] 4 I annuler

Figure 42: Window allowing you to select useful results

» Storage

We choose to keep the effects and coefficients (figure 43).

e Click the OK button when you have finished making your choices. This window
disappears.

Analyser un plan factoriel - Stockage

Waleurs ajustées et résiduslles Informations sur le modgle  Autre

| Yaleurs ajustées W Effets | Hif{effet de levier)
| Valeurs résiduglles v Coefficients " Distance de Cook
| Yaleurs résiduelles normalisees | Matrice du plan | DFITS

| Yaleurs résiduelles supprimées | Factarial

fide \ oK Annuler

Figure 43: Outputs choice
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» Click the OK button in Figure 42. The results are displayed in the session window

(Figure 44) and in the worksheet (Figure 45).

B Session [; X
Plan factoriel : Consommation en fonction de Vitesse; Surcharge *

Effets et coefficients estimés pour Consommation (unités codéesz)

Terne Effet Coeff
Constante 10,2500
Vitesse 22,5000 1,2500
Surcharoge 1,5000 0,7500

Vitesse¥3urcharge 0,1000 0,0500

(£

[
|1

Figure 44: The results analysis is in the session window

& Feuille de travail 3 **

+ O 2 3 4 (] b o7 8 9 A
OrdreStd OrdEssai) PtCentr  Blocs | Vitesse Surcharge Consommation EFFETST COEFF1 =

1 1 1 1 1 -1 -1 63 25 105

i 2 Z 1 1 1 -1 a7 15 1,28

3 3 3 1 1 -1 1 97 1N 0,75

4 4 1 1 1 1 1 123 005

d %

Sl 14

Figure 45: The analysis results are also displayed in the worksheet
The regression equation in coded units is then:

5} = 10.25 + 1.25 x1 + 0.75 xz + 0.05 xl x2

There is virtually no interaction between the two factors according to the model.

Whether motorist drive fast or slowly, additional weight always leads to an increase in gas
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consumption. To reduce consumption, motorist must therefore minimize the speed and the

additional weight as often as possible.

Example 2: 23 factorial design [4, 12-16]

An experimenter studies the deposition of gold by electrolysis on metal objects in
order to give them a golden appearance. Three factors are studied and their values and levels
are given in table 19. The experimenters decided to applied a full factorial design 2.

The response is the speed of deposition of the gold on the treated object.

Table 19: Factors values at different levels

Factor Low level (-1) High level (+1)
Gold concentration (A) 2 g/L 15 g/L

Current density (B) 5 Aldm? 25 Aldm?
Cobalt Concentration (C) 0.5 g/L 1.5¢g/L

e Design construction

> You should get a worksheet similar to figure 46 after introduce the response

(speed).
A=
+ C1 2 3 4 Ch Ch Cr [ 9 cio |~
OrdreStd OrdEssai PtCentr  Blocs A B C Speed E
1 1 3 1 1 -1 -1 -1 A3
2 2 2 1 1 1 -1 -1 122
3 a 1 1 1 -1 1 -1 2
4 4 4 1 1 1 1 -1 125
5 g 7 1 1 -1 -1 1 48
6 B B 1 1 1 -1 1 70
7 7 ) 1 1 -1 1 1 kA
8 a8 B 1 1 1 1 1 134
9 W
8 3.

Figure 46: Worksheet with the example data
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e Design analysis
The analysis of the design is carried out in the same way as previously and you must
obtain the same information in the session window as that in figure 46.

B Session

. . _ ”~
Plan factoriel : Vitesse en fonction de A: B: C =
Effets et coefficients estimés pour Vitesse [(unités codées)
Terme Effet Coeff
Conztante s0,.00
L 65,50 52,75
E 13,50 5,75
C -0,00 -0,00
L*B 20,00 10,00
lrc -z1,50 -10,75 —
B*C 25,50 14,25
LFB*C 2,00 1,00

b

<) >

Figure 47: Session sheet with results: Effects and coefficients

These numerical results can be illustrated by the effects graph.
» Click on the Stat button on the main menu then choose DOE (design of
experiments). Factorial design and Factorial diagrams (figure 22). You get a
new window (figure 47) where you can choose the effects graph. the interactions

graph and the cube graph.

Diagrammes factoriels

v Graphique des effeks principaux Configurakion. ..

[ Diagramme des interacktions

[ Graphigue en cube

Twpe de movennes 4 dtiliser dans les graphiques

e Movennes des données
" Movennes ajuskées

Lide ] annuler

Figure 48: Window allowing us to choose the effects graph, the interactions graph

and the cube graph
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» Effect graph

» Check Main Effects Plot in the window in figure 48.

» Click on the Window Configuration button in Figure 48. You will
get a window asking you for the response and the factors you want to
illustrate (figure 49).

Diagrammes factoriels - Effets principaux

3 Witesse Réponses :
10 COEFF1 |"."itESSE|

Facteurs & inclure dans les diagrammes
Disponibles ; Selectionnés

a8 a
=H=]

flll

J

| Options. ..
Aide | Ik, I Annuler |

Figure 49: Definition of effects graphs

» Click on the OK button in the window in Figure 48. You return to Figure 48.
» Click on the OK button in the window in Figure 49. You obtain a window where the

requested graphics are located (Figure 50).

Graphique des effets principaux pour Vitesse

Graphique des effets principaux pour Vitesse
Moyennes des données

120 A B
100 H /
a0 —
—
50 -

40

Moyenne

120

100

20

G0

40 - T T
-1 1

Figure 50: Effects graph
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» Interaction graph

By an analogous process. we obtain the interaction graph (Figure 51).

Diagramme des interactions pour Vitesse |Z||E|rz|

Diagramme des interactions pour Yitesse
Maoyernes des donnees

-1 1 -1 1
1 1 1 1
|
P '“-__H 120
- ~ m —— -1
L —m— 1
A L an
.
L an
120
—— -1
f,,-f" - 1
L an
B N
L 40

Figure 51: Interaction graph

» Interpretation of plan analysis and conclusion
All the precedent steps allow us to find the optimal conditions which maximize the speed
of gold deposition.
» The gold concentration (A) must be at level +1. i.e. 15 g/I
> Current density (B) must be at level +1. i.e. 25 A/dm?

» The cobalt concentration (C) must be at level +1 or 1.5 g/L

Under these conditions we can expect a speed of 134 mg/min.
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Example 3 Response surface design (CCD) [4, 12-16].

The objective of the foreman who conducts the study is to adjust a machine tool so that
the surface condition of the machined parts is as close as possible to perfection. The roughness
of the surface is the response studied; it is measured by a standardized method. The smallest
possible value is desired.

The foreman uses two factors:

- Factor 1: forward speed of the grinding wheel (in meters/minute).

- Factor 2: tangential cutting speed (in meters/second).

The high and lower levels of each factor are given in table 20.
Table 20: Study domain of CCD

Factor -1.21 Level -1Level 0Level +1Level +1.21Level
Forward 5:|peed (1) 074 0.9 1.65 2.4 2.56
Cutting speed (2)  13.95 15 20 25 26.05

The foreman starts with a traditional factorial design. but he suspects that he will have
to continue the study with a response surface design by CCD. Therefore. he plans to have two

control points at the center of the domain.

» Design construction
» Click on Stat from the main menu. A drop-down menu appears in which is
DOE.

» Click on DOE. A new menu appears in which there are four choices (figure 51).
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Wl Minitab - Sans titre

Fichier Edition Données Calc | Skat Graphique Editeur ©Cutils  Fendtre  Aide  Assistant

B 3% 0 GEE

qu H % Statistiques élémentaires b

J Régression J
ANOVA y

& Session DOE {plan d'expériences)

Plan factoriel 3 O Créer un plan Factoriel, .

Cartes de caontrdle ¢ Surface de réponse b
04/01/2011 10  Qutils de la qualié 3 Mélange b
Bienverme danz Minitab, = Fiabilt/Survie g Taguchi '
Mulkivarié J
Serie chronologique ]
Tableaux 3
Tests non paramétriques 4

&nalyse exploratoire des données  »

Puissance ek effectif de ['échantillon »

Figure 52: Menu allowing you to create a response surface design

> Click Create Response Surface design. A new window appears which allows
you to specify the design for the response surface (Figure 53). You choose a two-

factor central composite design.

Créer un plan de surface de réponse _|
Tvpe de plan
{* Composite centré (2 & 10 Fackeurs)
{° Box-Behnken (3, 4,56, 79 10
Mombre de Fackeurs ; | 7 - | Afficher les plans disponibles. .
Flans. ..
Aide | Ok annuler

Figure 53: Menu allowing you to create a response surface design

» Click the Designs button. You get a new window where you can set the number

of points in the center (figure 54).
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Creer un plan de surface de réeponse - Plans |
Plans Essais Blocs Paoinks centraux valeur par défauk
Total Cube Axial alpha

Complet 14 = & 3 3 1,414

Mombre de points cenkraux
" Par défauk
{* pPersonnalisé

Eloc de cube : | 4 |
Yaleur d'alpha Mombre de répétitions | 1

" Par défaut

~ Face cenbrée [ Créer des blocs pour les répétitions

i+ personnaliser : 1,21

Aide | | (w14 I annuler |

Figure 54: Menu allowing you to specify the characteristics of the response
surfaces design

» Click the OK button. You return to the window in Figure 53.
» In the option, uncheck randomization.
» Click the OK button in Figure 53. You obtain the desired design (Figure 55).

+ ci cz2 C3 C4 Ch o
OrdreStd OrdEssai| TypePt | Blocs A B
2 2 2 1 1 1,00 -1,00 =
3 3 3 1 1 -1,00 1,00
4 4 4 1 1 1,00 1,00
5 ] ] -1 1 -1.21 0,00
6 ] B -1 1 1,21 0,00
7 7 7 -1 1 0,00 -1,21
8 g a -1 1 0,00 1,21
9 H 9 a 1 0,00 0,00
10 10 10 a 1 0,00 0,00
11 11 11 a 1 0,00 0,00
12 12 12 a 1 0,00 0,00
A% t
2| A

Figure 55: Minitab worksheet the CCD response surface design
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» Design analysis

» You must copy the response values into the worksheet (figure 56).

+ 1 c2 3 c4 5 Ch (o) ca CEl
OrdreStd OrdEssai| Blocs | TypePt  Avance  Coupe Rugo Pics =

1 1 1 1 1 -1.,00 -1,00 194

2 2 2 1 1 1,00 -1,00 282

3 3 3 1 1 -1.,00 1,00 120

4 4 4 1 1 1,00 1,00 91

5 5 5 1 -1 -1.21 0,00 154

6 B B 1 -1 1.21 0,0a 195

7 7 7 1 -1 0,00 -1.21 278

8 =] =] 1 -1 0,00 1,21 122

9 g 9 1 0 0,00 0,00 232

10 10 10 1 0 0,00 0,00 230

11 11 11 1 0 0,00 0,00 233

12 12 12 1 0 0,00 0,00 235

13 | | v

0 | >

Figure 56: Design matrix and responses of CCD

- To begin the statistical analysis:
» Click Stat from the main menu and choose DOE / Response Surface / Analyze
Response Surface design (Figure 29).

» In the Analyze Response Surface design window that appears you enter the

response (figure 57).
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Response surface design analysis

¥ Fugo
5 Pics

[ sgctionnne |
Aide

REponsEs :

Rugo Pics

Analyser les données en utilisank :
f* Unités codées
" Unités non codées

Termes. .. | Prévision. ..

Graphiques. .. | Résultats. .. | Stockage. ..

(] I Annuler

Figure 57: Analyze a response surface design window allowing you to define

the desired analyses.

» Then. you click on the Terms button. The software offers a quadratic model. you
accept by clicking on the OK button (Figure 58). You return to Figure 57.

Analyser, un plan de surface de réponse - Termes [5_(|

Termes disponibles

Inclure les termes suivants : |Quadratique complet ﬂ

Termes sélectionnés |

-

fide |

A Avance

<

Rl

Ik | Annuler

Figure 58: Analyze Response Surface design window - Terms for defining

the mathematical model.
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» You give your output instructions using the other buttons in Figure 58 and finish
by clicking on the OK button.

The coefficients of the quadratic model are displayed in the worksheet (figure 59) and

the statistical results are displayed in the Session window (figure 60).

! 1 2 (5] 4 5 6 | 8 (] C10 )
OrdreStd OrdEssai TypePT | Blocs  Avance = Coupe  Rugo | Pics  COEF1 | COEFR2 =
1 1 1 1 10 100 194 778 232370 620354
2 2 2 1 1 100 -100 282 B84 15577 45035
3 3 3 1 1100 100 120 B5 3 -BRA9E 37134
4 4 4 1 1 100 100 91 96,1 -3919%6 -4 3263
5 g ] -1 T 124 000 154 523 -211779 195792
b B B -1 1 121 0on 195 604 -29250 100500
li 7 7 -1 1 aom 121 278 g7
8 B g -1 1 0,00 121 122 9.7
9 9 9 I 1 0,00 0,00 232 B15
10 10 10 I 1 0,00 0,00 230 605
11 1 11 I 1 0,00 0,00 233 B35
12 12 12 I 1 0,00 0,00 235 619
13 v
g0 3.

Figure 59: Minitab Worksheet with responses and coefficients
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Bl Session

Regression de la surface de réponse : Rugo en fonctic
L'analyse a été effectuée 4 1'aide de données codées.

Coefficients de régression estimés pour Fugo

Terme Coeff Coef ErT T P
Constante 232,37 1l,0563 219,937 o,o000
Avranice 15,65 o,521=2 19,091 o,o000
cCoupe —-55,49 o,521=2 -79.,753 o,o000
Arvranice®*hvrance -39 .20 1l1,.,0439 -37,.545 a,o000
coupefooupe -=21,78 1l,.,0439 —=20,863 a,.oo0
Avranice*ocoupe —=29,.25 1,.,03507 —-=27 ., 066 o, o000
% |

Figure 60: Statistical analysis results in session window

e Interpretation of design analysis
To interpret the previous results. the simple way is to draw the isoresponse graphs of
the response. We thus determine the places in the studied domain where the objectives are

or are not achieved.

» Click Stat from the main menu and choose DOE / Response Surface / Contour
Plots / Surface Plots (Figure 61).

> In the Contour Plots/Surface Plots window that appears. you check Contour
Plot and click the Setup button (Figure 61). You will see the Contour

Plots/Surface Plots-Contour window (Figure 62).

Graphigues de contour/Diagrammes de s... r5__<|

lv Sraphigue de contour —onfiguration. ..

[ Diagramme de surface

Lide (] 4 annuler

Figure 61: Cont702ur Plot/Surface Plot window
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» To specify the characteristics of the graph you use the Contours. Configuration

and Options buttons.

Graphigques de contour/Diagrammes de surface - Cont... rg|

Réponse ! |Ca  Pics |

Facteurs :

(¢ Sélectionner 2 Fackeurs pour un diagramme unique

fxe des x |.ﬂ.:.ﬂ.vance - |
Axe des vy | |B;c|:|u|:|e - |

(" Générer les diagrammes de toutes les paires de Fackeurs
=

~

Afficher les diagrammes en ;
(* Unités codées
" Unités non codées

| Contours, .. Configuration. .. | Options. .. |

Aide (o] 4 | annuler |

Figure 61: Contour Plot/Surface contour Plot window

» The Contours button gives access to a window (Figure 62) allowing you to

indicate the number of isoresponse curves and the properties of the graph.

Graphigues de contour/Diagrammes de surface - ... _|

Miveaux de conkour

f« Ukiliser les waleurs par défauk

" Mombre : |

" waleurs : |

affichage des données
I fire

I+ Lignes de conktour
[ Svmboles aux poinks du plan

Aide | (] 4 I Annuler

Figure 62: Window allowing you to specify the nature of the isoresponse graph
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The objective of this study is to obtain a machined surface having a roughness less
than 150. Figure 63 shows that this objective is achieved when the cutting speed of 0.1 to 0.4

and the level of forward speed equal approximately to (-1.2).

» -1.2 of forward speed correspond to 0.75 meters/minute.
> 0.1to0 0.4 level of the cutting speed approximately 20 to 25 meters/second.

Graphique de contour de Rugo et Coupe ; Avance

100

1,0 - / \
Y.
0g1 » 200
;f” hﬁ“‘wﬁahhhhxxxxx
-0,5 - / /_\

-1,0 4 250

Coupe
=

-1,0 -0,5 0,0 0,5 1,0
Avance

Figure 63: Contour plots of the surface roughness

Example 4: Response surface design by BBD [4. 12-16]
The aim of this study is to decrease the acidic taste of the fermented milk. For this
reason. stabilized milk is produced from a natural stabilizer, which attenuates the variations of

acid in the final product in spite of the presence of lactic leaveners.

» The response chosen by the researcher is acid loss. The goal is to get stabilized milk
with an acid loss of at least 48.
The three factors used in this experiment are:
» Factor 1: Dilution ratio. This is the ratio of added water to raw milk.
» Factor 2: pH. which is related to the injected stabilizer.
» Factor 3: Milk ratio. This is the ratio of raw milk to stabilized milk.
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The high and low levels of each factor are shown in table 21.

Table 21: Design domain of BBD

Factor -1 Level +1 Level
Dilution (1) 0.5 2

pH (2) 6 5
Concentration (3) 15 25

Design construction

Click on Stat from the main menu. A drop-down menu appears in which is DOE.
Click on DOE. A new menu appears in which there are four choices.

Click Create Response Surface design. A new window appears which allows
you to specify the design for the response surface (Figure 38).

» Check Box-Behnken in the Create Response Surface design window (figure 64).

Creer un plan de surface de réeponse E]

Type de plan
[ Composite centré (2 & 10 Fackeurs)
{* Box-Behnken (3, 4,5 6,7, 9 10
MNombre de facteurs ; | . | OfFicher les plans disponibles. ..
Plans...
Aide ] 4 annuler

Figure 64: Menu allowing you to create a Box-Behnken design

» The software gives the desired plan (Figure 65).
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X Feuille de travail 3 ***

- -
_‘I:,t.n:n-qmm-ﬁ-wm_n

- [ | -
R | e | | P

|
—
f=x]

S(=1ES

E

C1 c2 C3 C4 C5 Ch C7 C8 +
OrdreStd OrdEssai| TypePt Blocs A B C =
1 1 2 1 -1 -1 0
2 2 2 1 1 -1 0
3 3 2 1 -1 1 0
4 4 2 1 1 1 0
5 5 2 1 -1 o -1
B B 2 1 1 0 -1
7 7 2 1 -1 o 1
8 8 2 1 1 o 1
9 9 2 1 0 -1 -1
10 10 2 1 0 1 -1
11 11 2 1 0 -1 1
12 12 2 1 0 1 1
13 13 0 1 0 o 0
14 14 0 1 0 o 0
15 15 0 1 0 o 0
w
. Lt

Figure 65: Minitab worksheet with the Box-Behnken design

» Box-Behnken design analysis

When experiments are achieved. you must copy the response values into the worksheet

(figure 66)

i
£l

1

LT-T - - - P B~ R LI X R

o e e A = Y
L=rR R R L —]

. and you carry out the calculations as in the previous example.

3_Yoghourt. MTW ***

1 c2 C3 4 5 6 c7 s

OrdreStd| OrdEssai| TypePt | Blocs | Dilution (1)) pH {2) | Concentration (3} Appauvrissement
1 1 2 1 -1 -1 n 21,3

2 2 2 1 1 -1 n 42 6

3 3 2 1 -1 1 1 422

4 4 2 1 1 1 n 50 .4

& g 2 1 -1 1] -1 407

a B 2 1 1 1] -1 41,3

7 7 2 1 -1 0 1 415

8 3 2 1 1 0 1 403

a 9 2 1 a -1 -1 395

10 10 2 1 a 1 -1 353

1 i 2 1 a -1 1 352

12 12 2 1 a 1 1 395

13 13 a 1 a 1] n 203

14 14 a 1 a 1] n 201

15 15 a 1 a 1] n 49 4

£

|

Figure 66: Minitab worksheet with the Box-Behnken design and responses
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e Statistical analysis
» Click Stat from the main menu and choose DOE / Response Surface / Analyze
Response Surface design (Figure 38).
> In the Analyze Response Surface design window that appears you enter the

response.

» Click OK. The statistical analysis appears in the Session window (Figure 67).

Bl Session

The regression coefficients estimation

Terme Coeff Coef ExT T P
Constante 50,1000 0,3014 166,232 0,000
Dilution (1) -0,0750 0,1546 -0,406 0,701
pH (2) -0,1125 0,1846 -0,610 0,569
Concentration (3) 0,0625 0,1546 0,339 0,749
Dilution (l1*Dilution (1) 0,0750 0,2717 0,276 0,794
pH (2)*pH (2] -3,5500 0,2717 -13,065 0,000 =
Concentration (3)*Concentration (31 -9,.1000 0,2717 -33,497 0,000
Dilution (1)%pH (2] 4, 2250 0,2610 16,187 0,000
bilutinn [l)*Concentration (3) -0,3250 0,2610 -1,245 0,268
pH (2)*Concentration (3) 2,2000 0,2610 8,429 0,000
W
£ | >

Figure 67: Session sheet giving the coefficients of the quadratic model

e Interpretation of design analysis
The mathematical model (figure 67 results) indicates that we have an acid loss of 50.1

at the center domain. The objective of 48 will therefore be achieved and even exceeded.

From an economic point of view, it is advantageous to choose a low dilution (le effect

of dilution is negative). For this reason. we choose a dilution level of (-1) (i.e. 0.5).

To choose the levels of the other two factors, let's plot the graph of the isoresponses

as a function of pH and concentration.
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» Click Stat from the main menu and choose DOE / Response Surface / Contour
Plots / Surface Plots/ the Contour Plots/Surface Plots

» You obtain the window of figure 68.

Graphiques de contour/Diagrammes de s... r'5__<|

v  Contour plot Configuration. ..

™ Surface plot

Configuration. ..

Help

Ok

Cancel

Figure 68: Contour Plot/Surface Plot window of BBD

Click on the Configuration button to obtain the graphics definition window
(Figure 69).

Graphigques de contourn/Miagrammes de surface - Cont... E|

REponse :

|CEI Appauvrissemenkt
Facteurs :

f* Sglectionner 2 Facteurs pour un diagramme unique

Axedes x: |BipH (2) =7
Axedes ¥ ! | CiConcentrat -

" @énérer les diagrammes de toutes les paires de Facteurs
=

e

AfFficher les diagrammes en :
¢ Unités codées

" Unités non codées

| Conkours, ., I C-:unFiguratiu:-n...| Options. ., |

Aide |

(] 4 | Annuler |

Figure 69: Response and factors choice to illustrate in the graph
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» Click on the configuration button of the figure 69. The Contour Plots/Surface
Plots-Contour-Configuration window appears (Figure 70). You indicate that
the dilution is fixed at level (-1).

Graphigues de confour/Diagrammes de surface - Contour - Configuration E'

Wous pouvez sélectionner une des krois options de configuration
(o]h}
entrer vokre propre configuration en saisissant une valeur dans |2 tableau,

(Les paramétres représentent des niveaux non codés, )

Maintenir les fFacteurs supplémentaires 3 ;

. " Facteur Nom Configuratio

" Paramétre maxi -
{* Paramétre moyen A Dilution (1) -1
" Paramétre mini B pH (2} 0
C Concentration § 0

fide QI | annuler

Figure 70: We impose a level to the factors which are not illustrated on the graph

» Click on the OK buttons and you get the desired graphics

You thus obtain the graph of the isoresponses (contour plot) of the response as a
function of the concentration and the pH for a dilution of 0.5 (Figure 71).

Graphique de contour de Appauvrissement et Concentration (3) ; pH (2)

1,0
Appagvrisserment
= 35
e - 40
B 40 - &
0,5 | S - En
[ ] = B0

Waleurs de maintien
Dilution (11 -1

0,0

Concentration (3)

-1,0
-1,0 -0,5 0,0 0,5 1,0

pH (2)

Figure 71: Acid loss as a function of the %)ncentration and the pH for a dilution of 0.5
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This graph shows that the zone of acid loss greater than 48 is located around level

(-0.5) for pH (5.8 in natural units) and level zero (0) (2 in natural units) for concentration.

Validation tests are carried out which confirm the results of the plan and its analysis.
We can now recommend the following operating conditions given by Minitab software.
» Dilution (1) : 0.5
> pH(2): 5.8
» Concentration (3): 2
The predicted response at this point is 51.6.

12. Application using Excel software

Example [18]

The effects of four experimental parameters on the cementation yield of copper by iron
were investigated statistically. A statistical experimental design based on the second-order
central composite rotatable design (CCRD) was planned fixing the cementation period at 2 h.
The original values of each factor and their corresponding levels are given in the following
table.

Values and levels of operating parameters

Operating faclors Levels

—2 —1 LE I 2
Zy: [Cu® Jp (mg/L) 10 25 55 775 100
Foz T(7O) 20 30 40 50 &0
La: pH I 2 3 4 5
Loz Oy (mlis) (.44 .44 2.42 3440 438

The cementation yield as dependent output response variable which is expressed as (%):

[Cu™ o — [Cu™],

. < 100
[Cu=T]y

¥%) =

where y represents the copper cementation reaction yield [Cu?*]o is the initial copper ions

concentration (mg/L) and [Cu?*]; is the copper ions concentration at time t (mg/L).

The experiments were performed according to the design matrix given in the following.
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Experimental design and the resulis for copper cementation yield

Rum no. Matral values of parameters Coded valwes of parameters ¥ %)
Z Fa 3 X x| ¥
1 325 30 2 1 -1 -1 7038
2 T15 30 2 1 I -1 1111
3 325 50 2 1 -1 1 73622
4 T1A 50 2 1 I 1 B4.261
5 25 30 1 1 -1 -1 A1.048
f T15 30 | 1 I -1 BE. 865
7 25 50 1 1 -1 1 RE.382
B T15 50 1 1 I 1 90,302
] 325 30 2 1 -1 -1 21714
10 T15 30 2 1 I =1 B7.055
11 325 50 2 1 -1 1 92 038
12 T15 50 2 1 I 1 95182
13 325 30 4 1 -1 -1 20114
14 T15 30 | 1 I -1 91414
15 325 50 4 1 -1 1 91203
16 T15 50 | i 1 I 1 96528
17 (1] 40 k] 142 1 -2 1] ] B4.622
|8 |0 40 k] 142 1 2 1] ] 91848
|G 54 20 k] 142 1 ] -1 ] B4.045
20 55 &0 k] 142 1 ] 2 ] 95500
21 55 40 1 142 1 ] 1] ] RO.013
e 54 40 5 142 1 ] 1] ] 9240
Lk 55 40 i 44 1 ] 0 71073
4 55 40 i 438 1 ] 1] 93 684
25 55 40 i 142 1 ] 1] ] 92495
26 55 40 i 2142 1 ] 1] ] 90384
27 55 40 i 2142 1 ] 1] ] 91.536
28 55 40 k] 142 1 ] 1] ] 92 896
20 55 40 i 2142 1 ] 1] ] 92 347
30 55 40 i 2142 1 ] 1] ] 90855
il 55 40 k] 142 1 ] 1] ] 9LETI
il 55 40 k] 142 1 ] 1] ] 92324
i1 54 40 k] 142 1 ] 1] ] 92371
i 55 40 k] 142 1 ] 1] ] g1l
35 55 40 i 142 1 ] 1] ] 91511
36 54 40 k] 142 1 ] 1] ] 92102

The model coefficients are estimated by the following expression usng “EXCEL” software

B = [XT.XT.[X]T.Y

where B is the column matrix of estimated coefficients; [X"X] ™ the dispersion matrix; [X]" the

transpose matrix of experiments matrix [X] and Y is the column matrix of observations.

The results of this calculation are presented in the following tables:

Constant term

Linear effects

bo

b1

b2

b3

ba

92.052

2.101

3.261

3.367

4.835
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Interaction and quadratic effects

D12 D13 D14 D23 D24 D34 b11 b22 b33 D44

0.018 | -0.440 | -0.347 | -1.312 | -0.127 | -2.193 | -1.168 | -0.771 | -1.562 | -2.269

> Statistical analysis of the data

From statistical point of view, three tests are required to evaluate the adequacy of the
model; Student’s t-test which is about the significance of coefficients, R-square test and
Fisher tests.

1. Test of coefficients significance
The estimated t values by Student test for particular process parameters can be

calculated as follows:

[by
J
t,=—
S,

2 2
SZ = C;SZ,

where ngis the coefficients variance; Cjj the diagonal terms of [X"X] 'matrix and S, is the

rep

reproducibility variance calculated at the center domain with 12 replicates ( Sfep =0.67).

The calculated t values are summarized in the following tables.

Constant term Linear effects
to t1 t2 3 ts
389.557 12.574 19.514 20.150 28.934

Interaction and quadratic effects

t12 t13 t14 to3 t24 {34 t11 t22 ts3 tas

0.087 | 2.152 | 1.695 | 6.413 | 0.622 | 10.715 | 8.069 | 5.327 | 10.793 | 15.682
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The tabulate t value for 5% level of significance and 11 degrees of freedom (f=no-
1=12-1 = 11) using the bilateral test of student (appendix 2) to.0s (11) = 2.201.

If we compare this value to the calculated ones. we found that all individual effects
are significant at 5% of significance level and only the interactions (X1.X2). (X1 .X3). (X1.X4). and
(x2.x4) are not significant. Therefore. they are excluded from the regression equation.

The test of reliability for regression equation has been carried out by Fisher’s variance

ratio test known as F-test. The F-ratio is given by the following form:

o Sk
Sép

The following table gives the values S%,, . S&%s and estimated F for regression equation.

Ficher test for cementation viekd

Resadunl varmnce, of, |63
Replication variance, r.-;l, {167
Estimated F value 1432

The S, degree of freedom (f1 =N—I) and the S7,, degree of freedom (f = no —1) are 25
and 11 respectively. The tabulated F value (appendix 3) for 5% level of significance is between
2.57 and 2.61. The estimated F value is less than this interval. Hence, it can be concluded that
the two variances are equal and the most of the response variation can be explained by the
regression. Furthermore, the test of significance of regression (Fcaiculated = 98.45 > Frapulated=2.24)

confirms that the established predicting equation gives an excellent fitting to observed data.

Finally. R? value is found to be 96.6% and the table bellow. shows that the difference
between the measured and the predicted values do not exceed 3%. T Therefore. all those results

indicate that the model can adequately represent the data.

Absolut relative
Runs y (%) D) error (%)
1 67.938 69.213 1.876
2 73.223 73.415 0.262
3 75.622 78.359 2.620
4 84.261 82.561 2.017
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5 81.948 82.957 1.232
6 86.865 87.159 0.339
7 88.382 86.855 1.727
8 90.302 91.057 0.836
9 81.714 83.269 1.903
10 87.055 87.471 0.477
11 92.938 92.415 0.563
12 95.182 96.617 1.508
13 89.114 88.241 0.979
14 91.414 92.443 1.125
15 91.203 92.139 1.026
16 96.528 96.341 0.193
17 92.495 92.052 0.478
18 90.384 92.052 1.846
19 91.536 92.052 0.563
20 92.896 92.052 0.909
21 92.367 92.052 0.341
22 90.855 92.052 1.318
23 92.871 92.052 0.882
24 92.324 92.052 0.294
25 92.371 92.052 0.345
26 92.911 92.052 0.924
27 91.511 92.052 0.591
28 92.102 92.052 0.054
29 84.622 83.178 1.706
30 91.848 91.582 0.290
31 84.045 82.446 1.903
32 95.599 95.49 0.114
33 80.913 79.07 2.277
34 92.404 92.538 0.145
35 73.973 73.306 0.902
36 93.684 92.646 1.108

The regression equation for copper cementation by iron obtained after performing 36

experiments and discarding the insignificant effects is as follows:

$ =92.052 + 2.101x; + 3.261x, + 3.367x5 + 4.835x, — 1.312x,x3 — 2.193x3x, —
—1.168x% — 0.771x5 — 1.562x% — 2.269x7
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> Discussion

The regression equation obtained above. shows that initial copper cementation.

temperature. pH and flow rate all have an individual influence on the reaction yield of copper

cementation. Flow rate (xs) has the strongest effect on the response since coefficient of xs
(bs = +4.835) is large than the coefficients of the other investigated factors. Positive sign of this
coefficient indicates that there is a direct relation between flow rate and reaction yield; in other

words. copper recovery increase with increasing flow rate.

The order for factors strength on cementation yield following flow rate was found as pH
(x3). temperature (x2) and initial copper concentration (x1); all being positive in sign.

The significance interactions found by the design of experiments for copper cementation
yield are essentially between flow rate and solution pH (x3.xs) and between temperature and pH

(X2 .X3).

» Optimization

In this work. the model equation is used to find the direction in which the variables
should be changed in order to optimize cementation reaction yield. The corresponding contour
plots of the quadratic model are shown in figures (a—c). The figures are drawn in pH—flow rate
plan (the most important two factors affecting the response) for various level of temperature
(—2. 0. +2) at optimal initial copper concentration ([Cu®'ly = 75.25 mg/L) using “MATLAB
7.0” software.

The surface contour plots of mutual interactions between the variables are found to be
elliptical. The stationary point or central point is the point at which the slope of the contour is
zero in all directions. The coordinates of the central point within the highest contour level in
each of these figures will correspond to the optimum values of the respective parameters. The
maximum predicted yield is indicated by the surface confined in the smallest curve of the

contour diagram.

The analysis of these figures indicates clearly the significance influence of flow rate and
its interaction with solution pH. The optimum cementation yield in all conditions (Figures a—c)
increases in the direction of the increase in the temperature and it reaches 99.6% cementation

yield at high flow rate and low pH values (figure c).
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The corresponding conditions of the best cementation yield by deriving the model with

respect to each factor are follows:

x; = 0.%), corresponding (o [Eu:"' lg = 73.25me/L;

11 =2, comesponding to T = 60°C ;

11 =—0.8, comespondingtopH =2.2;

X4

|4, corresponding o 3.79mlL/s

Under economic considerations. 95.8% cementation yield (figure b) can be easily

reached by working at moderate temperature (T = 30-40 °C) and average solution acidity (pH
3or4).

(b)2

X4, Qv

b:x,=0,T=40°C
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13. Exercises

Exercise 1

The influence of the temperature and the concentration C of a reagent on the yield of
a chemical reaction y (in %) is studied.

It was decided to experiment with the temperature between 60°C and 80°C and the
concentration between 10 g.L™* and 15g.L™* limiting itself to 2 levels per factor.

Al
- How many experiments should be carried out, knowing that no repetitions are
planned?
- In a 22 factorial experiment, what are the experimental conditions to be carried

out?.

B/ The temperature is called factor A and the concentration factor B.
Using the concept of centered and scaled variables:
- Give the values of A and B at the center of the experimental domain.

- Give the coordinates of A and B at the point (xA =+ 0.5; xB = - 0.6).

C/ Construct (with EXCEL) the design matrix using coded and uncoded unit.

Results table:

Trials | Temperature | Concentration Yield
(°C) (g.L™) Y (%)

1 60 10 60

2 80 10 70

3 60 15 80

4 80 15 90

D/ Construct (with EXCEL) the effects matrix and calculate all the effects of such

design.
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Exercise 2
The same study is carried out as that of exercise 1. this time conducted in the presence
of a catalyst; the other experimental conditions are unchanged.

Results table:

Trials 1 2 3 4
Yield 60 70 80 95
Y (%)

1. Construct (with EXCEL) the effects matrix and calculate all the effects.
2. At atemperature of 70°C and a concentration of 12.5 g. L™ (center of the studied domain).
it was decided to carry out 6 additional tests. The 6 yields obtained are as follows (in %):
77.3-79.1-778-77.0-77.7-79.1

- Calculate the reproducibility variance at the center of the studied domain.

- Which effects are significant at 5% of significance level (use at test).

Exercise 3
In a solution usually manufactured at 30°C with stirring (200 rpm) a slight disturbance
appears. The experimenter wants to know the cause(s) and thinks that 3 factors can have an
influence on this problem.
e Temperature.
e Stirring speed.

e Concentration of an additive usually present at 0.30% (w/v).

The disorder is measured by an opacity index. this index is greater as the solution is cloudy.

It is decided to organize a 2° factorial design:

Factors Levels
-1 1
Temperature 20°C 40°C
Stirring speed 100 rpm 300 rpm
Additive concentration 0.1% 0.5%
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1. How many experimental conditions to do for this design?

2. Construct (with EXCEL) the effects matrix and calculate all the effects. knowing that

the opacity measurements gave the following results:

NO

[EEN

2

w

4

Opacity index 0

4.7

115

145

5.1

18.7

3. Give the expression of regression equation found.

4. Interpret the influence of each factor on the response and represent the effects

diagrams and the interactions diagrams.

Exercise 4

In the formulation of a certain tablet three variables were considered to be important

for the thickness of the tablets. These variables were investigated by a factorial design. The

different variables were the amount of stearate lubricant, the amount of active substance and

the amount of starch disintegrant.

The experimental domain is shown in Table 1. Experimental design and results are

given in Table 2.

Table 1: Variables and experimental domain of the formulation

Variables Expenimental domain
(— Hevel (-level (+ Hevel
x;- Amount of stearate (mg) 03 l 15
xy: Amount of active substance (mg) 60 o0 120
13- Amount of starch (mg) 30 40 30
Table 2: Design and responses
Exp. no. Variables Thickness {mm)
X X3 X3 y
1 - - - 475
2 - - - 487
3 - - - 421
4 - - - 426
5 - - - 525
6 + - + 546
7 - - - 472
g - - - 522
0 0 0 0 486
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1. Estimate the effects coefficients of the experimental variables and evaluate their
influence.

2. Determine a response model that contains only the probably significant terms.
Use this model to estimate the amount of starch that has to be added to 100 mg of

active substance to obtain tablets that are 5.00 mm thick.

Exercise 5

The modeling of the E. coli ST 131 activity (expressed by the inhibition zone in mm)
of an actinobacteria strain by a centered composite design (CCD) is carried out in order to study
the influence of four operating factors namely: starch concentration (X1). casein concentration
(X2). the incubation time (X3) and the pH (X4). The different values of this factors at different

levels are presented in the following table:

Factors Levels
-2 -1 0 +1 +2
Starch (g/L) 2 6 10 14 18
Casein (g/L) 0.1 0.2 0.3 0.4 0.5
Incubation time (Days) 3 5 7 9 11
pH 3.2 5.2 7.2 9.2 11.2

1. Construct (with EXCEL) the design matrix. the effects matrix and find the second
order regression equation with verification of its validity.

2. Find the optimum of the factors as well as the optimal antibacterial activity of the
strain studied.

> The response results of factorial design trials (N= 2*=16 trials):

1 2 3 4 5 |6 7 8 |9 10 |11 12 13 |14 |15 | 16
6.50 | 8.83 [ 9.50 [ 7.33 |6 |6.53|666|6 |833683]1033/850 |750|6.83|6 |6.33
» The response results of the star design (No= 2.k= 2x4=8 trials):
17 18 19 20 21 22 23 24
6 6 13.66 8.16 6 6.83 9 9.5
» The responses at the center studied domain (No= 6):
25 26 27 28 29 30
9 8.5 8.5 10 6.33 6
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Exercise 6

An experiment is performed with two levels of temperature: 25C and 35C. If these are
the —1 and +1 levels of temperature. respectively. then:
- Find the coded value that corresponds to 28 °C.
- Determine the temperature that has a coded value of x = +0.6.

Exercise 7

To study the influence of temperature (Xt) (60°C to 80°C) and concentration of an
additive (Xc) (10 g.L™ to 15 g.L%) on the yield of chemical reaction y (%), the predictive model
found has a following expression:

~

Y =76,25+ 6,25x; + 11,25x, + 1,25x4x,

- Give the expression of the response according to the natural variables

- What response can we predict for the following experimental condition

Exercise 8
The following diagram shows data from a central composite design. The factors were run at

their standard levels, and there were 4 runs at the center point.

1. Give the design matrix and response for this example.

2. Calculate the parameters for a suitable quadratic model in these factors using excel and
Minitab software.

3. Draw aresponse surface plot of A vs B over a suitably wide range beyond the experimental
region.

4. Where would you move A and B if your objective is to increase the response value?

1. Report your answer in coded units.
2. Report your answer in real-world units, if the full factorial portion of the experiments
were ran at:
A = stirrer speed, 200rpm and 340 rpm

B = stirring time, 30 minutes and 40 minutes

91



INTRODUCTION TO DESIGN OF EXPERIMENTS

240
[
273 231
+ ® ®
2611258
B 24ve ¢
2581267
- @ @
234 o 252
243
—_ A +

92

9243



INTRODUCTION TO DESIGN OF EXPERIMENTS

Appendix 1

Definitions of some matrix [4]

> Matrix

A matrix is an array made up of elements laid out in lines and columns.

Elements

!
1
[ b (C | +— Firstrow

i d e f =+——— Second row
Matrix is

=0

First Second Third
column column  celumn

> Size of a matrix

An ixj matrix is a matrix having i rows and j columns. The matrix A above is a 2x3 matrix.

» Square matrix

A square matrix has the same number of rows and columns. For example.

1 2 2
A=[0 1 4
3 57

IS a square matrix. since it is 3x3.
» Main diagonal of square matrix
The diagonal of a square matrix is formed by all the elements aii. where the row number and

column number are the same. This main diagonal is shown in the following matrix.

a, "~y G
A=|a,;. a, g,

dy iy Qi3

> Element notation
The elements from the lines and columns of the matrix are designated by an index. For

example. matrix A above could be written :
dy  dy  dpy
A=
4, dyp 4y

a1z is the element in the first row. third column. The element ay; is the element in the second
row. second column.

93



INTRODUCTION TO DESIGN OF EXPERIMENTS

» Symmetric matrix
symmetric matrix has a symmetry around the main diagonal. The elements aj; are equal to the
elements a;i. That is. aij = a;i.

For example.

WA
Il
W b =
= = D
=

Identity matrix
An identity matrix is a square matrix whose elements are zeros except for the main diagonal.

whose elements are ones.

1 00
I=0 1 0
0 0 1

» Diagonal matrix

A diagonal matrix has all its elements equal to zero except those on the main diagonal.

» Transpose of a matrix
The transpose of a matrix A is denoted as A and is obtained by inverting the rows and columns
of A. That is. the first row of A becomes the first column of AT. The second row of A becomes

the first column of A'. and so on.

gy dy
T—
gy dp

> Inverse matrix
Only square matrices have inverses. The inverse of A is denoted AL,
The matrix A is the inverse of A if their product is the identity matrix.
Al A=

» Orthogonal matrices

A matrix is orthogonal if the scalar product of its columns is all zero. The transpose of
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an orthogonal matrix is equal to its inverse.

AT = A—l
AT: Transpose matrix of A
AL Inverse matrix of A

» Hadamard matrices
There are some square matrices where the elements are either +1 or —1 such that:
XT™X =nl

I: Identity matrix
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Appendix 2

In the t-test table, the significant values are determined for degrees of freedom(df) to the
probabilities of t-distribution, a. [1]

cum. prob ts0 ts ta t g5 ta fs tors fo f 005 f 50 t gas
one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 G.l'lﬂﬂﬁl

two-tails 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001

df

1 0.000 1.000 1.376 1863 3078 6314 1271 31.82 6366 31831 636.62

2 0.000 0.816 1.061 1.386 1.686 2.920 4,303 6.965 99256 22327 31.599

3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5841 10215 12924

4 0.000 0.741 0.941 1.190 1.533 2.132 2776 3.747 4,604 7173 8.610

] 0.000 0727 0.920 1.156 1476 2.015 2.571 3.365 4,032 5.893 6.869

6 0.000 0.718 0.906 1.134 1.440 1.943 2447 3.143 3707 5.208 5.959

71 0000 0711 0.896 1.119 1415 1895 2365 2998 34989 4785  5.408

8 0000 0706 0889  1.108 1397 1860 2306 2896 3355  4.501 5041

9 0000 0703 0883 1.100 1383 1833 2282 2.8 3250 42097 4781
10 0.000 0.700 0.879 1.093 1.372 1.812 2228 2.764 3.169 4144 4 587
" 0.000 0.697 0.876 1.088 1.363 1.796 2201 2718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2179 2.681 3.055 3.930 4.318

13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 J.012 3.862 4.221
14| 0000 0692 0868  1.076 1345 1.761 2145 2624 2977 3787 4140
15/ 0000  0.691 0.866 1.074 1.341 1753 2131 2602 2847 3733 4073
16| 0000 0690 0865  1.071 1337 1746 2120 2583 2821 3686  4.015
17 0.000 0.688 0.863 1.069 1.333 1.740 2110 2.567 2898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 210 2.552 2878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0686  0.858  1.063 1323 1.7 2080 2518 283 3527  3.819
22| 0.000 0686  0.B58 1.061 1.321 1717 2074 2508 2819 3505  4.792
23 0.000 0.685 0.658 1.060 1.319 1.714 2.069 2.500 2807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.1 2.064 2.492 2797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2479 2779 3.435 3.707
27| 0.000 0684 0855  1.057 1314 1703 2052 2473 27N 3.421 3.680
28] 0.000 0683 0855  1.056 1313 1.7 2048 2467 2763 3408  3.674
29] 0.000 0683  0.B54 1.055 1.311 1699 2045 2462 2756 3306  3.659
30 0.000 0683 0.654 1.055 1.310 1.897 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2021 2423 2704 3.307 3.551
60 0.000 0679 0.848 1.045 1.296 1.671 2.000 2.390 2660 3.232 3.460
80| 0.000 0678  0.B46 1.043 1282 1664 1980 2374 2639 3185  3.416
100] 0000 0677 0845  1.042 1280 1660 1984 2364 2626 3174  3.380
1000 0.000 0675  0.B42 1.037 1282 1646 1962 2330 2581 3088  3.300
4 0.000 0674 0.842 1.036 1.282 1.645 1.960 2.326 2576 3.080 3.291
0%  50%  60% 70% 80% 90% 95% 08% 00% 09.8% 099.0%

Confidence Level
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Appendix 3

Fisher Snedecor table for & =0.05 [1]

Y1 = degrees of freedom in numerator
Y2 = degrees of freedom in denominator
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158
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194
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	B = 1
	B = -1
	Absence of interaction between A and B
	B = 1
	B = -1

	High interaction between A and B
	B = -1
	B = 1

	 The first blank column in the worksheet (here C8) is reserved for the Response values
	After running all of the experimental runs enter the results in to the worksheet (figure 28):
	The second series of steps allow us to analyze the results as well as produce the charts and graphs that help us communicate our results (figure 29).
	 Go to Stat > DOE > Factorial > Analyze Factorial Design
	 Enter the column (here C8) that contains the response in the open window called Responses (or just double-click on C8 in the left box) (figure 30).
	 Then click on Terms.

