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Preface 

 

 The experimentation plays an important role in Science, Engineering, and Industry. The 

experimentation is an application of treatments to experimental units, and then measurement of 

one or more responses. It is a part of scientific method. It requires observing and gathering 

information about how process and system works. In an experiment, some input x’s transform 

into an output that has one or more observable response variables y. Therefore, useful results 

and conclusions can be drawn by experiment. In order to obtain an objective conclusion an 

experimenter needs to plan and design the experiment, and analyze the results.  

 Design of experiments (DOE) is a formal structured technique for studying any situation 

that involves a response that varies as a function of one or more independent variables. DOE is 

specifically designed to address complex problems where more than one variable may affect a 

response and two or more variables may interact with each other. 

 There are many types of experiments used in real-world situations and problems. When 

treatments are from a continuous range of values then the true relationship between y and x’s 

might not be known. The approximation of the response function y = f (x1, x2,…,xi) + ε is called 

Response Surface Methodology.  

 The present course is intended for master's students from different specialties of the 

Faculty of Natural and Life Sciences either for other faculties as well as for our doctoral students 

who want to model and optimize the results of their research works to have the advantage of 

organizing their experiments and to reduce the time to carry out their trials, in order to obtain 

the maximum amount of information on the process studied. 

 This course offers the students to introduce and understands the principle and steps of 

DOE modeling. The three types of Response Surface Methodology, the first-order and the 

second-order models, will be described and explained in this course. Some examples will be 

provided mainly for two levels factorial design and Centrale Composite Design (CCD) using 

excel software for statistical analysis of the regression. Demonstration how to manipulate with 

Minitab computer software and using excel software will be also given. Finally, a series of 

exercises are presented too. 
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1. Introduction 

 

 Investigators perform experiments in virtually all fields of inquiry, usually to discover 

something about a particular process or system. Each experimental run is a test. More formally. 

we can define an experiment as a test or series of runs in which purposeful changes are made 

to the input variables of a process or system so that we may observe and identify the reasons 

for changes that may be observed in the output response. We may want to determine which 

input variables are responsible for the observed changes in the response, develop a model 

relating the response to the important input variables and to use this model for process or system 

improvement or other decision-making [1]. 

 

 In general, experiments are used to study the performance of processes and systems. 

The process or system can be represented by a black box model shown in figure 1. We can 

usually visualize the process as a combination of operations. Machines, methods, people, and 

other resources that transforms some input (often a material) into an output that has one or more 

observable response variables. Controllable variables (x1. x2. ……xp) can be varied easily 

during an experiment and such variables have a key role to play in the process characterization. 

Uncontrollable variables (z1. z2. . . . . zq) are difficult to control during an experiment. These 

variables or factors are responsible for variability in process performance. It is important to 

determine the optimal settings of x’s in order to minimize the effects of z’s. This is the 

fundamental strategy of robust design [1, 2]. 

 

 

 

 

 

 

 

  

 

 

 

 Figure 1 : Black box model [1] 
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 Experimentation plays an important role in technology commercialization and product 

realization activities, which consist of new product design and formulation. manufacturing 

process development. and process improvement. The objective in many cases may be to 

develop a robust process. that is. a process affected minimally by external sources of variability. 

There are also many applications of designed experiments in a nonmanufacturing or non-

product-development setting. such as marketing, service operations. and general business 

operations. A well-designed experiment is important because the results and conclusions that 

can be drawn from the experiment depend to a large extent on the manner in which the data 

were collected [1-4]. 

 

Statistical experimental design; also known as design of experiments (DOE); is the 

methodology of how to conduct and plan experiments in order to extract the maximum amount 

of information with the lowest number of trials.  A designed experiment is a tool or set of tools 

used for gathering test data. Typical characteristics of an experimental design are planned 

testing. data analysis approach. simultaneous factor variability and scientific approach [5]. 

  

 DOE is a branch of applied statistics that is used for conducting scientific studies of a 

system. process or product in which input variables (xi) were manipulated to investigate its 

effects on measured response variable (y).  The usage of DOE has been expanded across many 

industries as part of decision-making process either along a new product development. 

manufacturing process and improvement. It is not used only in engineering areas it has been 

used in administration. Marketing, hospitals, pharmaceutical. food industry. energy and 

architecture, and chromatography [3]. 

  

DOE is applied in experimental situations where several independent variables 

potentially impact one or more response variable. The experimenter controls the independent 

variable in a designed experiment, while the response variable is an observed output of the 

experiment. Changing more than one variable simultaneously, rather than changing one 

variable at a time, leads to effective results. Interactions between variables can cause problems 

that none can see until change has been made. DOE has been applied in many functional areas, 

one being research to quantify the inter-relationship between variables and to screen a large 

number of variables to identify important ones [2, 6]. 

  

 The popularity of DOE is due to its tremendous power and efficiency. When used 

correctly, DOE can provide the answers to specific questions about the behavior of a system. 
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using an optimum number of experimental observations. Since designed experiments are 

structured to answer specific questions with statistical rigor. experiments with too few 

observations won’t deliver the desired confidence in the results and experiments with too many 

observations will waste resources. DOE gives the answers that we seek with a minimum 

expenditure of time and resources [3, 7]. 

  

General practical steps and guidelines for planning and conducting DOE are listed below [3]: 
 

1. State the objectives:  It is a list of problems that are going to be investigated.  

2. Response variable definition: This is measurable outcome of the experiment that is based 

on defined objectives.  

3. Determine factors and levels: Selection of independent variable (factors) that cause change 

in the response variable.  

4. Determine experimental design type: e. g. a screening design is needed for significant 

factors identification; or for optimization factor-response function is going to be planned. 

number of test samples determination.  

5. Perform experiment: Using design matrix.  

6. Data analysis: Using statistical methods such as regression analysis and ANOVA.  

7. Practical conclusions and recommendations: Graphical representation of the results and 

validation.  

 

 

2. Advantages of DOE 

Advantages of the design of experiments [3-5]: 

• Helps to handle experimental error. 

• Helps to determine the important variables that need to be controlled and find the unimportant 

variables that need not be controlled. 

• Helps to measure interactions. which is very important. 

• Allows extrapolation of data and search for the best possible product within the test variable 

ranges. 

• Allows plotting graphs to depict how variables are related and what level of variables give the 

optimum product. Use of statistical models shows us the interrelationship between variables. 
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3.  Historical perspective  
 

 One Factor At a Time (OFAT) was very popular scientific method dominated until early 

nineteen century. In this method one variable/factor is tested at a time while the other variables 

are constrained except the investigated one. The traditional approach demands considerable 

material expense and is more time consuming. The major disadvantage of the OFAT strategy 

is that it fails to consider any possible interaction between the factors [3].  

 

  Testing multiple variables at a time is better especially in cases where data must be 

analyzed carefully. In the 1920s and 1930s Ronald A. Fisher conducted a research in 

agriculture. he was the first one who started using DOE. In 1935, he wrote a book on DOE.  

Significant use of DOE in the research project was noticed in the late 1960s and 1970s. Thus, 

it took about 50 years for the DOE to achieve significant application in the research, since in 

this period there were no software packages that would foster its application, DOE had not 

signified a strong expansion (figure 2). Thanks to software development in 1990s and later, the 

use of DOE in research over various scientific areas has risen sharply [3, 8]. 

 

  A linear model that represents a rapid increase in the use of DOE in the research projects 

is shown in figure 2 and represented by a mathematical linear model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Progressive use of DOE as scientific method over past two decades [3]  
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4. Terminology 
  
To simplify the communication a few different terms are introduced and defined  

4.1. Factors types 

Experimental variables that can be changed independently of each other, two types of 

factors exist [4, 6, 8]: 

 Continuous Variables: Independent variables that can be changed continuously 

like pression. temperature. concentration….  

 Discrete Variables: Discrete factors can take only particular values. These 

values are not necessarily numeric. The color of a product (blue. red. or yellow) 

is an example of a discrete factor, for example. size may be represented as large, 

medium. or small…… 

 

4.2. Factor’s domain 

The value given to a factor while running an experimental trial is called a level. The lower 

limit is the low level (-1) and the upper limit is the high level (+1). The set containing all the 

values between the low and the high level that the factor can take is called the factor’s domain 

of variation or. more simply, the factor’s domain (figure 3) [5, 6].  

 

 

 

 

 

 

One continuous factor can be represented by a directed and graduated axis. If there is a 

second continuous factor, it is represented by a similar axis drawn orthogonally to the first. This 

area is called the experimental space (figure 4). The experimental space is composed of all 

the points of the plane factor 1 × factor 2 where each point represents an experimental trial. 

 

 

 

 

 

 

 

 

-1 +1 

Factor’s domain 

Figure 3: Factor’s domain [4] 

Experimental space 

Factor 1 

Factor 2 

Figure 4 : Experimental space [4] 
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4.3. Study domain 

The study domain is defined as a portion of experimental space to carry out the study, this 

domain is defined by the high and low levels of all the factors (figure 5) [4, 9].  

 

 

 

 

 

 

 

 

 

 

 

 

4.4. The Response Surface 

The collection of responses that correspond to all the points in the study domain forms the 

response surface. To obtain the response surface. it is necessary to interpolate using a 

mathematical model (figure 6) [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor 1 

Factor 2 

Figure 5 : Study domain [4] 

Study domain 

-1 

-1 

+1 

+1 

Response 

Factor 1 

Factor 2 

Figure 6 : Response surface [4] 
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4.5. Centered and Scaled Variables  

When the lower level of a factor is represented by (-1) and the upper level is represented by 

(+1), two important changes occur. these two changes involve the introduction of new variables 

called centered and scaled variables. The conversion of the original variables Aj to the coded 

variables xj (and vice versa) is given by the following formula. where A0 is thex central value 

[1, 4, 5]. 

Where:                       𝒙𝒋 =
𝑨𝒋−𝑨𝟎

𝑺𝒕𝒆𝒑
 

With: 

𝐴0 =
𝐴+1+𝐴−1

2
                                     𝑆𝑡𝑒𝑝 =

𝐴+1−𝐴−1

2
 

 

Example 1: 

 

An experimenter chooses for the temperature factor to be 20°C at the low level (-1) and 

60°C at the high level (+1). In coded units. what is the corresponding temperature for 30°C? 

Let’s calculate the step for the speed factor. It’s equal to half the difference between the high 

and low levels, so: 

𝑆𝑡𝑒𝑝 =
60 − 20

2
= 20°𝐶 

A0 is the center value between the high and low levels; that is, it is half of the sum of 

the high and low levels: 

𝐴0 =
60 + 20

2
= 40°𝐶 

 

𝑋 =
𝐴 − 𝐴0

𝑆𝑡𝑒𝑝
=

30 − 40

20
= −0.5 

A temperature of 30 °C is therefore, for this example. equal to -0.5 in coded values. 

 

Example 2: 

 

 We may also want the value in original units. knowing the coded value. What is the 

value of the temperature factor corresponding to +0.5 in coded units?  

Write equation (1): 

+0.5 =
𝐴 − 40

20
 

So: A= 40+ (20×0.5) =50 

(1) 
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The coded temperature 0.5 corresponds to a temperature of 50 °C. 

 

The advantage to using coded units lies in their power to present designed experiments in 

the same way, regardless of the chosen study domains and regardless of the factors. Seen this 

way. DOE theory is quite generalizable. 

 

4.6.Experimental matrix  
 

 The experimental matrix (or design matrix) is the table that indicates the number of 

experiments to be carried out with how to vary the factors and the order in which the 

experiments must be carried out, this table can be arranged using either the original variables 

or the coded variables (-1 and +1) [4, 9].  

 

 For 2k design. build a table with 2k rows and k columns, the rows are labeled with factor-

level combinations in standard order, and the columns are labeled with the k factors. In 

principle, the body of the table contains +1’s and −1’s. with +1 indicating a factor at a high 

level, and −1 indicating a factor at a low level [4, 9]. 

 

 In Table 1, the factorial designs for 2, 3 and 4 experimental variables are shown. for 

example, for 2 factors factorial design (22), the first column of the matrix is used to designate 

the trials numbers. The second column holds the first factor (x1), with its designated levels listed 

in order. The third column holds the second factor (x2) and also lists the experimental runs in 

order. The results are written in the fourth column of the experimental matrix.  

 

Table 1: Experimental matrix of factorial designs (2k) 

Two variables 22 Three variables 23 Four variables 24 

     N°      x1      x2 N°         x1         x2           x3 N°       x1        x2       x3        x4 

1 - 1         -1 

2 +1         -1 

3 - 1        +1 

4 +1        +1 

1              -1         -1            -1    

2             +1 - 1            -1 

3              -1 +1            -1 

4 +1 +1            -1 

5  -1 - 1           +1 

6 +1 - 1           +1 

7  -1 +1           +1 

8 +1 +1           +1 

1           -1       -1      -1         -1 

2          +1      - 1      -1         -1 

3           -1      +1      -1         -1 

4          +1      +1      -1         -1 

5           -1      - 1     +1         -1 

6          +1      - 1     +1         -1 

7           -1      +1     +1         -1   

8          +1      +1     +1         -1 

9          - 1       -1      -1    +1 

10        +1       -1      -1        +1 

11         -1      +1      -1      +1 
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4.7.Calculation matrix of effects 

 
 The calculation matrix of effects used to calculate the model coefficients; it is obtained 

by adding to the left of the experiment matrix. a column containing only 1 s, corresponding to 

the fictive variable x0. The other columns correspond to the interactions of the different factors, 

they are obtained by performing the line by line product of the columns of the corresponding 

factors (table 2). 

 Once the signs for the main effects have been established. the signs for the remaining 

columns can be obtained by multiplying the appropriate preceding columns row by row. For 

example, the signs in (x1.x2) column are the product of the x1 and x2 column signs in each row. 

 

Table 2: Calculation matrix of coefficient for k=3 factors [4, 9] 

x0 x1 x2 x3 
x1 x2 x1 x3 x2 x3 x1 x2 x3 Y 

1 -1 -1 -1 1 1 1 -1 y1 

1 1 -1 -1 -1 -1 1 1 y2 

1 -1 1 -1 -1 1 -1 1 y3 

1 1 1 -1 1 -1 -1 -1 y4 

1 -1 -1 1 1 -1 -1 1 y5 

1 1 -1 1 -1 1 -1 -1 y6 

1 -1 1 1 -1 -1 1 -1 y7 

1 1 1 1 1 1 1 1 y8 

 

 Table 2 has several interesting properties: (1) Except for column x0. every column has 

an equal number of plus and minus signs, (2) The sum of the products of the signs in any two 

columns is zero, (3) Column x0 multiplied times any column leaves that column unchanged, (4) 

The product of any two columns yields a column in the table. For example, x1 × x2 = x1 x2. 

 

12        +1      +1      -1        +1 

13         -1       -1     +1        +1 

14        +1       -1     +1        +1 

15         -1      +1     +1        +1 

16        +1      +1     +1        +1 
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4.8. Factor main effect 

 The effect of a factor “A” on the response “y” is obtained by comparing the values taken 

by “y” when A increases from level (-1) to level (+1). Let y1 and y2 are these values (figure 

7) [2, 4- 6]. 

 

We distinguish: 

 Global effect of factor A by (𝒚𝟐 − 𝒚𝟏). 

 Main effect of factor A by (𝒚𝟐 − 𝒚𝟏)/2. 

 

A main effect plot (figure 7) is a plot of the mean response values at each level of a design 

process variable. One can use this plot to compare the relative strength of the effects of various 

factors. The sign and magnitude of a main effect would tell us the following: 

 

 The sign of a main effect tells us of the direction of the effect. i.e. if the average response 

value increases or decreases. 

 

 The magnitude tells us of the strength of the effect. 

 

If the effect of a design variable is positive, it implies that the average response is higher at 

high level than at low level of the parameter setting. In contrast, if the effect is negative, it 

means that the average response at the low level setting of the parameter is more than at the 

high level [1, 4, 5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Illustration of global effect and main effect [5, 6]. 

-1             0              +1 

Factor A  

        y 

 

 

Global Effect  

Main Effect 
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4.9. Interaction effect  

 Interaction occur between two factors A and B if the effect of A on the response 

depends on the level of B or vice versa (figure 8). In other words. the effect of A on the response 

is different at different levels of B. The interaction between A and B can be computed using the 

following equation [1, 2, 4, 8]: 

𝐼𝐴.𝐵 =
1

2
(𝐸𝐴.𝐵(+1) − 𝐸𝐴.𝐵(−1)) 

     Where 𝐸𝐴.𝐵(+1) is the effect of factor ‘A’ at high level of factor ‘B’ and where 𝐸𝐴.𝐵(−1) is 

the effect of factor ‘A’ at low level of factor ‘B’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Mathematical modeling of the response  

 It is reasonable to assume that the outcome of an experiment is dependent on the 

experimental conditions. This means that the result can be described as a function based on the 

experimental variable [2, 5-8]: 

y =f(xi)+ ε 

 A 

B = 1 

B = -1 

y 

Absence of interaction between A and B  

-1 1 
 A 

Low interaction between A and B 

 B = 1 

 B = -1 

y 

-1 1 

y 

High interaction between A and B 

B = -1 

B = 1 

A 

-1 1 

Figure 8 : Interactions plots [1, 2, 4, 8] 

(2) 

(3) 
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The function f(xi) is approximated by a polynomial function and represents a good 

description of the relationship between the experimental variables and the responses within a 

limited experimental domain. This function is expressed as [2, 5-8]: 

�̂� = 𝑏0 + ∑ 𝑏𝑗𝑥𝑗 + ∑ 𝑏𝑢𝑗𝑥𝑢𝑥𝑗 + ∑ 𝑏𝑢𝑗𝑓𝑥𝑢𝑥𝑗𝑥𝑓
𝑘
𝑓=1 +  ∑ 𝑏𝑗𝑗𝑥𝑗

2𝑘
𝑗=1

𝑘
𝑢, 𝑗=1
𝑢≠𝑗

𝑘
𝑗=1  

 

Where:            �̂� is the response also called dependent variable;  

      ε is the pure error which comes from the response measurement; 

       xu   represents a level of factor u;  

       xj  represents a level of factor j; 

      𝑏0, 𝑏𝑗, 𝑏𝑢𝑗, bujf and 𝑏𝑗𝑗  are the coefficients of the polynomial model. 

 

This model is called the a priori model, or the postulated model. 

 

Then:      𝑦 = �̂� + 𝜀 

 

Three types of polynomial models will be discussed and exemplified with two variables, 

𝑥1 and 𝑥2. 

The simplest polynomial model contains only linear terms and describes only the linear 

relationship between the experimental variables and the responses. In a linear model, the two 

variables x1 and x2 are expressed as: 

�̂� = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 

 

The next level of polynomial models contains additional terms that describe the 

interaction between different experimental variables. Thus. a second order interaction model 

contains the following terms: 

�̂� = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 

 

The two models above are mainly used to investigate the experimental system, i.e.. with 

screening studies, robustness tests or similar. 

 

To be able to determine an optimum maximum or minimum. quadratic terms have to be 

introduced in the model. By introducing these terms in the model, it is possible to determine 

non-linear relationships between the experimental variables and responses.  

 

     (4) 

(5) 

 

(6) 
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The polynomial function below describes a quadratic model with two variables:  

�̂� = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2 

 

 Linear regression  

Parameter estimate in multiple linear regression models is done using least squares method. 

In case that there are multiple observations (n) on the response variable y1. y2. …yn. and that 

there is observation at each input variable xij. (i = 1. 2. …. n) than it can be represented as matrix 

notation [3, 4, 8]: 

y = X β+ ε 

where:  

y is the response vector; 

X is the model matrix or the design matrix which depends on the experimental 

points used in the design and on the postulated model; 

β is the coefficients matrix; 

ε  is the error matrix; 

 The general matrix form of the model becomes as follows: 

 

This system of equations cannot be. in general, solved simply because there are fewer 

equations than there are unknowns. To find the solution., we must use special matrix methods 

generally based on the criterion of least squares. The results are estimations of the coefficients. 

denoted as β. 

  

The algebraic result of the least-squares calculations is [3, 4, 8]: 

  Y.X.X.XB
T

-1
T






  

Where XT is the transpose matrix of X (appendix 1). 

Two matrices appear frequently in the theory of experimental design: 

 

(7) 

(9) 

(8) 
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 The information matrix   𝑋𝑇𝑋 

 The dispersion matrix [𝑋𝑇𝑋]-1 

 

6. Types of designs of experiments  
 

 Different types of designs are available; their choice is determined by the objectives 

of the experiment and the current state of knowledge about the experimental environment.  

They can be categorized as follows:  

 Screening;  

 Factorial design;  

 Mixture design;  

 Response surface design  

 In this course. we will essentially detail the full factorial design as an example of a first 

order model development, and the centered composite design (CCD) as an example for RSM 

modeling, for the other designs we will give some principles.  

 

6.1.First order factorial designs 

6.1.1. Full (2k) or fractional (2k–r) factorial experimental designs 

 

 Factorial design and fractional factorial design which both of them with two levels for 

each factor (k) were commonly used in process of screening design due to their efficiency and 

economical consideration.  

 

In a full factorial experiment, responses are measured at all combinations of the 

experimental factor levels. The combinations of factor levels represent the conditions at which 

responses will be measured. Each experimental condition is a called a "run" and the response 

measurement an observation. The entire set of runs is the "design". Fractional factorial design 

enables the evaluation of a relatively large number of factors in small number of runs or 

experiments. This method was designed by fractioning a full factorial design of 2k combinations 

into 2k- r combinations; It should be noted that the fractional factorial design can reduce the 

number of runs or experiments but it does not possible to estimate all major and interaction 

effect separately [2, 3, 5-10]. 
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The expression of full factorial design regression equation with interactions is as follow [1, 2, 

4-11]. 

�̂� = 𝑏0 + ∑ 𝑏𝑗𝑥𝑗 + ∑ 𝑏𝑢𝑗𝑥𝑢𝑥𝑗 + ∑ 𝑏𝑢𝑗𝑓𝑥𝑢𝑥𝑗𝑥𝑓
𝑘
𝑓=1

𝑘
𝑢, 𝑗=1
𝑢≠𝑗

𝑘
𝑗=1

 
Where ‘ ŷ ’ stands for the predicted response, xj. stands for the settings (factors), bj.buj and bujf 

are the respective coefficients and b0 stands for the intercept of mean. 

  

 Majority of factorial experiments are composed of only two-level factors with four 

treatment combinations in total (2k. where k is the number of factors) and are generally called 

as 2x2 factorial designs (figure 9 (a)). If there are three factors. the full factorial design points 

are at the vertices of a cube (figure 9 (b)) and for more factors. the design points are the vertices 

of a hypercube [3, 5, 6, 9, 11]. 

 

 

 

 

 

 

 

 

  

 Mean effects coefficients estimation 

 The simple calculation of the model coefficients comes from the algebraic properties of 

the effect’s matrix of the factorial designs. Fisher and Yate showed that an orthogonal 

matrix leads to the independence of the model coefficient estimates. The scientist Jacques 

Hadamard (appendix 1) demonstrated the following expression [3, 5, 9-11]: 

 

     INX.X
T

  

 

Where. [I] is the identity matrix. N the number of experiments and [X]T the transpose matrix of 

[X]. 

 The dispersion matrix  is written as follows:   1T.XX


(10) 

Figure 9: 2k factorial designs (a) k=2, 22 factorial design requires four experiments                     

                                      (b) k=3, 23 factorial design requires eight experiments 
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 The calculation of the coefficients is then done by the scalar product of column (y) 

by the corresponding column (xj), divided by the number of trials N. Thus, for linear effects. 

the values of the coefficients are determined by: 

 

 

 



N

1i

iijuuj yxx

N

1
b   .         j =1.….k     .  u = 1.…. k       .      j ≠ u 

 



N

1i

iifjuujf yxxx

N

1
b ,  f=1…….k 

 

Example 1:  

 We want to test the influence of Pressure (x1) and Temperature (x2) (two factors) on the 

yield (Y) of a chemical reaction (response), for this purpose, a 22 factorial design is used. The 

design matrix is as follow (table 3) [4, 6, 14-16]. 

 

As the number of trials N= 4. we deduce that:  

𝒃𝟎 =
𝟏

𝟒
 (𝟔𝟎 + 𝟕𝟖 + 𝟔𝟑 + 𝟖𝟗) = 𝟕𝟐. 𝟓  

𝒃𝟏 =
𝟏

𝟒
 (– 𝟔𝟎 + 𝟕𝟖 − 𝟔𝟑 + 𝟖𝟗) = 𝟏𝟏 

𝒃𝟐 =
𝟏

𝟒
 (– 𝟔𝟎 − 𝟕𝟖 + 𝟔𝟑 + 𝟖𝟗) = 𝟑. 𝟓 

𝒃𝟏𝟐 =
𝟏

𝟒
 (𝟔𝟎 − 𝟕𝟖 − 𝟔𝟑 + 𝟖𝟗) = 𝟐 

 

 

 

 





N

1i

ijij 0,1,..kj    ,  yx
N

1
b

 



















N1....0

.N1.

0....N1

.XX
1T

(11) 

(12) 

(13) 
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Table 3: Calculation coefficient matrix for k= 2 factors 

 

 These results allow us to write the model giving chemical reaction yield according to 

the levels of the two factors (in coded units): 

 

�̂�= 72.5 + 11. 𝑥1 + 3.5. 𝑥2 + 2. 𝑥1. 𝑥2 

 The function above is now describing how the experimental variables and their 

interactions influence the response �̂�. The model shows that variable 𝑥1  (the pression) has the 

largest influence on the yield, because its coefficient (𝑏1 = 𝟏𝟏 > 𝑏𝟐 = 𝟑. 𝟓) is the most 

important. Besides this, the pression coefficient has positive sign, this means that an increase 

of the pression from (-1) to (+1) results in an increase of the reaction yield by 2×11=22%                

(2 x Main effect).  

 

Example 2: 

 Gold-plated jewelry is covered with a thin layer of gold that must look identical to solid 

gold. and also have mechanical resistance to ensure a long life. Three variables are chosen to 

study their influence on gold deposition speed by electrolysis (electrochemical process). The 

low and high levels of factors are summarized in table 4 and the experimental matrix and results 

is given in table 5. 

 The study objective is to carry out the deposition as quickly as possible while 

maintaining quality (the response is the speed of gold deposition) [4]. 

 

Table 4: Factors and study domain 

 

 

 

Trial 

 

x0 x1 x2 

 

x1.x2 Y 

(%) 

 

1 1 -1 -1 +1 60 

2 1 +1 -1 -1 78 

3 1 -1 +1 -1 63 

4 1 +1 +1 +1 89 

Level (–1) 2 bars  50 °C   

Level (+1) 4 bars  70 °C  
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Table 5: Experimental matrix and results 

 

 

 Since we have three factors each taking two levels. and since we think that a linear 

model is sufficient to explain the phenomena, a 23 factorial design is used. 

�̂� = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏12𝑥1𝑥2 + 𝑏13𝑥1𝑥3 + 𝑏23𝑥2𝑥3 + 𝑏123𝑥1𝑥2𝑥3 

 

The different coefficients are calculated and summarized in table 6.  

 

Table 6: Effects and interactions of the factors (coded units) 

Response: Deposition speed 

 

 

 

 

 

 

 

 

 

 

  

 These results allow us to write the model giving deposition speed according to the levels 

of the three factors (in coded units): 
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Factor 1 ( 𝑥1: gold concentration) is the most influential followed by Factors 2 (𝑥2).  Factor 3 

(𝑥3) is not directly influential, but it is influential via the interaction with other factors. The 

three second order interaction terms are close to one another except for the difference in sign. 

The third-order interaction is small by comparison. 

 

 We use this equation to make calculations and to draw graphs using Minitab package 

software as applications in this course.  

 

 Two diagrams are useful for a deeper understanding of the influence of the factors: the 

effect diagram, which indicates the principal effects of the factors. and the interaction 

diagram, which shows the second-order interactions among the factors. The different steps to 

draw these diagrams of this example using Minitab software package are given in applications 

part of this course (example 2). 

 

 Effect Diagram  

 The prediction profiler shows the principal effects of the factors, i.e., the coefficients of 

the first-degree terms of the mathematical model. The diagram can be constructed with coded 

units or with original or natural units (figure 10), since the appearance is the same. When 

presenting results, it is much easier to use the natural units. which give immediate values for 

comparison [1, 4]. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 The deposition rate grows larger as the solution contains more gold and as the current 

density is slightly raised. The cobalt concentration of the electrolytic solution does not seem to 

play any part in the reaction. But, to have a complete interpretation of the results, we have to 

take the interactions into account, and we have seen that they are not negligible. 

Figure 10: Effect of the factors on the response [1, 4] 
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 An interaction diagram shows the effects of a factor at low and high levels on another 

factor. The diagram in figure 11 can be interpreted as follows. 

 

 The response is shown on the y-axis and the scales of the factors are on the x-axis. In 

the upper right square, the effect of the current density factor is shown for low (2) and high (15) 

levels of gold concentration. In the lower left square. the gold concentration factor is shown for 

low (5) and high (25) levels of the current density factor. 

 

 If the lines are not parallel. there is a significant interaction. This is the case for two 

factors where the slopes of the effects are different. and the lines cross each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 We could also present the interaction plot by taking the interactions two at a time and 

drawing them in a single table as in figure 12. 

 

 The interaction plot clearly shows that the interactions are not negligible and that they must be 

taken into account during the interpretation of the results. 

 

 The maximum deposition speed is attained when the three factors are at their high levels: 

15 g/L of gold. 1.5 g/L of cobalt in the electrolytic solution. and a current density of 25 A/dm2. 

which gives a deposition speed of 134 mg/min. 

 

 

Figure 11: Interaction profile illustrating the importance of the interactions [1, 4] 
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6.1.2. Plackett Burman design 

 A popular class of screening designs is the Plackett-Burman design (PBD), developed 

by R.L. Plackett and J.P. Burman in 1946. It was designed to improve the quality control process 

that could be used to study the effects of design parameters on the system state so that intelligent 

decisions can be made. Plackett and Burman (PB) devised orthogonal arrays are useful for 

screening, which yield unbiased estimates of all main effects in the smallest design possible. 

Various number or ‘n’ factors can be screened in an ‘n + 1’ run PB design (table 7) [1, 2, 5, 6, 

10].  

 Plackett-Burman designs were applied as a screening method to evaluate the most 

significant factors with the fewest experiments, they are based on Hadamard matrices in which 

the number of experimental runs or trials is a multiple of four, i.e, N=4. 8. 12. 16. . . . and so 

on, where N is the number of trials/runs, and the results are interpreted using the first-degree 

polynomial model [1-6, 9,10]. 

Figure 12: Interaction profiles regrouped into a single table 
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k

1j

jj0 xbbŷ  

Where ‘ ŷ ’ stands for the predicted response, xj stands for the settings (factors), bj are the 

respective coefficients and b0 stands for the intercept of mean. 

 For screening designs. experimenters are generally not interested to investigate the 

nature of interactions among the factors. The aim is to study as many factors as possible in a 

minimum number of trials and identifying those that need to be studied in further rounds of 

experimentation [3, 9]. 

 Table 7 illustrates the competed design matrix for 8 run P–B design. this allows one to 

study up to 7 factors at 2-levels. 

 

             Table 7: An 8 run geometric P–B design 

 

 

 The pattern for the first row (or column) determines the entire design. Each subsequent 

row (or column) is simply the previous row, say, shifted one step to the right, with the final 

symbol from the previous row being placed at the start of the next row. As such it is simply a 

cyclical arrangement of the first row (or column). The final row (in the example below) is set 

to all minus (-) [9]. 

 

Example:  

 We consider a plastic foam extrusion process. A process improvement team was formed 

to investigate what effects porosity of plastic parts. After a thorough brainstorming session with 

quality engineers, process manager and operators, it was identified that eight process parameters 

might have some impact on porosity. Table 8 presents the list of parameters and their levels for 

the experiment. Each factor was studied at 2-levels. As the total degrees of freedom for studying 

8 factors at 2-levels is equal to 8, it was decided to choose a 12 run P–B design with 11 degrees 

(10) 
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of freedom. The extra 3 degrees of freedom can be used to estimate experimental error. Table 

9 shows the experimental design with response [1, 4]. 

 

Table 8: List of process parameters and their levels for the experiment  

 

 

Table 9: Experimental Layout for 12 run P–B design with response values 

 

Note: Numbers in parentheses represent the random order of experimental runs or trials. 

 

 The objective of the experiment was to determine the key parameters which affect 

percentage porosity. Minitab software system is used for analysis purposes. Figure 13 illustrates 

a standardized Pareto plot of effects for the experiment drawn with Minitab software [1, 4]. 
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Figure 13 shows that process parameters such as G (adhesive coating temperature). E (extrusion 

speed) and F (adhesive coating thickness) have significant impact on porosity.  

 

 These parameters should be further explored using full fractional designs and more 

advanced methods such as response surface methods. if necessary. In the next stage of 

experimentation, one should analyses the interactions among the parameters E. F and G. In 

order to identify what levels of these parameters yields minimum porosity. we may consider an 

effects plot (figure 14). Figure 14 shows that E at high level. F at low level and G at high level 

yields minimum porosity. 

 

 The figure shows that porosity decreases as temperature is kept at high level (100 °C). 

Similarly, porosity decreases as extrusion speed is kept at high level (4.5 m/min) and coating 

thickness at low level (0.7 mm). 

 

 

 

 

 

 

Figure 13: Standardized Pareto plot of effects for the above experiment [4] 
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6.1.3. Mixture designs 

A mixture design is a particular kind of DOE in which the factors are ingredients or 

components of a mixture. Mixtures are different from other types of experimental design 

because the proportions of the constituents must add up to 100%. Increasing the level of one 

constituent necessarily reduces the level of the others. The constraint that the proportions all of 

the ingredients must add up to 100% creates a unique design region that differs from classical 

design settings. The additional mixture contraint is as follow [1-4, 11] : 

 

where q represents the number of ingredients in the system under study and the proportion of 

the i th ingredient in the mixture is denoted by 𝑥i. 

where xi represents the proportion of the ith component in the mixture. 

 

 Experimental points location 

 A mixture with three constituents and when there are no constraints, the experiment 

points are distributed throughout the study domain (figure 15). Depending on the arrangement 

of these points, we distinguish several types of mixing designs: 

1. Lattice designs. 

2. Simplex centroid designs.  

3. Augmented simplex centroid designs. 

 

 

 

(14) 

Figure 14: Main Effects plot for the experiment [4] 
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 Mixture design mathematical models 

 

 For first order models with three component mixture. in a given point. the model can be 

written [1- 4, 9, 10]:  

�̂� = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 

But the fundamental mixture constraint must be taken into account. The proportions xi are not 

independent. Using the constraint. we know:  

 

𝑥1 + 𝑥2 + 𝑥3 = 1 

The equation above can then write: 

�̂� = 𝑏0(𝑥1 + 𝑥2 + 𝑥3) + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 

 

After regrouping the parameters. we obtain: 

�̂� = (𝑏0 + 𝑏1)𝑥1 + (𝑏0 + 𝑏2)𝑥2 + (𝑏0 + 𝑏3)𝑥3 

 

This model has no constant and if we write: 

 𝑎1 = (𝑏0 + 𝑏1)        .         𝑎2 = (𝑏0 + 𝑏2)        .       𝑎3 = (𝑏0 + 𝑏3)         

 

The model takes the following form: 

�̂� = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 

 

 

 

Lattice designs 

Figure 15 : Mixture designs types 

Simplex centroid designs  Augmented simplex  

centroid designs 
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 Second order Models 

The second order mathematical model for three component mixture has the following 

expression: 

�̂� = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏12𝑥1𝑥2 + 𝑏13𝑥1𝑥3 +  𝑏23𝑥2𝑥3 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2 + 𝑏33𝑥3
2 

 

Taking into account the fundamental mixture constraint:    𝑥1 + 𝑥2 + 𝑥3 = 1 

which can be written in terms of x1:   𝑥1 = 1 − 𝑥2 − 𝑥3 

multiplying each side by x1 gives:  𝑥1
2 = 𝑥1 (1 − 𝑥2 − 𝑥3) 

                                                        𝑥1
2 = 𝑥1  − 𝑥1𝑥2 − 𝑥1𝑥3 

 

 This shows that the squared term is in fact equal to a first-degree term and interaction 

term. So, the second-degree model therefore contains only first order and interaction terms, and 

can be written:  �̂� = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3 +  𝑎23𝑥2𝑥3 

 

6.2. Second order experimental designs (Response Surface Methodology) 

Response Surface Methodology (RSM) is a compilation of statistical and mathematical 

techniques useful for modeling and analyzing problems. which predicts the response of interest 

influenced by several variables to optimize the product. RSM was first introduced by Box and 

Wilson in 1951 and now it is comprehensively used for different purposes in chemical and 

biological processes [2, 4, 8, 11].    

 

 In many instances. RSM uses the statistical experimental designs like Central 

Composite Design (CCD); which will be detailed in this course; and Box Behnken Design 

(BBD) to develop empirical models, which relate a response and mathematically depicts the 

relationships existing among the independent (inputs or causes. i.e. potential reasons for 

variation) and dependent variables (output or outcome. i.e. the values which result from the 

independent variables) of the process, the RSM provides contour plots (figure 16(a)) and three-

dimensional graphs (3D) (figure 16 (b)) to visualize the shape of response surface. 

 

 In the analysis of data, it is desirable to provide both graphical and statistical analyses. 

Plots that illustrate the relative responses of the factor settings under study allow the 

experimenter to gain a feel for the practical implications of the statistical results and to 

communicate effectively the results of the experiment to others. 
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6.2.1. Central Composite Design (CCD) 

The two-level designs were useful to be applied in the screening study. However, the two-

level designs lack information about maxima or any non-linear relationships since its 

application lead only on linear models. Performing a full factorial design with the level more 

than two will affect the effectiveness of the design itself due to the greater number of 

experiments that should be done. Hence, it is important to develop a design which allows greater 

level numbers without running every combination experiment. Presented by Box and Wilson 

(1951), the CCD becomes solution to overcome these problems [1, 4, 8, 10, 11]. 

 

Composite designs lend themselves well to a sequential study. The first part of the study is 

a full- or fractional-factorial design supplemented by center points to check the validity of the 

first-degree. factorial model. If the validation tests are positive (the response measures at the 

center of the field are statistically equal to the predicted value at the same point), the study is 

generally completed. If the tests are negative. supplementary trials are undertaken to establish 

a second-degree model. The additional trials are represented by the design points located on the 

axes of the coordinates and by new central points. The points located on the coordinate axes are 

called star points. Composite plans therefore have three parts (figure 17), in the present [5, 8-

11]: 
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 Factorial design 

This is a full- or fractional-factorial design with two levels per factor. The experimental points 

are at the corners of the study domain. 

 Star design 

The points of a star design are on the axes and are in general, all located at the same distance 

from the center of the study domain. 

 Center points 

There are usually center points, at the center of the study domain for both the factorial designs 

and the star designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To calculate the total number of trials. N, to carry out. sum the following: 

 The trials from the star design (Nα= 2.k) 

 The trials at the center (N0) 

So, the number of trials for a composite design is given by the equation. 

N = Nf + Nα+ N0 

 

 Star points are at some distance α from the center, based on the properties desired for 

the design and the number of factors in the design, the precise value of α are summarized in 

table 10 [4, 5, 9].  

 

 

 

 

Figure 17: Illustration of central composite designs for (a) two factors and (b) three factors 

optimization. Every design consists of factorial points (●), star points (*), and central points (□). 
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Table 10: Values of α  and N0 according to the properties of the composite design [1, 4, 9] 

 

 

 

A CCD supports the building of a polynomial equation which takes into account the 

individual, interactive and quadratic terms and basically reads as follows [1, 4, 8, 11]. 

  



 


k

1j

k

ju
1j,u

k

1j

2

jjjjuujjj0 xbxxbxbbŷ  

Where 


k

1j

jj xb is the individual effect of each factor; 



k

ju
1j,u

juuj xxb indicates the interactions 

amongst the variables; finally, the term 


k

1j

2

jjj xb  takes into account a possible non-

linear/quadratic effect of some factors.  

 

 

 

 

 

 

 

 

K 2 3 4 

5 

(25) 

5 

(25-1) 

6 

(26) 

6 

(26-1) 

 

 

 

8 

5 

≥ 1 

12 

6 

≥ 1 

12 

7 

≥ 1 

17 

10 

≥ 1 

10 

6 

≥ 1 

24 

15 

≥ 1 

15 

9 

≥ 1 

  1.41 1.68 2.00 2.00 2.38 2.83 2.38 

 16 

13 

26 

20 

36 

31 

59 

52 

36 

32 

100 

91 

59 

53 

N0 

 Orthogonality 

 Uniforme 

precison  

 Rotatability  

Nf 
 Orthogonality 

 Uniforme 

precision  
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Table 11 and 12 and shows a typical scheme for a 2-factor and 3-factor CCD respectively. 

 

Table 11: Calculation matrix of CCD for 2 factors and N0= 4 replicates [1, 4] 

Trial x0 x1 x2 x1 x2 𝑥1
2

 𝑥𝟐
𝟐

 

1 1 -1 -1 1 1 1 

2 1 1 -1 -1 1 1 

3 1 -1 1 -1 1 1 

4 1 1 1 1 1 11 

5 1 -1.41 0 0 (-1.41)2 0 

6 1 1.41 0 0 (1.41)2 0 

7 1 0 -1.41 0 0 (-1.41)2 

8 1 0 +1.41 0 0 (1.41)2 

9 1 0 0 0 0 0 

10 1 0 0 0 0 0 

11 1 0 0 0 0 0 

12 1 0 0 0 0 0 

 

Table 12: Calculation matrix of CCD for 3 factors and N0= 4 replicates [1, 4]. 

Trial x0 x1 x2 x3 x1 x2 x1 x3 x2 .x3 𝒙𝟏
𝟐

 𝒙𝟐
𝟐

 𝒙𝟑
𝟐

 

1 1 -1 -1 -1 1 1 1 1 1 1 

2 1 1 -1 -1 -1 -1 1 1 1 1 

3 1 -1 1 -1 -1 1 -1 1 1 1 

4 1 1 1 -1 1 -1 -1 1 1 1 

5 1 -1 -1 1 1 -1 -1 1 1 1 

6 1 1 -1 1 -1 1 -1 1 1 1 

7 1 -1 1 1 -1 -1 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 

9 1 -1.68 0 0 0 0 0 (-1.68)2 0 0 

10 1 +1.68 0 0 0 0 0 (+1.68)2 0 0 

11 1 0 -1.68 0 0 0 0 0 (-1.68)2 0 

12 1 0 +1.68 0 0 0 0 0 (+1.68)2 0 

13 1 0 0 -1.68 0 0 0 0 0 (-1.68)2 
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14 1 0 0 +1.68 0 0 0 0 0 (+1.68)2 

15 1 0 0 0 0 0 0 0 0 0 

16 1 0 0 0 0 0 0 0 0 0 

17 1 0 0 0 0 0 0 0 0 0 

18 1 0 0 0 0 0 0 0 0 0 

 

- Coefficient estimation 

 The following expression let us the coefficients estimation of CCD regression 

equation [1, 2, 4-6].                   Y.X.X.XB
T

-1
T






  

6.2.2. Box Behnken Design 

 Box-Behnken design (BBD) is a class of rotatable second-order response surface design 

based on three-level incomplete factorial design devised by Box and Behnken in 1960. This 

design was more efficient and economical than other three-level designs due to its ability to 

allow points selection from the three-level factorial arrangement BBD ensures that it does not 

contain combinations for which all factors are simultaneously at their highest or lowest levels. 

Besides, each factor requires only three levels instead of the five required for CCD, which may 

be experimentally more convenient and less expensive than CCD with the same number of 

factors but it is not suited for sequential experiments (figure 18) [5, 8]. 

The number of experiments (N) required for the development of BBD is defined as         

N= 2k (k-1) + N0, where k is number of factors and N0 is the number of central points (figure 

18) [4, 5, 8, 11]. 

 

 

 

 

 

 

 

 

 Figure 18. Illustration of the two graphical forms for the three factors BBD: (a) the 

cube for BBD and (b) three interlocking 22 factorial design [2, 11] 
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6.2.3. Doehlert design 

 Doehlert (1970) developed an alternative experimental design which has several 

advantages such as few experimental points, high efficiency and economically effective. 

Different from central composite and BBDs, these designs are not rotatable due to their number 

of estimations for varied factors. Nevertheless, Doehlert designs have different numbers of 

levels for different factors and allow to fill the provided factor space uniformly according to its 

possibility. Belonging to a second-order experimental design, Doehlert designs describe 

different characteristics for different levels: 1) a circular domain for two variables; 2) spherical 

domain for three variables; and 3) hyperspherical domain for four and more variables, which 

accents the uniformity of the studied variables in the experimental domain. Figure 19 illustrates 

the model of the Doehlert design [2, 5, 11]. 

 

 

 

 

 

 

 

 

 

 

7. Statistical analysis of the data 

 After the estimation of the factor regression coefficients and the first order or second 

order regression equation is developed, we have to test it validity and adequation. 

 

7.1. Test of coefficients significance 

 To evaluate the importance of a coefficient. we apply statistical theory that compares 

the coefficient (𝑏𝑗) with its standard deviation (𝑆𝑏𝑗) using the ratio 𝑡𝑗 =
/𝑏𝑗/

𝑆𝑏𝑗
 .          

 

 

 

Figure 12. Illustration of the model of the Doehlert design for the optimization Figure 

Figure 19: Illustration of the model of the Doehlert design for the optimization of (a) 

two variables and (b) three variables [2, 11] 

(15) 
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This ratio is called Student’s t or the t-ratio [3-5, 9].  

With: 

                               

 

 

The variance of the measurements (or of reproducibility  𝑆𝑟𝑒𝑝
2 ) is estimated generally by that 

calculated at the center of the experimental domain: 

 

𝑆rep
2 =

∑ (𝑦𝑖0−�̄�0)2𝑛0
𝑖=1

𝑛0−1
 

𝑦0̅̅ ̅=
∑ 𝑦𝑖0

𝑛0
𝑖=1

𝑛0
 

 

  n0: The trials number at the center;  

             𝑦𝑖0  :  i th experimental response value;      

              𝑦0̅̅ ̅: Mean of the trials replicated at the center domain;  

 

 Starting with the t-ratio. we can evaluate the probability that the coefficient is different 

from zero, or, said another way, if it is or is not significant using. either student table by reading 

the tabulated t (α. f=n0-1) value to compare it to the calculated one. or by software of DOE, by 

the calculus of probability p-value. If the p-value is close to zero (for biologists and chemists. 

p-value <0.05), the coefficient is influential and therefore is not equal to zero. If the p-value is 

close to one (p-value > 0.05), the coefficient cannot be distinguished from zero and is therefore 

not influential [1, 3, 4, 9]. 

 

Example: 

 We consider a chemical reaction yield which depends on two factors. temperature and 

pressure. The technician decides to carry out a first order experimental design without 

interactions with the following experimental domain (table 13) [1, 4]: 

 

Table 13: Levels and factors values 

 

 

 

 

N

rep

bj

S
S 

  Low level : -1 High level :+1 

Temperature : T 60oC  80oC  

Pression : P  1 bar  2 bars  

(16) 

(17) 

(18) 
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The response y studied; yield of the experiment; is given in table 14, for two factors we have 

to do 22= 4 trials. 

 Table 14: Design matrix and response 

 

 

 

 

 

The results of calculating the effects from the effect calculation matrix are given in table 15. 

Table 15: Effect calculation matrix and the calculated effect 

 

 

 

 

 

 The model equation is:       �̂� = 71.25 + 3.75𝑥1 + 8.75𝑥2 

 

To test the significance of the coefficients, we need to calculate the residual variance because 

of the absence of replicates (𝑆𝑏𝑗
2 = 𝑆𝑟𝑒𝑠

2 ) then the results of table 16. 

 

Table 16. Residual calculation results 

Trials y (%) �̂� (%) ei  ei
2  

1  60  58.75 1.25  1.5625 

2  65  66.25 -1.25 1.5625 

3  75  76.25 -1.25 1.5625 

4  85  83.75 1.25  1.5625 

 

ei= yi- �̂�𝑖 

 

 

 

 

Trial T  P  y (%) 

1  -1  -1  60 

2  +1 -1  65  

3  -1  +1 75  

4  +1 +1 85  

Trial X0 T  P  y (%) 

1  +1  -1  -1  60  

2  +1  +1  -1  65  

3  +1  -1  +1  75  

4  +1  +1  + 1 85  

Divider 4  4  4    

Affects  b0 = 71.25 b1 = 3.75 b2 = 8.75   
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Sbj² =𝑆𝑟𝑒𝑠
2 = 

1 

 
ei²= 

1

4−3
  ∑ 𝑒𝑖

2=  6.25    
N–l  

 

 Student test t consist to calculate:  

tj =
/bj/

Sbj
 

 Bilateral Student test give for significance level α=0.05 and degree of freedom f= N-m 

=4-3 (N is the number of trials. m is the coefficient number in the model) (Appendix 2). The 

tabulated value                               t (0.05. 1) = 12.71  

 For the effect b1 = 3.75 of Temperature. we have t1 = 3 < 12.71, we deduce that the 

effect of temperature T is not significant. 

 For the effect b2 = 8.75 of Pression. we have t2 = 7 < 12.71, the effect of Pression P is 

not significant. 

 

 The conclusion of this study is that we must reject a linear model to explain the yield 

of this chemical reaction. It would be necessary to test study with a second-degree 

polynomial model. 

 

7.2.  Analysis of Variance (ANOVA) 

 The aim of applying the analysis of variance method is to answer the question: is the 

difference between the obtained response means for the tested factors a result of the influence 

of tested factors or has it occurred randomly. 

 Analysis of Variance (ANOVA) consists of finding the source of variation of the 

responses. Suppose that the responses have been calculated with a postulated model, by using 

the method of least squares [1, 4, 9]: 

𝑦𝑖 = 𝑓(𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛  ) + 𝑒𝑖 

 

 In this case, the responses are written 𝑦�̂� and the errors as e. These theoretical errors take 

particular values, written as ri, and called residuals. The residuals are therefore particular values 

of the errors. We have:  

𝑦�̂� =  𝑓(𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛 ) 

(19) 

(20) 
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With the new notation. the equation giving the response can be written as: 

𝑦𝑖 =  𝑓(𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛  ) + 𝑟𝑖 

 

 Classical analysis of variance uses not only the responses themselves but also the 

difference between the responses and their mean (𝑦𝑖 − �̅�) or (𝑦�̂� − �̅�). This difference is 

designated as “errors about the mean.” In the case of calculated responses, we can also say 

“corrected for the mean” [1, 4].  

 

 In the case of the method of least squares. the mean of the observed responses is equal 

to the mean of the observed responses under the postulated model. Therefore. if �̅� is the mean 

of the responses [1, 4].  

 𝑦𝑖 − �̅� =𝑦�̂� − �̅� +ri 

 

Squaring both side of the equation gives: 

 

 This is the fundamental relation of analysis of variance. The left side is the sum of 

squares of the errors around the mean of the observed responses. This sum decomposes into 

two pieces: the sum of squares of the errors around the mean of the responses calculated with 

the model, and the sum of the squares of the residuals. 

 

 Suppose a polynomial regression model has been postulated for a given experiment, and 

the model assumptions appear to be satisfied, then it is appropriate to proceed with analysis of 

the data. The determination of significant factors affecting the dependent variables of interest 

(responses) is followed by (ANOVA) which uses tests based on variance ratios to determine 

whether or not significant differences exist among the means of several groups of observations. 

where each group follows a normal the analysis of the variance distribution [4, 9].   

 

 The analysis of variance is used very widely in the biological. social and physical 

sciences. The technique was first developed by R. A. Fisher and his colleagues in England in 

the 1920s [1, 4, 9].   

  

 7.2.1. Test of regression validation 

 In an F-test. the variance ratio between lack of fit (𝑆𝑟𝑒𝑠
2 ) and pure experimental error 

(𝑆𝑟𝑒𝑝
2 ). is being compared to tabled values of F-distribution (Appendix 3). If the calculated F 

(21) 

(22) 

(23) 



                                                              INTRODUCTION TO DESIGN OF EXPERIMENTS 

 

38 
 

exceeds the tabled F. then there is a significant lack of fit at the probability level that is chosen 

(usually P=0.05) and the model is incorrect [4-9]. 

 

𝑆𝑟𝑒𝑠
2 =

∑ (𝑦𝑖 − 𝑦�̂�)
𝑁
𝑖=1

2

𝑁 − 𝑙
 

𝐹 =
𝑆𝑟𝑒𝑠

2

𝑆𝑟𝑒𝑝
2

 

l:  the number of significant factors in the regression equation 

 

7.2.2. Test of regression significance 

 In an analysis of variance. ANOVA. the total variation of the response is defined as a 

sum of two components; a regression variance (𝑆𝑟𝑒𝑔
2 ) and a component due to the residuals 

(𝑆𝑟𝑒𝑠
2 ). The sum of squares of the total variation. corrected for the mean 𝑆𝑇

2. can thus be written 

as [1, 4, 9]:  

𝑆𝑇
2= 𝑆𝑟𝑒𝑔

2 +𝑆𝑟𝑒𝑠
2  

 

𝑆𝑟𝑒𝑔
2 = ∑(�̂�𝑖 − �̄�)2 / 𝑙-1

𝑁

𝑖=1

 

 The regression component of the total variation is compared to the residual component. 

If the standard deviation of the response explained in the model regression is larger than the 

standard deviation of the residuals, then the model is significant at the chosen probability level 

(usually P=0.05) [4, 9]. 

 

𝐹 =
∑ (�̂�𝑖 − �̄�)2 / l-1𝑁

𝑖=1

∑ (𝑦𝑖 − �̂�𝑖)2 / N-l𝑁
𝑖=1

 

 

N

y

y

N

1i

i
  

 The F distribution has df (degree of freedom)  numerator = l– 1 degrees of freedom and 

df denominator = N– l denominator degrees of freedom. At a significance level of α = 0.05, 

since F calculated > F0.05 tabulated. we must conclude that there are no significant differences 

between the two variances and the regression is valid [1, 4, 6- 9]. 

 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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 Software can construct ANOVA tables. The simplest of these tables has five columns 

(source of variation. sum of squares, degrees of freedom (df), mean square, and F-ratio) and 

four lines (column titles. model corrected for the mean. residuals and observed responses 

corrected for the mean) similar to Table 17 [1, 4, 6, 9].  

 

 The first column shows the sources of variation.  

 The second column shows the df (degree of freedom) of each sum of squares.  

 The third column gives the sums of squares of the errors around the mean.  

 The mean squares of the fourth column are the sums of squares divided by their df. 

 The fifth column shows the F-ratio, which is the ratio of the mean square of the model 

to the mean square of the residuals.  

 

 F-ration allows the calculation of the probability that the two mean squares are not equal. 

In other words, if the F-ratio is high (small probability that the model is only due to the 

effect of the mean). the variations of the observed responses are likely due to variations in 

the factors. If the F-ratio is near 1 (strong probability that the model is not due to the effects). 

the variations of the observed responses are comparable to those of the residuals. The              

p-value corresponding to the F-ratio is also shown [1-4, 8- 10]. 

Table 17: Analysis of variance (ANOVA) table [1, 4] 

 

 

7.2.3 The coefficient of determination R2 

 The analysis of variance allows the calculation of a very useful statistic: R2. This statistic 

is the ratio of the sum of squares of the predicted responses (corrected for the mean) to the sum 

of squares of the observed responses (also corrected for the mean) [1-4, 6, 9]: 
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2

2

2

N
y

i
y

N

1i

y
i

ŷ

R

 






  

 Higher value of R2 means better fit. If R2 = 1 it means that there is perfect fit. However. 

having a higher value dos not meat that there is a good fit and that regression model is good 

one because adding a new variable to the model (either the variable is significant or not) will 

increase R2 value. which will lead to poor prediction. To solve this, an adjusted 𝑅2̅̅̅̅  is 

introduced,which will not always increase with adding a new variable [1-4, 8-10]: 

 

 









N

1
R²1R²R

2
 

 

8. Optimization 

                 Response surfaces are used to determine an optimum. In addition, it is a good way 

to graphically illustrate the relation between different experimental variables and the responses. 

To be able to determine an optimum it is necessary that the polynomial function contains 

quadratic terms, this is done by deriving the predicted response model (y) with respect to all 

variables or by the contour and surface response plots. 

 

 Example 

 
 The results of modeling of antimicrobial production by a strain using Central 

Composite Design (CCD) for four operating factors (𝑥1, 𝑥2, 𝑥3, 𝑥4) allowed to obtain the 

following regression equation after its validation [17]: 

�̂� = 12.53 + 1.22𝑥2 + 1.46𝑥1𝑥3 + 1.31𝑥2𝑥3 − 1.32𝑥2𝑥4 − 0.94𝑥3
2 

  

 𝑥1 : KCl concentration (g/l) ; 

𝑥2: K2HPO4 concentration (g/l) ; 

𝑥3 : MgSO4 concentration (g/l) ; 

𝑥4 : Incubation time (days). 

 

 From this model. we are now able to calculate the optimal values of the operating 

parameters leading to maximum antibacterial activity against a target germ (Salmonella typhi). 

(30) 

(31) 
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to do this. simply solve the system of equations below. obtained by deriving the predictive 

model with respect to each of the variables 𝑥1, 𝑥2, 𝑥3, 𝑥4: 

 

𝑑ŷ

𝑑𝑥1
 =  0.         1.46 𝑥3 = 0 → 𝑥3 = 0 

𝑑ŷ

𝑑𝑥2
 = 0.          1.22 + 1.31 𝑥3 – 1.32 𝑥4 = 0 → 𝑥4 = 0.92 

𝑑ŷ

𝑑𝑥3
 =0.           1.46 𝑥1+ 1.31 𝑥2– 1.88 𝑥3 = 0 → 𝑥1= 0  

𝑑ŷ

𝑑𝑥4
 =0.         - 1.32 𝑥2 = 0 → 𝑥2 = 0 

The resolution of this equations system gives:  

 𝑥1= 0. corresponding to KCl concentration of 0.5 g/L.       

 𝑥2= 0. corresponding to K2HPO4 concentration of 1 g/L. 

 𝑥3= 0. corresponding to MgSO4 .7H2O concentration of 0.5 g/L.        

 𝑥4= 0.92 corresponding to incubation time of 9 days. 

 

 The optimal antibacterial activity obtained by replacing the optimal values in the 

postulated model is 12.53 mm. 

 The corresponding 2D (figure a) and 3D (figure b) dimensional response surfaces of the 

quadratic models are shown in figures (a, b) bellow. The figures are drawn in KCl (𝑥1) 

MgSO4·7H2O concentration (𝑥3) plan (the most important interaction) using MATLAB 7.0 

software. The analysis of these figures shows that in the presence of a moderate KCl 

concentration the antimicrobial activity increases with reduced MgSO4·7H2O concentration. 

The maximum predicted yield is indicated by the surface confined in the smallest curve of the 

contour diagram which is equal to 14.79 mm, corresponding to an economic condition to that 

obtained above [17]: 

 

 [KCl] =0.1 g.L−1 (𝑥1= −2),  

 [K2HPO4] =1 g.L−1 (x2 =0), 

  [MgSO4·7H2O] =0.2 g.L−1, (x3 = −1.5),  

 Incubation time equal to 9 days (x4= 0.92).  

R2 was found to be 90,7 % , indicating that the models can explain 90.7% of total variations. 



                                                              INTRODUCTION TO DESIGN OF EXPERIMENTS 

 

42 
 

 

 

 

 

 

9.  DOE Software  

 
 DOE can be quickly designed and analyzed with the help of suitable statistical software. 

For this purpose. there are some commercial and freeware statistical packages. The well-known 

commercial packages include: Minitab. Statistica. SPSS. SAS. JMP. Design-Expert. 

Statgraphics. Prisma. etc. The most popular commercial packages Minitab and Statistica are 

equipped with user friendly interface and very good graphics output [1, 4, 7, 9]. 

 

 

 

Figure (a, b): Response surface and isoresponse plots 
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 Also, DOE design and analysis can be done easily in Microsoft Excel, using the 

procedure and formulas described above in the present course. 

 

10.  Demonstration using Minitab software  

 The MINITAB program interface is designed to be very simple and easy to use, in addition to 

the tools required to design and analyze experiments, this software supports most of the other 

statistical analyses and methods that most users need.  MINITAB has a powerful graphics 

engine with an easy to use interface. Most graph attributes are easy to configure and can be 

edited after a graph is created [4, 12-16]. 

 

 All the manipulation steps described below using Minitab software in this course will 

be applied in the form of practical work to students using a microcomputer. 

 

10.1.  Starting Minitab [12-16] 

To open Minitab follow the following instructions:  

 Double-click the Minitab icon (Figure 20). 

 

 

 

 

We obtain a worksheet (figure 21) consisting of: 

 Menu bar (There are 11 menu headings: File. Edit. Data. Calc. Stat. Graph. Editor. 

Tools. Window. Help and Wizard) 

 The icon bar 

  “Session” window 
 Worksheet similar to that of the Excel  

Figure 20 : Minitab icon 
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 10.2. Access to design of experiments  

  Click on Stat from the main menu. A drop-down menu appears with DOE (Design 

of Experiments). 

 Click on DOE (Design of Experiments). A new menu appears (Figure 22) in which 

there are four choices: 

- Factorial design 

- Response surface 

- Mixture 

- Taguchi 

 

 

Figure 21: Minitab home window (worksheet) 
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10.3 Design of experiments definition 

 Global definition 

 For all the designs. it is necessary to define the responses, the factors, the levels. The 

procedures for entering this data are practically the same for all designs (figure 22). 

 Click Create factorial design for example. a window appears in which a 

choice of designs is offered (Figure 23). 

 

 

 

 

 

 

Figure 22: Menus giving access to design of experiments 
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 Factors number  

 Click on the Designs button of figure 23. 

 Click the OK button when you have finished your choice (figure 24). 

 

 

  

Figure 23: Window offering several types of experimental designs 

 

Figure 24: Window allowing you to choose a full or fractional factorial design 
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You then return to the Create a factorial design window (Figure 22) in which the 

three buttons previously grayed out are now accessible: Factors, Options, Results. 

 

10.4 Factors definition  

 Click on the Factors button of figure 23. you obtain figure 25 in which factors appear 

with their name (example: Pressure, Temperature, time), their type and their levels. 

 

 

 

 

10.5. Options definition 

 Click on the Options button. you get the window in figure 26 in which you can further 

model your plan. replicate it or not. You can randomize the trials or not and request 

that the analysis results be stored in the worksheet. 

 

 

 

 

 

Figure 25: Window allowing to define the characteristics of the factors 
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 Minitab will create a worksheet containing the DOE array (figure 27): 

 

 

 
 

 

 The first blank column in the worksheet (here C8) is reserved for the Response values 

 After running all of the experimental runs enter the results in to the worksheet (figure 

28): 

 

Figure 26: Window allowing to specify the characteristics of the experimental design 

 

Figure 27: Worksheet of the design created 
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 The second series of steps allow us to analyze the results as well as produce the charts 

and graphs that help us communicate our results (figure 29). 

 Go to Stat > DOE > Factorial > Analyze Factorial Design 

 

 

 

 

Figure 28: Worksheet of the design and responses 

Figure 29: Window allowing the analysis of the design 
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 Enter the column (here C8) that contains the response in the open window called 

Responses (or just double-click on C8 in the left box) (figure 30). 

 Then click on Terms. 

 

 

 

 

 Select the terms you want in the model (figure 31). 

 Either double click on the term.  

 Then click OK. 

 

Figure 30: Window allowing response column selection to analysis 

Figure 31: Window allowing factors selection to analysis 
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The details behind the analysis will be contained in the Minitab Worksheet 

 This is the ANOVA table for the experiment: 

 

 

 

10.5. Effects plots in Minitab 

 The primary goal of screening designs is to identify the "vital" few factors or key 

variables that influence the response. Minitab provides two graphs that help you identify these 

influential factors: a normal plot and a Pareto chart. These graphs allow you to compare the 

relative magnitude of the effects and evaluate their statistical significance [12-16]. 

 

 Normal Probability Plot of the Effects   

 In the normal probability plot of the effects. points that do not fall near the line usually 

signal important effects. Important effects are larger and further from the fitted line than 

unimportant effects. Unimportant effects tend to be smaller and centered around zero. This plot 

shows that terms B, C, and BC are significant [12-16]. 
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 Choose Stat > DOE > Factorial > Analyze Factorial Design. 

 Click Graphs. Under Effects Plots. check Click OK in each dialog box. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Pareto Chart of the Effects 

 Use a Pareto chart of the effects to determine the magnitude and the importance of an 

effect. The chart displays the absolute value of the effects and draws a reference line on the 

chart. Any effect that extends past this reference line is potentially important [12-16]. 
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 Contour plot and a surface plot 

 

 Choose Stat > DOE > Factorial > Contour/Surface Plots. 

 Check Contour plot and click Setup. Click OK. 

 Check Surface plot and click Setup. Click OK in each dialog box. 

 

 

 

11. Applications using Minitab 16 software package 

  
Example 1: 22 factorial design [4, 12-16] 

 A motorist wants to know the gas consumption of his car when he drives with or without 

extra weight. while driving fast or slowly. He decides to carry out a complete factorial design 

22 to study the influence of two factors. their values and levels are given in table 18.  

The response is the car's fuel consumption (mph). 

 

Table 18: Factors and study domain 
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 DOE construction 

As this is a 22 design. the design creation windows are filled like Figure 22 to obtain figure 

32 where you choose à number of factors (2 factors).  

 

 

 

 Click the OK button in Figure 32. you get the window in Figure 33.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Window allowing the design choice  

 

4 2^2 

Figure 33: Window allowing the choice a full factorial design 

 

 

Figure 32: Window offering several types of experimental designs 
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 Factors definition 

 Click the Factors button in Figure 23 and modify the factor names to obtain a window 

similar to figure 34. 

  Click the OK button. 

 

 Click on the Options button in Figure 23. you get the window in Figure 35. 

 Click the OK button in the Create Factorial Design-Options window. 

 

Figure 34: Window allowing to specify the factors 

 

Speed 

Addi  weight 

 

45 70 

0 550 

Speed 

Addi  weight 

 

45 70 
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 Outputs choice 

 Click the Results button in the window in Figure 23 and choose the results you want to 

print in the window that opens (Figure 36). 

 

   

 

 

Figure 35: Window allowing to specify the experimental design 

 

Figure 36: Window allowing to indicate the results of the mathematical analysis  
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  The information that is requested are saved in the two windows "Worksheet" (figure 

37). 
 

 

 

 

 

 

 Statistical analysis of design 

 When the experiments are carried out and we have all the responses. we can proceed 

to the mathematical or statistical analysis of the results. You must first enter the answers in a 

new column of the worksheet (figure 38). 

 

 

 

Figure 37: Minitab Worksheet for 2 factors 

Figure 38: Responses are entered into the Minitab worksheet 

 

Speed 
Addi  

weight 
 

Worksheet 

Speed Addi  weight Consumption 

worksheet 
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 Click on Stat from the main menu. you get a drop-down menu (Figure 29) where you 

choose Analyze Factorial Design. The window in Figure 39 appears. 

 

 

 

 

 

 

 In the Analyze Factorial Design window you must choose the response to analyze. To do 

this, highlight C7 Consumption and click on the Select button (figure 40). 

 

Figure 39: Drop-down menus allowing you to begin the analysis of the experimental design 

 

Figure 40: Window allowing you to specify the analysis methods 

 

 

Consumption 
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 The plan being very simple we will only use the Terms. Results and Storage buttons. 

 Terms 

Allows you to choose the mathematical model. Here we choose a polynomial model with 

a single interaction. click the OK button after that (figure 40). 

 

 

 

 

 

 Results 

This window allows us to check all the useful results we want to display (like ANOVA. 

coefficients….) (figure 42). 

 Click the OK button when you have finished making your choices. This window 

disappears. 

 

 

Figure 41: Window allowing you to choose the mathematical model 

 

A : Speed 
B : Addi  weight 
A.B 

 
 

A : Speed 
B : Addi  weight 
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 Storage 

 We choose to keep the effects and coefficients (figure 43). 

 Click the OK button when you have finished making your choices. This window 

disappears. 

 

 

 

Figure 42: Window allowing you to select useful results 

 

Figure 43: Outputs choice 
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 Click the OK button in Figure 42. The results are displayed in the session window 

(Figure 44) and in the worksheet (Figure 45). 

 

 

 

 

 

 

 

 

The regression equation in coded units is then: 

�̂� = 10.25 + 1.25 𝑥1 + 0.75 𝑥2 + 0.05 𝑥1 𝑥2 

 

 There is virtually no interaction between the two factors according to the model. 

Whether motorist drive fast or slowly, additional weight always leads to an increase in gas 

Figure 44: The results analysis is in the session window 

 

Figure 45: The analysis results are also displayed in the worksheet 
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consumption. To reduce consumption, motorist must therefore minimize the speed and the 

additional weight as often as possible. 

 

Example 2: 23 factorial design [4, 12-16] 

 An experimenter studies the deposition of gold by electrolysis on metal objects in 

order to give them a golden appearance. Three factors are studied and their values and levels 

are given in table 19. The experimenters decided to applied a full factorial design 23. 

The response is the speed of deposition of the gold on the treated object. 

 

Table 19: Factors values at different levels  

Factor Low level (-1)  High level (+1)  

Gold concentration (A)  2 g/L  15 g/L  

Current density (B)  5 A/dm2  25 A/dm2  

Cobalt Concentration (C)  0.5 g/L  1.5 g/L  

 

 Design construction  

 You should get a worksheet similar to figure 46 after introduce the response 

(speed). 

 

 

 

 

Figure 46: Worksheet with the example data 

 

 

 

 

Speed 
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 Design analysis 

 The analysis of the design is carried out in the same way as previously and you must 

obtain the same information in the session window as that in figure 46. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These numerical results can be illustrated by the effects graph. 

 Click on the Stat button on the main menu then choose DOE (design of 

experiments). Factorial design and Factorial diagrams (figure 22). You get a 

new window (figure 47) where you can choose the effects graph. the interactions 

graph and the cube graph. 

 

 

 

 

Figure 47: Session sheet with results: Effects and coefficients 

 

Figure 48: Window allowing us to choose the effects graph, the interactions graph 

and the cube graph 
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 Effect graph 

 

 Check Main Effects Plot in the window in figure 48. 

 Click on the Window Configuration button in Figure 48. You will 

get a window asking you for the response and the factors you want to 

illustrate (figure 49). 

 

 

 

  

 Click on the OK button in the window in Figure 48. You return to Figure 48. 

 Click on the OK button in the window in Figure 49. You obtain a window where the 

requested graphics are located (Figure 50). 

 

 

 

 

 

 

 

 

 

Figure 49:  Definition of effects graphs 

 

Figure 50: Effects graph  
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 Interaction graph 

By an analogous process. we obtain the interaction graph (Figure 51). 

 

 

 

 

 Interpretation of plan analysis and conclusion 

All the precedent steps allow us to find the optimal conditions which maximize the speed 

of gold deposition. 

 The gold concentration (A) must be at level +1. i.e. 15 g/l 

 Current density (B) must be at level +1. i.e. 25 A/dm2 

 The cobalt concentration (C) must be at level +1 or 1.5 g/L 

 Under these conditions we can expect a speed of 134 mg/min. 

 

 

 

 

 

Figure 51: Interaction graph 

 



                                                              INTRODUCTION TO DESIGN OF EXPERIMENTS 

 

66 
 

 

Example 3   Response surface design (CCD) [4, 12-16]. 

 

 The objective of the foreman who conducts the study is to adjust a machine tool so that 

the surface condition of the machined parts is as close as possible to perfection. The roughness 

of the surface is the response studied; it is measured by a standardized method. The smallest 

possible value is desired.  

 

The foreman uses two factors:  

- Factor 1: forward speed of the grinding wheel (in meters/minute). 

- Factor 2: tangential cutting speed (in meters/second).  

 

The high and lower levels of each factor are given in table 20. 

Table 20: Study domain of CCD 

 

 

 The foreman starts with a traditional factorial design. but he suspects that he will have 

to continue the study with a response surface design by CCD. Therefore. he plans to have two 

control points at the center of the domain. 

 

 Design construction  

 Click on Stat from the main menu. A drop-down menu appears in which is 

DOE. 

 Click on DOE. A new menu appears in which there are four choices (figure 51). 
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 Click Create Response Surface design. A new window appears which allows 

you to specify the design for the response surface (Figure 53). You choose a two-

factor central composite design. 

 

 

 

 

 

 Click the Designs button. You get a new window where you can set the number 

of points in the center (figure 54). 

Figure 53: Menu allowing you to create a response surface design 

 

Figure 52: Menu allowing you to create a response surface design 
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 Click the OK button. You return to the window in Figure 53. 

 In the option, uncheck randomization. 

 Click the OK button in Figure 53. You obtain the desired design (Figure 55).  

 

 

 

 

 

Figure 54: Menu allowing you to specify the characteristics of the response 

surfaces design 

 

Figure 55: Minitab worksheet the CCD response surface design  
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 Design analysis 

 
 You must copy the response values into the worksheet (figure 56). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
- To begin the statistical analysis:  

 
 Click Stat from the main menu and choose DOE / Response Surface / Analyze 

Response Surface design (Figure 29). 

 In the Analyze Response Surface design window that appears you enter the 

response (figure 57). 

 

 

 

 

 

 

Figure 56:  Design matrix and responses of CCD 
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 Then. you click on the Terms button. The software offers a quadratic model. you 

accept by clicking on the OK button (Figure 58). You return to Figure 57. 

 

 
 

 

 

 

 

 

Figure 57: Analyze a response surface design window allowing you to define 

the desired analyses. 

 

Figure 58: Analyze Response Surface design window - Terms for defining 

the mathematical model. 

 

Response surface design analysis 
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 You give your output instructions using the other buttons in Figure 58 and finish 

by clicking on the OK button. 

 

The coefficients of the quadratic model are displayed in the worksheet (figure 59) and 

the statistical results are displayed in the Session window (figure 60). 

 

 

 Figure 59:  Minitab Worksheet with responses and coefficients 
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 Interpretation of design analysis 

 To interpret the previous results. the simple way is to draw the isoresponse graphs of 

the response. We thus determine the places in the studied domain where the objectives are 

or are not achieved. 

 

 Click Stat from the main menu and choose DOE / Response Surface / Contour 

Plots / Surface Plots (Figure 61). 

 

 In the Contour Plots/Surface Plots window that appears. you check Contour 

Plot and click the Setup button (Figure 61). You will see the Contour 

Plots/Surface Plots-Contour window (Figure 62). 

 

 
 

Figure 60: Statistical analysis results in session window 

Figure 61: Contour Plot/Surface Plot window 
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 To specify the characteristics of the graph you use the Contours. Configuration 

and Options buttons. 

 

 

 

 

 

 
 The Contours button gives access to a window (Figure 62) allowing you to 

indicate the number of isoresponse curves and the properties of the graph. 

 

 
 

Figure 61: Contour Plot/Surface contour Plot window 

 

Figure 62: Window allowing you to specify the nature of the isoresponse graph 
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 The objective of this study is to obtain a machined surface having a roughness less 

than 150. Figure 63 shows that this objective is achieved when the cutting speed of 0.1 to 0.4 

and the level of forward speed equal approximately to (-1.2). 

 

 -1.2 of forward speed correspond to 0.75 meters/minute. 

 0.1 to 0.4 level of the cutting speed approximately 20 to 25 meters/second.  

 

 

 
 

 

 

Example 4: Response surface design by BBD [4. 12-16] 

 The aim of this study is to decrease the acidic taste of the fermented milk. For this 

reason. stabilized milk is produced from a natural stabilizer, which attenuates the variations of 

acid in the final product in spite of the presence of lactic leaveners.  

 

 The response chosen by the researcher is acid loss. The goal is to get stabilized milk 

with an acid loss of at least 48. 

The three factors used in this experiment are: 

  Factor 1: Dilution ratio. This is the ratio of added water to raw milk. 

 Factor 2: pH. which is related to the injected stabilizer. 

 Factor 3: Milk ratio. This is the ratio of raw milk to stabilized milk.  

Figure 63: Contour plots of the surface roughness 
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The high and low levels of each factor are shown in table 21. 

 

Table 21: Design domain of BBD 

 

 Design construction 

 Click on Stat from the main menu. A drop-down menu appears in which is DOE. 

 Click on DOE. A new menu appears in which there are four choices. 

 Click Create Response Surface design. A new window appears which allows 

you to specify the design for the response surface (Figure 38).  

 Check Box-Behnken in the Create Response Surface design window (figure 64). 

 

 

 

 

 

 The software gives the desired plan (Figure 65). 

 

  

Figure 64: Menu allowing you to create a Box-Behnken design 
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 Box-Behnken design analysis 

 When experiments are achieved. you must copy the response values into the worksheet 

(figure 66). and you carry out the calculations as in the previous example. 

 

 

 

Figure 65: Minitab worksheet with the Box-Behnken design 

 

Figure 66: Minitab worksheet with the Box-Behnken design and responses 
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 Statistical analysis 

 Click Stat from the main menu and choose DOE / Response Surface / Analyze 

Response Surface design (Figure 38). 

 In the Analyze Response Surface design window that appears you enter the 

response. 

  Click OK. The statistical analysis appears in the Session window (Figure 67). 

 

 

 

 

 Interpretation of design analysis 

 The mathematical model (figure 67 results) indicates that we have an acid loss of 50.1 

at the center domain. The objective of 48 will therefore be achieved and even exceeded. 

 

 From an economic point of view, it is advantageous to choose a low dilution (le effect 

of dilution is negative). For this reason. we choose a dilution level of (-1) (i.e. 0.5). 

 

 To choose the levels of the other two factors, let's plot the graph of the isoresponses 

as a function of pH and concentration. 

 

Figure 67: Session sheet giving the coefficients of the quadratic model 

 

 

The regression coefficients estimation 



                                                              INTRODUCTION TO DESIGN OF EXPERIMENTS 

 

78 
 

 

 Click Stat from the main menu and choose DOE / Response Surface / Contour 

Plots / Surface Plots/ the Contour Plots/Surface Plots  

 

 You obtain the window of figure 68. 

 

 

 

 

 Click on the Configuration button to obtain the graphics definition window 

(Figure 69). 

 

 

 

 

 

Figure 68: Contour Plot/Surface Plot window of BBD 

 

Figure 69: Response and factors choice to illustrate in the graph 

 

Contour plot 

Surface plot 

Help Cancel 
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 Click on the configuration button of the figure 69. The Contour Plots/Surface 

Plots-Contour-Configuration window appears (Figure 70). You indicate that 

the dilution is fixed at level (-1). 

 

 

 

 

 Click on the OK buttons and you get the desired graphics 

 You thus obtain the graph of the isoresponses (contour plot) of the response as a 

function of the concentration and the pH for a dilution of 0.5 (Figure 71). 

 

 

Figure 70: We impose a level to the factors which are not illustrated on the graph 

 

 

Figure 71: Acid loss as a function of the concentration and the pH for a dilution of 0.5 
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 This graph shows that the zone of acid loss greater than 48 is located around level      

(-0.5) for pH (5.8 in natural units) and level zero (0) (2 in natural units) for concentration. 

 

 Validation tests are carried out which confirm the results of the plan and its analysis. 

We can now recommend the following operating conditions given by Minitab software. 

 Dilution (1) : 0.5  

 pH (2):  5.8  

 Concentration (3):   2 

The predicted response at this point is 51.6. 

 

12. Application using Excel software 

Example [18] 

 The effects of four experimental parameters on the cementation yield of copper by iron 

were investigated statistically. A statistical experimental design based on the second-order 

central composite rotatable design (CCRD) was planned fixing the cementation period at 2 h. 

The original values of each factor and their corresponding levels are given in the following 

table.  

 

The cementation yield as dependent output response variable which is expressed as (%): 

 

where y represents the copper cementation reaction yield [Cu2+]0 is the initial copper ions 

concentration (mg/L) and [Cu2+]t is the copper ions concentration at time t (mg/L). 

  

 The experiments were performed according to the design matrix given in the following. 
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The model coefficients are estimated by the following expression usng “EXCEL” software  

  Y.X.X.XB
T

-1
T






  

where B is the column matrix of estimated coefficients; [XTX]−1 the dispersion matrix; [X]T the 

transpose matrix of experiments matrix [X] and Y is the column matrix of observations. 

 

The results of this calculation are presented in the following tables: 

 

 

Constant term Linear effects  

b0 b1 b2 b3 b4 

92.052 2.101 3.261 3.367 4.835 
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 Statistical analysis of the data 

 From statistical point of view, three tests are required to evaluate the adequacy of the 

model; Student’s t-test which is about the significance of coefficients, R-square test and 

Fisher tests. 

1. Test of coefficients significance 

 The estimated t values by Student test for particular process parameters can be 

calculated as follows: 

bj

j

j

S

b
t   

𝑆bj
2 = 𝐶jj.Srep

2  

where 𝑆𝑏𝑗
2 is the coefficients variance; Cjj the diagonal terms of [XTX]−1matrix and Srep

2
 is the 

reproducibility variance calculated at the center domain with 12 replicates ( 
2

repS 0.67). 

The calculated t values are summarized in the following tables. 

Constant term Linear effects 

t0 t1 t2 t3 t4 

389.557 12.574 19.514 20.150 28.934 

 

Interaction and quadratic effects 

t12 t13 t14 t23 t24 t34 t11 t22 t33 t44  

0.087 2.152 1.695 6.413 0.622 10.715 8.069 5.327 10.793 15.682  

 

  

Interaction and quadratic effects 

b12 b13 b14 b23 b24 b34 b11 b22 b.33 b44 

0.018 -0.440 -0.347 -1.312 -0.127 -2.193 -1.168 -0.771 -1.562 -2.269 
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 The tabulate t value for 5% level of significance and 11 degrees of freedom (f=n0-

1=12−1 = 11) using the bilateral test of student (appendix 2)  t0.05 (11) = 2.201. 

 

 If we compare this value to the calculated ones. we found that all individual effects 

are significant at 5% of significance level and only the interactions (x1.x2). (x1 .x3). (x1.x4). and           

(x2.x4) are not significant. Therefore. they are excluded from the regression equation. 

 

 The test of reliability for regression equation has been carried out by Fisher’s variance 

ratio test known as F-test. The F-ratio is given by the following form: 

𝐹 =
𝑆res

2

𝑆rep
2

 

 

The following table gives the values 𝑆rep
2  .  𝑆res

2  and estimated F for regression equation. 

 

 

 

 The 𝑆res
2   degree of freedom (f1 =N−l) and the 𝑆𝑟𝑒𝑝

2   degree of freedom (f = n0 −1) are 25 

and 11 respectively. The tabulated F value (appendix 3) for 5% level of significance is between 

2.57 and 2.61. The estimated F value is less than this interval. Hence, it can be concluded that 

the two variances are equal and the most of the response variation can be explained by the 

regression. Furthermore, the test of significance of regression (Fcalculated = 98.45 > Ftabulated=2.24) 

confirms that the established predicting equation gives an excellent fitting to observed data. 

 

 Finally. R2 value is found to be 96.6% and the table bellow. shows that the difference 

between the measured and the predicted values do not exceed 3%. T Therefore. all those results 

indicate that the model can adequately represent the data. 

Runs y (%)  (%) 
Absolut relative 

error (%) 

1 67.938 69.213 1.876 

2 73.223 73.415 0.262 

3 75.622 78.359 2.620 

4 84.261 82.561 2.017 

ŷ
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 The regression equation for copper cementation by iron obtained after performing 36 

experiments and discarding the insignificant effects is as follows: 

 

�̂� = 92.052 + 2.101𝑥1 + 3.261𝑥2 + 3.367𝑥3 + 4.835𝑥4 − 1.312𝑥2𝑥3 − 2.193𝑥3𝑥4 − 

  −1.168𝑥1
2 − 0.771𝑥2

2 − 1.562𝑥3
2 − 2.269𝑥4

2 

 

 

5 81.948 82.957 1.232 

6 86.865 87.159 0.339 

7 88.382 86.855 1.727 

8 90.302 91.057 0.836 

9 81.714 83.269 1.903 

10 87.055 87.471 0.477 

11 92.938 92.415 0.563 

12 95.182 96.617 1.508 

13 89.114 88.241 0.979 

14 91.414 92.443 1.125 

15 91.203 92.139 1.026 

16 96.528 96.341 0.193 

17 92.495 92.052 0.478 

18 90.384 92.052 1.846 

19 91.536 92.052 0.563 

20 92.896 92.052 0.909 

21 92.367 92.052 0.341 

22 90.855 92.052 1.318 

23 92.871 92.052 0.882 

24 92.324 92.052 0.294 

25 92.371 92.052 0.345 

26 92.911 92.052 0.924 

27 91.511 92.052 0.591 

28 92.102 92.052 0.054 

29 84.622 83.178 1.706 

30 91.848 91.582 0.290 

31 84.045 82.446 1.903 

32 95.599 95.49 0.114 

33 80.913 79.07 2.277 

34 92.404 92.538 0.145 

35 73.973 73.306 0.902 

36 93.684 92.646 1.108 
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 Discussion 

 

 The regression equation obtained above. shows that initial copper cementation. 

temperature. pH and flow rate all have an individual influence on the reaction yield of copper 

cementation. Flow rate (x4) has the strongest effect on the response since coefficient of x4         

(b4 = +4.835) is large than the coefficients of the other investigated factors. Positive sign of this 

coefficient indicates that there is a direct relation between flow rate and reaction yield; in other 

words. copper recovery increase with increasing flow rate. 

 

 The order for factors strength on cementation yield following flow rate was found as pH 

(x3). temperature (x2) and initial copper concentration (x1); all being positive in sign. 

 

 The significance interactions found by the design of experiments for copper cementation 

yield are essentially between flow rate and solution pH (x3.x4) and between temperature and pH 

(x2 .x3). 

 

 Optimization 

 In this work. the model equation is used to find the direction in which the variables 

should be changed in order to optimize cementation reaction yield. The corresponding contour 

plots of the quadratic model are shown in figures (a–c). The figures are drawn in pH–flow rate 

plan (the most important two factors affecting the response) for various level of temperature 

(−2. 0. +2) at optimal initial copper concentration ([Cu2+]
0 = 75.25 mg/L) using “MATLAB 

7.0” software. 

 The surface contour plots of mutual interactions between the variables are found to be 

elliptical. The stationary point or central point is the point at which the slope of the contour is 

zero in all directions. The coordinates of the central point within the highest contour level in 

each of these figures will correspond to the optimum values of the respective parameters. The 

maximum predicted yield is indicated by the surface confined in the smallest curve of the 

contour diagram. 

 

 The analysis of these figures indicates clearly the significance influence of flow rate and 

its interaction with solution pH. The optimum cementation yield in all conditions (Figures a–c) 

increases in the direction of the increase in the temperature and it reaches 99.6% cementation 

yield at high flow rate and low pH values (figure c).  
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 The corresponding conditions of the best cementation yield by deriving the model with 

respect to each factor are follows: 

 

 

 

 Under economic considerations. 95.8% cementation yield (figure b) can be easily 

reached by working at moderate temperature (T = 30–40 ◦C) and average solution acidity (pH 

3 or 4). 

 

 



                                                              INTRODUCTION TO DESIGN OF EXPERIMENTS 

 

87 
 

 

13.  Exercises 

 

Exercise 1 

 The influence of the temperature and the concentration C of a reagent on the yield of 

a chemical reaction y (in %) is studied. 

 It was decided to experiment with the temperature between 60°C and 80°C and the 

concentration between 10 g.L-1 and 15g.L-1 limiting itself to 2 levels per factor. 

            A/  

- How many experiments should be carried out,  knowing that no repetitions are 

planned? 

- In a 22 factorial experiment, what are the experimental conditions to be carried 

out?. 

 

             B/ The temperature is called factor A and the concentration factor B. 

  Using the concept of centered and scaled variables: 

- Give the values of A and B at the center of the experimental domain. 

- Give the coordinates of A and B at the point (xA = + 0.5 ; xB = - 0.6). 

 

               C/ Construct (with EXCEL) the design matrix using coded and uncoded unit.  

 Results table:  

 

Trials Temperature 

(°C) 

Concentration 

(g.L-1) 

Yield 

Y (%) 

1 60 10 60 

2 80 10 70 

3 60 15 80 

4 80 15 90 

 

 D/ Construct (with EXCEL) the effects matrix and calculate all the effects of such 

design. 
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Exercise 2 

 The same study is carried out as that of exercise 1. this time conducted in the presence 

of a catalyst; the other experimental conditions are unchanged. 

Results table: 

Trials 1 2 3 4 

Yield 

Y (%) 

60 70 80 95 

 

1. Construct (with EXCEL) the effects matrix and calculate all the effects. 

2. At a temperature of 70°C and a concentration of 12.5 g. L-1 (center of the studied domain). 

it was decided to carry out 6 additional tests. The 6 yields obtained are as follows (in %): 

77.3 – 79.1 – 77.8 – 77.0 – 77.7 – 79.1 

 

 - Calculate the reproducibility variance at the center of the studied domain. 

  - Which effects are significant at 5% of significance level (use a t test). 

 

Exercise 3 

 In a solution usually manufactured at 30°C with stirring (200 rpm) a slight disturbance 

appears. The experimenter wants to know the cause(s) and thinks that 3 factors can have an 

influence on this problem. 

 Temperature. 

 Stirring speed. 

 Concentration of an additive usually present at 0.30% (w/v). 

The disorder is measured by an opacity index. this index is greater as the solution is cloudy. 

It is decided to organize a 23 factorial design: 

 

Factors Levels 

               -1                              1        

Temperature 

Stirring speed 

Additive concentration  

 

               20°C  40°C 

            100 rpm                   300 rpm  

               0.1%   0.5% 

 

 



                                                              INTRODUCTION TO DESIGN OF EXPERIMENTS 

 

89 
 

1. How many experimental conditions to do for this design? 

2. Construct (with EXCEL) the effects matrix and calculate all the effects. knowing that 

the opacity measurements gave the following results: 

 

 

 

3. Give the expression of regression equation found. 

4. Interpret the influence of each factor on the response and represent the effects 

diagrams and the interactions diagrams. 

 

Exercise 4 

 In the formulation of a certain tablet three variables were considered to be important 

for the thickness of the tablets. These variables were investigated by a factorial design. The 

different variables were the amount of stearate lubricant, the amount of active substance and 

the amount of starch disintegrant.  

 

 The experimental domain is shown in Table 1. Experimental design and results are 

given in Table 2. 

Table 1: Variables and experimental domain of the formulation 

 

Table 2: Design and responses 

 

N° 1 2 3 4 5 6 7 8 

Opacity index 0 4.7 0 11.5 9 14.5 5.1 18.7 
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1. Estimate the effects coefficients of the experimental variables and evaluate their 

influence. 

2. Determine a response model that contains only the probably significant terms. 

Use this model to estimate the amount of starch that has to be added to 100 mg of 

active substance to obtain tablets that are 5.00 mm thick. 

 

Exercise 5 

 The modeling of the E. coli ST 131 activity (expressed by the inhibition zone in mm) 

of an actinobacteria strain by a centered composite design (CCD) is carried out in order to study 

the influence of four operating factors namely: starch concentration (X1). casein concentration 

(X2). the incubation time (X3) and the pH (X4). The different values of this factors at different 

levels are presented in the following table: 

 

Factors Levels 

-2                   -1                           0                              +1                     +2 

Starch (g/L) 2                6         10               14           18 

Casein (g/L) 

Incubation time (Days) 

0.1       

3 

       0.2 

      5 

        0.3 

       7 

             0.4 

          9 

          0.5 

         11 

pH                3.2        5.2           7.2               9.2            11.2 

   

1. Construct (with EXCEL) the design matrix. the effects matrix and find the second 

order regression equation with verification of its validity. 

2.  Find the optimum of the factors as well as the optimal antibacterial activity of the 

strain studied. 

 The response results of factorial design trials (Nf = 24=16 trials):   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

6.50 8.83 9.50 7.33 6 6.53 6.66 6 8.33 6.83 10.33 8.50 7.50 6.83 6 6.33 

 

 The response results of the star design (Nα= 2.k= 2×4=8 trials): 

17 18 19 20 21 22 23 24 

6 6 13.66 8.16 6 6.83 9 9.5 

 

 The responses at the center studied domain (N0= 6): 

25 26 27 28 29 30 

9 8.5 8.5 10 6.33 6 

 



                                                              INTRODUCTION TO DESIGN OF EXPERIMENTS 

 

91 
 

 

 

Exercise 6 

 An experiment is performed with two levels of temperature: 25C and 35C. If these are 

the –1 and +1 levels of temperature. respectively. then: 

-  Find the coded value that corresponds to 28 °C. 

- Determine the temperature that has a coded value of x = +0.6. 

-  

 

Exercise 7 

 To study the influence of temperature (XT) (60°C to 80°C) and concentration of an 

additive (Xc) (10 g.L-1 to 15 g.L-1) on the yield of chemical reaction y (%), the predictive model 

found has a following expression: 

�̂� = 76,25 + 6,25𝑥𝑇 + 11,25𝑥𝑐 + 1,25𝑥𝑇𝑥𝑐 

 

- Give the expression of the response according to the natural variables 

- What response can we predict for the following experimental condition 

 

Exercise 8 

The following diagram shows data from a central composite design. The factors were run at 

their standard levels, and there were 4 runs at the center point. 

1. Give the design matrix and response for this example. 

2. Calculate the parameters for a suitable quadratic model in these factors using excel and 

Minitab software.  

3. Draw a response surface plot of A vs B over a suitably wide range beyond the experimental 

region. 

4. Where would you move A and B if your objective is to increase the response value? 

1. Report your answer in coded units. 

2. Report your answer in real-world units, if the full factorial portion of the experiments 

were ran at: 

A = stirrer speed, 200rpm and 340 rpm 

B = stirring time, 30 minutes and 40 minutes 
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Appendix 1 

Definitions of some matrix [4] 

 

 
 Matrix 

A matrix is an array made up of elements laid out in lines and columns. 

 

 

 

 

 

 

 

 

 
 Size of a matrix 

An i×j matrix is a matrix having i rows and j columns. The matrix A above is a 2×3 matrix. 

 

 Square matrix 

A square matrix has the same number of rows and columns. For example. 

𝐴 = [
1 2 2
0 1 4
3 5 7

] 

is a square matrix. since it is 3×3. 

 Main diagonal of square matrix 

The diagonal of a square matrix is formed by all the elements aii. where the row number and 

column number are the same. This main diagonal is shown in the following matrix. 

 

 Element notation 

The elements from the lines and columns of the matrix are designated by an index. For 

example. matrix A above could be written : 

 

a13 is the element in the first row. third column. The element a22 is the element in the second 

row. second column. 
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 Symmetric matrix 

symmetric matrix has a symmetry around the main diagonal. The elements aij are equal to the 

elements aji. That is. aij = aji.  

For example. 

 
 

 

Identity matrix 

An identity matrix is a square matrix whose elements are zeros except for the main diagonal. 

whose elements are ones. 

 

 Diagonal matrix 

A diagonal matrix has all its elements equal to zero except those on the main diagonal.  

 

 Transpose of a matrix 

The transpose of a matrix A is denoted as AT and is obtained by inverting the rows and columns 

of A. That is. the first row of A becomes the first column of AT. The second row of A becomes 

the first column of AT. and so on.  

 

 

 

 

 

 

 Inverse matrix 

Only square matrices have inverses. The inverse of A is denoted A–1. 

The matrix A–1 is the inverse of A if their product is the identity matrix. 

A–1. A = I 

 

 Orthogonal matrices 

A matrix is orthogonal if the scalar product of its columns is all zero. The transpose of 

AT= 
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an orthogonal matrix is equal to its inverse. 

AT = A−1 

AT: Transpose matrix of A 

A−1: Inverse matrix of A 

 

 Hadamard matrices 

There are some square matrices where the elements are either +1 or –1 such that: 

XTX = nI 

 I: Identity matrix   
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Appendix 2 

In the t-test table, the significant values are determined for degrees of freedom(df) to the 

probabilities of t-distribution, α. [1] 
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Appendix 3 

Fisher Snedecor table for α = 0.05  [1] 

 

γ1 = degrees of freedom in numerator  

γ2 = degrees of freedom in denominator 
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	B = 1
	B = -1
	Absence of interaction between A and B
	B = 1
	B = -1

	High interaction between A and B
	B = -1
	B = 1

	 The first blank column in the worksheet (here C8) is reserved for the Response values
	After running all of the experimental runs enter the results in to the worksheet (figure 28):
	The second series of steps allow us to analyze the results as well as produce the charts and graphs that help us communicate our results (figure 29).
	 Go to Stat > DOE > Factorial > Analyze Factorial Design
	 Enter the column (here C8) that contains the response in the open window called Responses (or just double-click on C8 in the left box) (figure 30).
	 Then click on Terms.

