Année universitaire : 2025/2026

Algèbre1

Octobre 2025

Exercice 1

Soient $A =]-\infty, 4]$, $B = [-5, +\infty[$ et E = [-4, 1[trois sous-ensembles de \mathbb{R} . Déterminer $A \cap B$, $A \cup B$, A - B, B - A, A - E, $A \triangle B$ et C_B^E .

Séris de TD N°01-LMD : Ensembles et Relations

Exercice 2

Soient E un ensemble non vide et A, B et C trois parties de E.

- a) Montrer que:
 - 1. $C_E^{(A\cap B)} = C_E^A \cup C_E^B$.
 - 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - 3. $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- b) Simplifier : $(\overline{A \cap B}) \cup \overline{(C \cap \overline{A})}$.

Exercice 3

- I. Soit $E = \{1, 2, 3, 4\}$ et \mathcal{R} la relation binaire sur E dont le graphe est $\Gamma = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$
 - 1. Vérifier que la relation \mathcal{R} est une relation d'équivalence.
 - 2. Faire la liste des classes d'équivalences distinctes et donner l'ensemble quotient E/\mathcal{R}
- II. Soit $\mathcal S$ la relation binaire définie sur $\mathbb R$ par :

$$xSy \iff x^3 - y^3 = x - y$$

- 1. Montrer que ${\mathcal S}$ est une relation d'équivalence.
- 2. Soit $x \in \mathbb{R}$. Déterminer la classe d'équivalence de x, notée \bar{x} , selon les valeurs de x. En déduire l'ensemble quotient \mathbb{R}/\mathcal{S} .
- III. On définit sur \mathbb{R}^2 la relation \mathcal{T} par :

$$(x,y)\mathcal{T}(x^{'},y^{'}) \iff x+y=x^{'}+y^{'}$$

- 1. Montrer que \mathcal{T} est une relation d'équivalence.
- 2. Trouver la classe d'équivalence du couple (0,0).

Exercice 4

- I. Les relations \mathcal{R} définies ci-dessous sont-elles des relations d'ordre sur \mathbb{R} .
 - 1. $\forall x, y \in \mathbb{R}, \ x\mathcal{R}y \Leftrightarrow x y \in \mathbb{N}.$
 - 2. $\forall x, y \in \mathbb{R}, \ x\mathcal{R}y \Leftrightarrow x y \in \mathbb{Z}.$
- II. Soit S la relation définie sur \mathbb{N}^* par : xSy, x divise y
 - 1. Monter que S est une relation d'ordre sur \mathbb{N}^* .
 - 2. Cet ordre est-il total?