

Mécanique des fluides numérique

Computational Fluid Dynamique - CFD

Dr. Messaoud HAMDI

Maître de Conférences B Département de Génie Mécanique Université Abderrahmane Mira de Bejaia

DÉFINITION

- Le logiciel Fluent développé par ANSYS Inc., est un logiciel de simulations numérique pour la dynamique des fluides et le transfert de chaleur. Il est basé sur la méthode des volumes finis. Fluent permet aux ingénieurs et chercheurs de :
- Simuler des écoulements de fluides : Modéliser le mouvement des fluides dans des environnements complexes, incluant des phénomènes tels que la turbulence, les écoulements multiphases, et les transferts de chaleur.
- Optimiser des Conceptions : Analyser les performances des conceptions en simulant les effets des fluides sur les structures ou les systèmes, permettant ainsi des ajustements pour améliorer l'efficacité et la performance.
- Résoudre des Problèmes Complexes : Traiter des problèmes impliquant des interactions complexes entre fluides, structures, et autres phénomènes physiques, en utilisant des méthodes de calcul avancées.
- Dans ce cours, nous allons utilisé la version Fluent 15 ou 14.

LANCEMENT DE FLUENT

Une fois double clic sur Fluent; le lanceur FLUENT apparaîtra, où vous pourrez spécifier la dimension du problème (2D ou 3D), ainsi que d'autres options (par exemple, si vous souhaitez un calcul en simple précision ou en double précision).

INTERFACE GRAPHIQUE DE FLUENT

En cliquant sur ouvrir, on aura L'interface utilisateur graphique (GUI) est composée de sept composants principaux : la barre de menus, les barres d'outils, un volet de navigation, des pages de tâches, une console, des boîtes de dialogue et des fenêtres graphiques

LECTURE ET SAUVEGARDE

Au cours d'une session ANSYS FLUENT, vous devrez peut-être importer et exporter plusieurs types de fichiers. Les fichiers incluent les fichiers de maillage, de case, de données, de profil, de schéma et de journal. Les fichiers écrits incluent les fichiers de cas, de données, de profil, de journal et de transcription. ANSYS FLUENT dispose également de fonctionnalités qui vous permettent d'enregistrer des images de fenêtres graphiques. Vous pouvez également exporter des données pour les utiliser avec divers outils de visualisation et de post-traitement **Case files**

Mesh files

Les fichiers de maillage sont créés à l'aide des générateurs de maillage (GAMBIT, TGrid...) File/ read/ Mesh Les fichiers de case contiennent les conditions de maillage, de limite, ainsi que les paramètres de solution d'un problème. Ils contiennent également des informations sur l'interface utilisateur et l'environnement graphique. File/read/case

Case and Data files

Un fichier de cas et un fichier de données contiennent ensemble toutes les informations nécessaires pour relancer une solution <u>**Conseil**</u>: Sauvegarder toujours après convergence de votre simulation : Case and Data.

IMPORTATION ET EXPORTATION DE FICHIERS

ANSYS FLUENT vous permet d'importer ou d'importer des fichier dans d'autres logiciels

Read Write				Export							X
Import 🔸	ABAQUS	•	Input File								
Export Export to CFD-Post	CFX CGNS	;	ODB File	File Type	•	Cell Zones		Surfaces		Quantities	
Solution Files Interpolate EM Mapping FSI Mapping F	EnSight FIDAP GAMBIT HYPERMESH ASCII IC3M							entrainé_droite entrainé_gauche froide_sup isolée_bas source_chaude		Density Density All Velocity Magnitude X Velocity Y Velocity	E
Save Picture Data File Quantities Batch Options RSF	I-deas Universal LSTC Marc POST Mechanical APDL	• •								Stream Function Radial Velocity Tangential Velocity Relative Velocity Magnitud	e
Exit	NASTRAN	:								Relative X Velocity Relative Y Velocity	
	PLOT3D Grid PTC Mechanica Design Tecplot	:								Relative Tangential Velocit Mesh X-Velocity Mesh Y-Velocity Velocity Angle	у
	FLUENT 4 Case File PreBFC File									Relative Velocity Angle Vorticity Magnitude	
	Partition	٠								Static Temperature	_
	CHEMKIN Mechanism									Total Temperature Enthalpy	+
						<u>د</u> (Write	Close Help)		

<u>Note</u> : dans notre cas nous allons utilisé le logiciel **Tecplot** (pour la visualisation des lignes de courant et d'isothermes).

AUTRES

Les affichages graphiques des fenêtres peuvent être enregistrés dans différents formats (Tiff, JPG, PNG...) ou on peut sauvegarder d'autres quantités

💶 Data File Quantities	×
Many quantities are available for postprocessi data file. To include additional quantities in the applications, select them below.	ng in external applications through the standard e data file for postprocessing in external
Standard Quantities	Additional Quantities
Pressure X Velocity Y Velocity Mass Flux Body Force Wall Velocity Original Wall Velocity Wall Shear Temperature Inner Wall Temperature Boundary Heat Flux Boundary Rad Heat Flux Enthalpy DPM-partition Density Laminar Viscosity 2nd Grad Bc Source	nu Static Pressure Pressure Coefficient Dynamic Pressure Absolute Pressure Total Pressure Relative Total Pressure Density Density All Velocity Magnitude X Velocity Y Velocity Stream Function Radial Velocity Tangential Velocity Relative Velocity Relative Y Velocity Relative Tangential Velocity
ОКС	ancel Help

ETAPES DE SIMULATION

- 1) Lecture de maillage : la première étape consiste à lire le fichier Mesh
- 2) Configuration de la solution: permettent d'effectuer les tâches de configuration des problèmes les plus courants.

Pressure-Based : active l'algorithme de solution Navier-Stokes basé sur la pression (par défaut). Utilisé pour les écoulements incompressibles et légèrement compressibles.

Choisir le Solveur :

Density-Based : active l'algorithme de résolution couplée Navier-Stokes basé sur la densité. Conçue à l'origine pour les écoulements compressibles à grande vitesse

Choisir le temps :

Stationnaire : spécifie qu'un écoulement stationnaire est en cours de résolution Instationnaire: permet une solution dépendante du temps.

Choisir l'espace :

Planaire : indique que le problème est bidimensionnel. (Cette option n'est disponible que lorsque vous démarrez la version 2D du solveur.)

Axisymétrique : indique que le domaine est axisymétrique par rapport à l'axe x. (2D) Tourbillon axisymétrique : Vous devez sélectionner cette option si vous résolvez un écoulement tourbillonnant dans une géométrie axisymétrique.

Scale Display	Check Report Qualit
Solver	
Туре	Velocity Formulation
Pressure-Based	Absolute
U Density Dased	U Nelduve
Time	2D Space
Steady	Planar
() Transient	Avisymmetric
	 Axisymmetric Swirl
Gravity	Axisymmetric Swirl
Gravity	Axisymmetric Swirl
Gravity Gravitational Accelerati X (m/s2)	Axisymmetric Swirl
Gravity Gravitational Accelerati X (m/s2)	Axisymmetric Swirl
✓ Gravity Gravitational Accelerati X (m/s2) 0 Y (m/s2) 0	Axisymmetric Swirl
Gravity Gravitational Accelerati X (m/s2) 0 Y (m/s2) 0 Z (m/s2) 0	Axisymmetric Swirl

💽 Read Mesh Options 🛛 💽
Options
 Discard Case and Data, Read New Mesh Discard Data, Replace Mesh
Show Scale Mesh Panel after Replacing Mesh
Continue Cancel Help

Models

Propriétés des matériaux: Dans Matériaux, vous permet de définir les propriétés de **4**) tout matériau fluide ou solide (ou mélange, le cas échéant) dans votre simulation ANSYS. Fluent. Contient une liste de matériaux fluides ou solides (ou de mélanges, le cas échéant) disponibles.

La boîte de dialogue Créer/Modifier des matériaux permet de créer et de modifier des matériaux. Les matériaux peuvent être téléchargés à partir de la base de données globale ou définis localement

1	Materials				
1	Materials				
	Fluid				
	air Solid				
	aluminum				

On peut choisir, ou définir les déférentes propriétés des matériaux dans cette fenêtre, la densité, Cp, Viscosité....

<u>**Remarque</u>** : certaines propriétés diffère de modèle choisit</u>

5) <u>Conditions zones</u>: dans l'onglet Conditions des zones de cellules : vous permet de définir le type d'une zone de cellules et d'afficher d'autres boîtes de dialogue pour définir les paramètres de condition de zone de cellules pour chaque zone.

C'est ici qu'on choisit les conditions de fonctionnement de votre modèle.

Exemple : la gravité (pour notre cas, **convection naturelle**)

Operating Conditio	ns				
Pressure		Gravity			
Operating Pressu 101325 Reference Pressure Locati X (m) 0 Y (m) 0 Z (m) 0 Real Gas Phase Ovapor Liquid	ure (atm) P on P P	✓ Gravity Gravitational Acceleration × (m/s2) Y (m/s2) Q Y (m/s2) Q Z (m/s2) Q P Z (m/s2) Q P Boussinesq Parameters Operating Temperature (k) 288.16 P Variable-Density Parameters ✓ Specified Operating Density Operating Density (kg/m3) 1.225			
OK Cancel Help					

Exemple : si vous étudié un milieu poreux, c'est dans cette étape que vous devez cochez la case porous zone

	💶 Fluid
	Zone Name fluid
	Material Name air
ſ	Mesh Motion Fixed Values
L	Reference Frame Mesh Motion Porous Zone Emi
	Upd

Cell Zone Conditions

Zone

fluid

6) <u>Conditions aux limites</u>: cette onglet vous permet de définir le type d'une limite et d'afficher d'autres boîtes de dialogue pour définir les paramètres de condition aux limites pour chaque paroi.

Chaque type de conditions, a ses propres paramètres

<u>Remarque importante</u> : on peut modifier le type de condition aux limites ici, malgré que nous les avons déjà définit sur GAMBIT.

ne Name				
entrainé_droite				
ljacent Cell Zone				
luid				
Momentum Thermal Radiat	ion Species DPM Multipha	se UDS Wall Film		
Wall Motion Motion				
 ○ Stationary Wall ● Moving Wall ● 	Relative to Adjacent Cell Zone Absolute	Speed (m/s)		
	Translational Rotational Components	Direction X 1 Y 0	P	
Shear Condition				
 Specified Shear Specularity Coefficient Marangoni Stress 				
Wall Roughness				
Roughness Height (m) 0	constant	-		
Roughness Constant 0.5	constant			

Velocity Inlet		X					
Zone Name							
velocity-inlet-6							
Momentum Thermal Radiation Species DPM Multiphase UDS							
Velocity Specification Method Components							
Reference Frame Absolute							
Supersonic/Initial Gauge Pressure (pascal)	0	constant 🗸					
Coordinate System							
v ustaniu (stati	Cartesian (X, Y, Z)						
x-velocity (m/s)	0	constant 💌					
Y-Velocity (m/s)	1.2	constant 💙					
Z-Velocity (m/s)		constant					
	0						
Turbulence	Turbulence						
Specification Method Intensity and Hydraulic Diameter							
Turbulent Intensity (%) 5							
Hydraulic Diameter (in)							
P							
ОК	Cancel Help						

Boundary Conditions
Zone
default-interior pressure-outlet-7 symmetry
velocity-inlet-5 velocity-inlet-6
wall
Phase Type ID
mixture velocity-inlet 7
Edit Copy Profiles
Parameters Operating Conditions
Display Mesh Periodic Conditions
Highlight Zone
Help

Zone Name	
outflow	
r	Flow Rate Weighting 1
External Black Body Temperature Method	Specified External Temperature
	Black Body Temperature (k) 300
Internal Emissivity	1 constant
OK	Cancel Help

7) <u>Solution</u>: cette onglet de Solution vous présente les principales tâches impliquées dans la résolution de votre simulation CFD à l'aide d'ANSYS Fluent.

Solution

Solution Methods Solution Controls Monitors Solution Initialization Calculation Activities Run Calculation

La page <u>Méthodes de résolution</u> vous permet de spécifier divers paramètres associés à la méthode de résolution à utiliser dans le calcul.

olution Methods	Colution Con
ressure-Velocity Coupling	
Scheme	Under-Relaxation
SIMPLE	Pressure
patial Discretization	0.3
Gradient	· [
Least Squares Cell Based 🗸 🗸	Density
Pressure	1
Second Order 👻	
Momentum	Body Forces
Second Order Upwind 👻	1
Energy	
Second Order Upwind 👻	Momentum
	0.7
	-
ansient Formulation	Energy
▼	1
Non-Iterative Time Advancement	
Frozen Flux Formulation	Default
Pseudo Transient	Delauit
Options	Equations
Default	

Pressure			
0.3			
Density			
1			
Body Forces	S		
1			
Momentum			
0.7			
Energy			
1			

La page de tâches <u>Monitors</u> vous permet de configurer des outils de surveillance dynamique de la convergence de votre solution en vérifiant les résidus, les statistiques, les valeurs de force, les intégrales de surface et les intégrales de volume.

Residual Monitors					X	
Options	Equations					
Print to Console	Residual	Monitor	Absolute Criteria	^		
V Plot	continuity	V	\checkmark	1e-05		
Window 1 Curves Iterations to Plot 1000	x-velocity			1e-05]	
	y-velocity	V	\checkmark	1e-05		
	energy			1e-06	-	
	Residual Values			Convergence Criterion		
Iterations to Store	Normalize		Iterations 5	absolute	•	
	V Scale					
	Compute Loca	al Scale				
OK Plot	Renormaliz	e) 🚺	Cancel He	lp		

8) <u>Initialisation</u>: Initialisation de la solution vous permet de définir des valeurs pour les variables de écoulement et d'initialiser le champ de d'écoulement sur ces valeurs.

Exécuter le calcul vous permet de démarrer les itérations du solveur

(pour les calculs d'écoulement <u>stationnaire</u>) définit le nombre d'itérations à effectuer. (Pour les calculs <u>instationnaire</u> utilisant la formulation instable explicite, cela spécifiera le nombre d'étapes de temps, puisque chaque itération sera une étape de temps.) Run Calculation

Check Case...

Number of Iterations

10000

1

Profile Update Interval

1

T

Data File Quantities...

Acoustic Signals...

Ceci est la dernière étape de calcul. Une fois la solution converge , il faut sauvegarder la solution : Case and Data

ՏԾՈԱԱԾՈ ՍԱԱՁԱՀՁԱԾՈ		
Initialization Methods		
Hybrid InitializationStandard Initialization		
Compute from	•	
Reference Frame		
 Relative to Cell Zone Absolute 		
Initial Values	_	
Gauge Pressure (pascal)	^	
0		
X Velocity (m/s)		
0		
Y Velocity (m/s)		Ξ
0		
Temperature (k)		
290		
I	Ŧ	
Initialize Reset Patch		
Reset DPM Sources Reset Statistics		

9) <u>Résultats ou post-processing</u>: l'onglet Résultats vous présente les principales tâches impliquées dans la configuration et l'affichage des résultats de votre simulation CFD à l'aide d'ANSYS Fluent.

Dans ce menu, on peut faire soit :

visualisez les résultats de votre simulation CFD en vous permettant de configurer des tracés de contours, de vecteurs, de lignes de trajectoire, de pistes de particules, de descriptions de scènes et d'animations.

✤<u>Plot :</u> vous permet de créer des graphiques (XY, histogrammes, profils, etc.) de vos résultats de calcul.

Rapports vous permet de configurer des rapports pour votre simulation CFD. Des rapports peuvent être compilés pour les flux, les forces, les surfaces projetées, les intégrales de surface et de volume, entre autres.

