
Democratic and Popular Republic of Algeria
Ministry of Higher Education and Scientific Research

Abderrahmane Mira University of Bejaia

Faculty of Exact Sciences
Department of Computer Science

Lecture Notes

Computer architecture

Created by:

Dr Mohammed KHAMMARI

Year 2024

Contents

1 Introduction to Computer Architecture 8

1.1 Introduction . 8

1.2 History of the computer . 8

1.3 Von Neumann and Harvard architectures 9

1.4 Conclusion . 11

2 Main Components of a Computer 12

2.1 Introduction . 12

2.2 The global architecture of Von Neumann 12

2.2.1 Central processing unit (CPU) 13

2.2.1.1 Control unit (CU) . 13

2.2.1.2 Arithmetic logic unit (ALU): 15

2.2.1.3 Registers: . 17

2.2.1.4 Memory: . 17

2.2.1.5 Input and Output (I/O) 21

2.2.1.6 The bus concept . 22

2.3 Conclusion . 24

3 Basics of Computer Instructions 25

3.1 Introduction . 25

3.2 Languages of Programming . 25

3.3 Modes of Addressing . 26

3.4 Types of machines . 28

3.5 Common Machine Instructions . 29

3.6 Instruction Execution cycle . 31

1

3.7 The Clock and the Sequencer . 32

3.7.1 The Clock . 33

3.7.2 The Sequencer . 33

3.8 Conclusion . 33

4 The processor 35

4.1 Introduction . 35

4.2 External Architecture of the MIPS R3000 Processor 36

4.2.1 Visible registers . 36

4.2.2 Memory addressing . 37

4.2.3 The MIPS R3000 Instruction Set 40

4.2.3.1 Arithmetic and logical instructions 40

4.2.3.2 Data transfer instructions 43

4.2.3.3 Control flow instructions 44

4.2.3.4 Shift instructions . 46

4.2.3.5 System instructions . 47

4.2.4 The instruction encoding . 48

4.2.4.1 Syntax and format of MIPS R3000 instructions 50

4.2.4.2 Encoding . 52

4.3 MIPS R3000 programming . 55

4.3.1 Rules of syntax: . 55

4.3.2 Macro instruction . 57

4.3.3 System calls in MIPS R3000 58

4.4 Conclusion . 61

5 Special Instructions 62

5.1 Introduction . 62

5.2 Interrupt Handling . 62

5.2.1 Definition and Types of Interrupts 62

5.2.2 Interrupt Handling Mechanism 63

5.3 Input/Output (I/O) . 64

5.3.1 I/O Instructions . 64

5.3.2 Types of I/O Access . 64

2

5.4 System Instructions . 65

5.5 Conclusion . 65

6 Practice exercises 67

6.1 Series 1: Reminders and Revisions . 67

6.2 Series 2: Course Questions . 72

6.3 Series 3: application exercises . 74

3

List of Figures

1.1 Von Neumann architecture [4] . 10

1.2 Harvard architecture [3] . 10

2.1 Control Unit (CU) [13] . 15

2.2 Arithmetic Logic Unit (ALU) [13] . 16

2.3 Memory Hierarchy [12] . 20

2.4 Little endian and Big endian . 21

2.5 Main components of a computer [6] . 23

3.1 Computer Languages Classification (a). [11] 26

3.2 Computer Languages Classification (b). [11] 26

4.1 The MIPS R3000 [10] . 35

4.2 Central Memory Architecture in MIPS R3000 [14] 39

4.3 Formats: R, J, and I [2] . 49

4.4 Arithmetic and logical instructions (a) [2] 50

4.5 Arithmetic and logical instructions (b)[2] 50

4.6 Arithmetic and logical instructions (c) [2] 51

4.7 Data transfer instructions [2] . 51

4.8 Control flow instructions (a) [2] . 51

4.9 Control flow instructions (b) [2] . 52

4.10 Tables for encoding (a) [2] . 52

4.11 Tables for encoding (b) [2] . 53

4.12 Tables for encoding (c) [2] . 53

4.13 Tables for encoding (d) [2] . 53

4

List of Acronyms

- ALU : Arithmetic Logic Unit.

- CU : Control Unit.

- I/O : Input/Output.

- CPU : Central Processing Unit.

- PC : Program Counter.

- RAM : Random-Access Memory.

- DRAM : Dynamic Random-Access Memory.

- SRAM : Static Random-Access Memory.

- SSD : Solid-State Drives.

- MRAM : Magneto-resistive Random-Access Memory.

- FERAM : Ferroelectric Random-Access Memory.

5

Preface

Welcome to the Fascinating World of Computer Architecture! Welcome to Computer
Architecture, an exciting journey into the inner workings of the machines that power
our digital world. This course is designed for second-year Licence students, eager to
delve deeper into the intricate dance between hardware and software that brings com-
puters to life. Get ready to embark on a five–chapter adventure, each unveiling a crucial
layer of the computational onion:

• Chapter 1: Introduction to Computer Architecture: Laying the foundation, we’ll
explore the fundamental concepts that define computer architecture, its history,
and how it shapes the performance and capabilities of the devices we rely on daily.

• Chapter 2: Main Components of a Computer: Dive into the heart of the ma-
chine, examining the key players like the CPU, memory, I/O devices, and their
intricate interplay. You’ll gain a tangible understanding of how these components
orchestrate the digital symphony.

• Chapter 3: Basics of Computer Instructions: Understand the language of ma-
chines! We’ll decode the secret messages, called instructions, that computers exe-
cute to perform tasks. You’ll learn how these instructions are structured, fetched,
and executed, orchestrating the computational magic.

• Chapter 4: MIPS R3000: Put theory into practice! We’ll delve into the specifics
of a real-world processor, the MIPS R3000, dissecting its architecture and instruc-
tion set. This hands-on approach will solidify your understanding and equip you
with valuable practical skills.

• Chapter 5: Special Instructions : In this chapter, we’ll explore special instruc-
tions that go beyond the basic operations covered in Chapter 3. These specialized

6

instructions provide essential functionalities for tasks like handling interrupts,
managing memory access, and controlling system operations. Understanding
these instructions will enhance your grasp of the capabilities of a modern pro-
cessor.

Beyond the chapters, this course is designed to be an interactive experience. Prepare
to engage in:

• Weekly Lab Sessions: Get your hands dirty with real-world computer architecture.
You’ll work on practical exercises and simulations, solidifying your theoretical
understanding and gaining valuable technical skills.

• Weekly tutorial: Dive deeper into specific topics that pique your interest. These
guided explorations will allow you to personalize your learning journey and delve
into cutting-edge areas of computer architecture.

• Weekly lecture: No computer works in isolation! We’ll foster a collaborative
learning environment where you can share your insights, ask questions, and learn
from your peers.

This course is your gateway to understanding the invisible forces that drive the digital
world. By the end of your journey, you’ll possess a deep appreciation for the intricate
dance between hardware and software, the elegance of computer architecture, and the
power you hold to shape the future of computing.

So, buckle up, get ready to explore, and let’s delve into the captivating world of
Computer Architecture!

Best regards,

Dr. Mohammed Khammari
Instructor, Computer Architecture

7

Chapter 1

Introduction to Computer
Architecture

1.1 Introduction

A computer is a machine that can be programmed to carry out a set of instructions. It
is a general-purpose device that can be used for a variety of tasks, including calculations,
data processing, and communication.

1.2 History of the computer

The history of the computer can be traced back to the 19th century, when early
mechanical computers were developed. These computers were very limited in their
capabilities, but they laid the foundation for the development of modern computers.

The first electronic computer, the ENIAC, was built in the United States during
World War II. The ENIAC was a huge machine that weighed 30 tons and took up an
entire room. It was used to calculate ballistics tables for the US Army.

In the 1950s, the first commercial computers were developed. These computers were
much smaller and more affordable than the ENIAC, and they quickly became popular
in business and government.

8

In the 1960s, the first minicomputers were developed. These computers were even
smaller and more affordable than the first commercial computers, and they made com-
puting accessible to a wider range of people.

In the 1970s, the first personal computers were developed. These computers were
designed for individual use, and they revolutionized the way people interact with com-
puters.

In the 1980s, the personal computer market exploded. Computers became more
affordable and powerful, and they became an essential part of everyday life.

In the 1990s, the Internet was developed. The Internet made it possible for computers
to connect to each other and share information. This led to the development of new
applications and services, such as e-mail, the World Wide Web, and social media.

1.3 Von Neumann and Harvard architectures

There are two main types of computer architectures: the Von Neumann architecture
and the Harvard architecture. The Von Neumann architecture (Figure 1.1) is the most
common type of computer architecture. In a Von Neumann architecture, the program
instructions and data are stored in the same memory. This makes it possible for the
computer to fetch the next instruction and the next data item from the same memory
location. The Harvard architecture (Figure 1.2) is a variation of the Von Neumann
architecture. In a Harvard architecture, the program instructions and data are stored in
separate memories. This makes it possible for the computer to fetch the next instruction
and the next data item from different memory locations. Examples of Von Neumann
and Harvard architecture computers

• Von Neumann architecture computers: The ENIAC, the IBM 360, the Apple
II, the IBM PC, the Macintosh

• Harvard architecture computers: The Mark I, the UNIVAC I, the HP 9100A,
the PDP-8, the VAX

9

Figure 1.1: Von Neumann architecture [4]

Figure 1.2: Harvard architecture [3]

10

1.4 Conclusion

Computers have come a long way since their early beginnings. They are now ubiqui-
tous in our lives, and they continue to evolve at a rapid pace.

11

Chapter 2

Main Components of a Computer

2.1 Introduction

The Von Neumann architecture is a computer architecture that was first proposed
by John von Neumann in the 1940s. It is a stored-program computer architecture,
which means that both the instructions and the data are stored in the same memory.
This is in contrast to earlier computer architectures, which used separate memories for
instructions and data.

2.2 The global architecture of Von Neumann

The Von Neumann architecture is based on the following four components:

• Arithmetic logic unit (ALU): The ALU performs arithmetic and logical opera-
tions on data.

• Control unit (CU): The CU controls the flow of instructions through the com-
puter. It fetches instructions from memory, decodes them, and sends them to the
ALU to be executed.

• Memory: Memory stores both instructions and data.

• Input/output (I/O): I/O devices allow the computer to communicate with the
outside world.

12

The Von Neumann architecture works as follows:

1) The CU fetches an instruction from memory.

2) The CU decodes the instruction and sends it to the ALU.

3) The ALU executes the instruction, which may involve performing arithmetic or
logical operations on data.

4) The results of the instruction are stored in memory or sent to an I/O device.

5) The CU fetches the next instruction from memory and repeats the process.

2.2.1 Central processing unit (CPU)

The CPU is the brain of the computer. It is responsible for executing instructions,
which are the commands that tell the computer what to do. The CPU is a complex
piece of hardware that is made up of many different components.

The main components of the CPU are:

2.2.1.1 Control unit (CU)

The CU (Figure 2.1) is the brain of the Central Processing Unit (CPU). It is respon-
sible for directing the flow of instructions through the CPU and ensuring that they are
executed correctly. The CU does this by performing the following tasks:

• Fetching instructions from memory: The CU fetches instructions from mem-
ory one at a time.

• Decoding instructions: The CU decodes the instructions to determine what ac-
tion the CPU needs to take.

• Sending signals to the ALU: The CU sends signals to the arithmetic logic unit
(ALU) to tell it what operation to perform on the data.

• Controlling the flow of data: The CU controls the flow of data between the
ALU, memory, and registers.

13

• Controlling I/O: The CU controls the input/output (I/O) devices by sending sig-
nals to them to tell them when to read or write data.

The CU is a complex piece of hardware that is made up of many different components.
However, the basic principles of its operation are relatively simple.

• Here is a more detailed explanation of how the CU works:

1. The CU fetches an instruction from memory.

2. The CU decodes the instruction to determine the following:

o What operation needs to be performed (e.g., addition, subtraction, multipli-
cation, division, etc.)

o What data needs to be operated on (e.g., the contents of a register or a memory
location)

o Where to store the result of the operation (e.g., a register or a memory loca-
tion)

3. The CU sends signals to the ALU to tell it what operation to perform on the data.

4. The ALU performs the operation and stores the result in a register or memory
location.

5. The CU repeats steps 1-4 until it encounters a halt instruction.

The CU is a critical component of the CPU, and it plays a vital role in the operation
of the computer. Without the CU, the CPU would not be able to execute instructions
and the computer would not be able to function.

• Here are some examples of instructions that the CU might execute:

o Load a value from memory into a register.

o Add two values in registers and store the result in a register.

o Compare two values in registers and set a flag based on the result.

o Jump to a different location in the instruction stream.

o Call a subroutine.

14

The CU is responsible for ensuring that all of these instructions are executed correctly.
It does this by keeping track of the current state of the CPU and by sending the
appropriate signals to the ALU and other components.

The CU is a complex piece of hardware, but it is essential for the operation of
the computer. By understanding how the CU works, you can better understand how
computers work in general.

Figure 2.1: Control Unit (CU) [13]

2.2.1.2 Arithmetic logic unit (ALU):

The ALU (Figure 2.2) is the part of the CPU that performs arithmetic and logical
operations on data. It is responsible for performing all of the calculations that the
computer needs to do, such as adding, subtracting, multiplying, and dividing numbers.
The ALU is also responsible for performing logical operations, such as AND, OR, and
NOT. The ALU is a very important part of the CPU, and its performance can have a
significant impact on the overall performance of the computer. For this reason, ALU
design is a very active area of research.

15

• How the ALU works:

The ALU works by fetching two operands from memory or registers, performing the
desired operation on them, and storing the result in memory or a register. The operands
can be numbers, logical values, or even characters. The ALU can perform a wide variety
of operations, including:

o Arithmetic operations: addition, subtraction, multiplication, division, modulo, and
square root.

o Logical operations: AND, OR, NOT, XOR, and shifts.

o Comparison operations: equal to, not equal to, greater than, less than, greater than
or equal to, and less than or equal to.

The ALU is controlled by the control unit (CU). The CU tells the ALU what operation
to perform on the operands and where to store the result.

Figure 2.2: Arithmetic Logic Unit (ALU) [13]

16

2.2.1.3 Registers:

Registers are small, fast storage units that are part of a computer’s central processing
unit (CPU). They are used to store data and instructions that are being used by the
CPU. Registers are located on the CPU chip, which is the part of the computer that
does the actual computing. They are much faster than main memory, which is the
larger, slower memory that stores all of the computer’s data and programs.

• Registers are used for a variety of purposes, including:

o Storing data that is being used in an arithmetic or logical operation

o Storing the address of the next instruction to be executed

o Storing the results of an arithmetic or logical operation

o Storing flags, which are bits that indicate the status of the CPU

• Types of registers:

There are two main types of registers:

General-purpose registers: are the most common type of register. They can be
used to store data of any type, including integers, floating-point numbers, and
addresses.

Special-purpose registers: are designed for a specific purpose. Some common types
of special-purpose registers include: Accumulator registers: are used to store the
results of arithmetic operations. Program counter (PC): registers store the address
of the next instruction to be executed. Flags registers: store bits that indicate
the status of the CPU, such as whether a carry or borrow occurred during an
arithmetic operation.

2.2.1.4 Memory:

Main memory, also known as random-access memory (RAM), is the memory that is
directly accessible to the CPU. It is the fastest and most expensive type of memory in a
computer. Main memory is used to store: the operating system, the currently running
programs, data that is being processed by the CPU

17

The two main types of main memory are dynamic random-access memory (DRAM)
and static random-access memory (SRAM).

• Dynamic Random-Access Memory (DRAM): is the most common type of
main memory. It is less expensive than Static Random-Access Memory (SRAM),
but it is also slower. DRAM stores data in capacitors, which lose their charge
over time. This requires the capacitors to be refreshed periodically. DRAM is
divided into two main types: Synchronous DRAM (SDRAM) and Double Data
Rate (DDR) DRAM. SDRAM is the older type of DRAM, but it is still used in
some older computers. DDR DRAM is faster than SDRAM and is used in most
modern computers.

• Static Random-Access Memory (SRAM): is faster than DRAM, but it is also
more expensive. SRAM stores data in flip-flops, which do not lose their state over
time. This means that SRAM does not need to be refreshed. SRAM is used
in applications where speed is more important than cost, such as in the cache
memory of a computer’s CPU.

Other types of main memory:

In addition to DRAM and SRAM, there are a number of other types of main memory
that are used in specialized applications. These include:

o Flash memory: is a type of non-volatile memory, which means that it retains its
data even when the power is turned off. Flash memory is used in a variety of
applications, such as USB drives, solid-state drives (SSDs), and memory cards.

o Magneto-resistive random-access memory (MRAM): is a type of non-volatile
memory that uses magnetic fields to store data. MRAM is faster than DRAM
and SRAM, but it is also more expensive. MRAM is still under development, but
it has the potential to replace DRAM and SRAM in the future.

o Ferroelectric random-access memory (FERAM):): is a type of non-volatile
memory that uses ferroelectric materials to store data. FERAM is faster than

18

DRAM and SRAM, but it is also more expensive. FERAM is also still under
development, but it has the potential to replace DRAM and SRAM in the future.

Cache memory

Cache memory is a small amount of very fast memory that is located between the CPU
and main memory. It stores copies of the most frequently accessed data and instructions
from main memory. This allows the CPU to access this data and instructions much
faster than if it had to go to main memory every time. Cache memory is typically
implemented as a hierarchy, with multiple levels of cache memory. Each level of cache
is smaller and faster than the previous level.

The smallest and fastest level of cache is called the L1 cache. It is located right next
to the CPU and stores copies of the most frequently accessed data and instructions.
The next level of cache is called the L2 cache. It is larger and slower than the L1 cache,
but it still much faster than main memory. The L2 cache stores copies of data and
instructions that are not as frequently accessed as the data and instructions in the L1
cache.

Some CPUs also have a third level of cache, called the L3 cache. The L3 cache is the
largest and slowest level of cache, but it is still much faster than main memory. The L3
cache stores copies of data and instructions that are even less frequently accessed than
the data and instructions in the L2 cache.

• Reading and writing to main memory

The CPU can read and write to main memory using a process called memory access.
Memory access is initiated by the CPU when it needs to read or write data from or
to main memory. The CPU sends a memory access request to the memory controller,
which is a small chip that controls access to main memory. The memory controller then
sends the memory access request to the main memory. The main memory responds to
the memory access request by returning the requested data to the CPU or by writing
the requested data to main memory. The memory controller then returns the response
to the CPU.

19

Figure 2.3: Memory Hierarchy [12]

Little endian and big endian are two ways of storing data in memory. Little endian
stores the least significant byte (LSB) first, while big endian stores the most significant
byte (MSB) first. To read from main memory with little endian, the CPU will read
the bytes from memory in the order that they are stored, starting with the LSB. To
write to main memory with little endian, the CPU will write the bytes to memory in
the order that they are given, starting with the LSB. To read from main memory with
big endian, the CPU will read the bytes from memory in the reverse order that they
are stored, starting with the MSB. To write to main memory with big endian, the CPU
will write the bytes to memory in the reverse order that they are given, starting with
the MSB.

Here is an example of how little endian and big endian work with 0x 11223344. To
read or write the value to memory, the CPU would write the bytes in the following
order:
Little endian: 0x11, 0x22, 0x33, 0x44
Big endian: 0x44, 0x33, 0x22, 0x11

Why is little endian more common?

20

Figure 2.4: Little endian and Big endian

Little endian is more common than big endian because it is more efficient for most
processors. Most processors are designed to read and write data in word-sized chunks.
A word is typically 32 or 64 bits wide. When reading a word from memory, the processor
can read the bytes in the order that they are stored and then assemble them into a
word. When writing a word to memory, the processor can disassemble the word into
bytes and then write the bytes to memory in the order that they need to be stored.
Little endian is also more efficient for networking because most network protocols store
data in little endian format. This means that when a computer is sending data over a
network, it does not need to convert the data from big endian to little endian before
sending it.

2.2.1.5 Input and Output (I/O)

Input and output (I/O) are the processes of transferring data between a computer
and the outside world. Input is the process of bringing data into the computer, while
output is the process of sending data out of the computer.

• I/O devices

I/O devices are the hardware components that allow the computer to interact with
the outside world. There are many different types of I/O devices, including:

o Keyboards and mice: These devices are used to enter data into the computer.

o Monitors: These devices are used to display data on the screen.

21

o Printers: These devices are used to print data on paper.

o Storage devices: These devices are used to store data on a permanent basis.

o Scanners: These devices are used to convert images and text into digital form.

o Network adapters: These devices allow the computer to connect to a network.

2.2.1.6 The bus concept

In computer architecture, a bus is a communication pathway that allows data to
be transferred between different components of a computer system. There are many
different types of buses, each with its own purpose and characteristics.

• Data buses: Data buses are used to transfer data between the CPU and other
components of the computer, such as memory, I/O devices, and storage devices.
Data buses are typically parallel, meaning that they transfer data one bit at a
time on multiple wires. The width of a data bus is measured in bits, and it
determines how much data can be transferred at once. For example, a 32-bit data
bus can transfer 32 bits of data at once, which is equivalent to 4 bytes.

• Address buses: Address buses are used to identify the memory location where
data is stored. Address buses are typically parallel, and they use a different wire
for each bit of the address. The width of an address bus is measured in bits,
and it determines how many memory locations can be addressed. For example,
a 32-bit address bus can address 232 memory locations, which is equivalent to 4
GB of memory.

• Control buses: Control buses are used to send control signals between the CPU
and other components of the computer. Control signals are used to initiate data
transfers, control the flow of data, and provide feedback from the devices. Control
buses are typically serial, meaning that they transfer one signal at a time.

• Other types of buses: In addition to data, address, and control buses, there are
many other types of buses used in computer systems. Some common examples
include:

o Interrupt buses: These buses are used to send interrupt signals from I/O devices
to the CPU.

22

o Timing buses: These buses are used to synchronize the operation of different
components of the computer system.

o Power buses: These buses are used to supply power to the components of the
computer system. etc

The main components of a computer are shown in Figure 2.5

Figure 2.5: Main components of a computer [6]

23

2.3 Conclusion

The main components of a computer are the CPU, memory, I/O devices, and buses.
These components work together to allow the computer to perform its tasks.

The CPU is the central processing unit, and it is responsible for executing the instruc-
tions that make up a computer program. Memory is used to store data and instructions,
and I/O devices allow the computer to interact with the outside world. Buses are used
to connect the different components of the computer and allow them to communicate
with each other.

By understanding the main components of a computer, you can gain a better under-
standing of how computers work. This knowledge can be useful for a variety of purposes,
such as troubleshooting computer problems, upgrading computer components, and de-
veloping computer software.

24

Chapter 3

Basics of Computer Instructions

3.1 Introduction

An instruction is a command that tells a computer what to do. Instructions are
the basic building blocks of computer programs. They are used to perform arithmetic
operations, logical operations, control the flow of execution, and interact with input
and output devices. Instructions are typically encoded in machine language, which is
a low-level language that is directly understood by the computer’s central processing
unit (CPU). Machine language instructions are typically very short and concise, and
they are typically represented as a sequence of binary digits.

In this chapter, we will discuss the different types of instructions, the different formats
of instructions, and how instructions are executed

3.2 Languages of Programming

There are three main types of programming languages: high-level languages, assembly
languages, and machine languages. High-level languages are designed to be easy for
humans to read and write. They are typically translated into machine language by a
compiler or interpreter.

Assembly languages are a type of low-level language that is designed to be more
efficient than high-level languages. They are typically translated into machine language

25

by an assembler. Machine languages are the lowest-level type of programming language.
They are directly understood by the computer’s CPU.

Figure 3.1: Computer Languages Classification (a). [11]

Figure 3.2: Computer Languages Classification (b). [11]

3.3 Modes of Addressing

Addressing is how an instruction in a computer program specifies the location of
data in memory. Different addressing modes allow programmers to control how data is

26

accessed.

• Immediate: In immediate addressing, the operand value is specified directly within
the instruction. For example, the instruction ADD R1, 10 adds the immediate
value 10 to the content of register R1.

• Direct: In direct addressing, the operand value is specified by its address in mem-
ory. For example, the instruction LOAD R1, [0x100] loads the value stored at
memory address 0x100 into register R1.

• Indirect: In indirect addressing, the operand value is specified by the address of
another address. This address can be stored in a register or at another memory
location. For example, the instruction LOAD R1, [R2] loads the value stored at
the address of the address contained in register R2 into register R1.

• Register: In register addressing, the operand value is specified by the number of
the register containing it. For example, the instruction ADD R1, R2 adds the
content of @[2] to the content of register R1.

• Indexed: In indexed addressing, the operand value is specified by the address con-
tained in a register Indexe, plus a displacement. For example, the instruction
LOAD R1, [10] loads the value stored at the address contained in register Indexe,
plus 10, into register R1.

Examples: Here are some examples of using different addressing modes:

addresses Central Memory
10 100
20 50
30 500
40 700
50 80
60 30

Immediate:
ADD R1, 10 adds 10 to the content of register R1.
SUB R2, 5 subtracts 5 from the content of register R2.

27

Direct:
LOAD R1, [0x10] loads the value stored at memory address 0x10 into register R1 (R1
= 100).
Indirect:
LOAD R1, [0x20] loads the value stored at the address of the address into register R1
(R1 = 80).
Register:
ADD R1, R30 adds the content of @[30] to the content of register R1 (R1 = R1 + 500).
SUB R1, R20 subtracts the content of @[20] from the content of register R1 (R1 = R1
- 50).
Indexed:
LOAD R1, [10] loads the value stored at the address contained in register Indexe, plus
10, into register R1.(Indexe = 30, R1 = @[30+10] = 700)

3.4 Types of machines

• Processors with general-purpose registers: Processors with general-purpose
registers can have instructions with the following number of address fields:

- 3 address fields: destination, source1, source2 (e.g., add R1, R2, R3 which
calculates R1 <- R2 + R3)

- 2 address fields: the register of one of the operands receives the result (e.g.,
add R1, R2 which calculates R1 <- R1 + R2)

• Processors with an Accumulator: Processors with an accumulator have two
specific instructions for accessing the accumulator: load X to load the accumulator
with a data X, and store X to write the content of the accumulator to memory
or another register.

- 1 address field: source2 (e.g., add R1 which calculates Acc <- Acc + R1)

• Processors with a Stack: A stack is a data structure in main memory in which
data is placed "on top of each other": the last data entering the stack will be the

28

first to leave. A special register SP contains the address of the top of the stack.
Two operations are defined on stack structures: push X: push a data X, that is,
place it on top of the stack and advance the SP register to the next memory cell.
pop X: pop to a memory cell or a register X, that is, place in X the data at the
top of the stack designated by SP and advance the SP register to the previous
memory cell. In this case, all operations take their operands from the top of the
stack, and store the result at the top of the stack. In addition, the operands are
automatically popped off.

- 0 address field: (e.g., add which performs the calculation [SP-2] <- [SP-2]
+ [SP-1]; SP <- SP - 1 (in the case of a stack that grows towards high
addresses))

Example :
Here is an example of how these instructions can be used:

// Processor with general-purpose registers
add R1, R2, R3 // R1 = R2 + R3
add R1, R2 // R1 = R1 + R2

// Processor with an accumulator
load 10 // acc = 10
add R1 // Acc = Acc + R1

// Processor with a stack
push R1 // Push R1 onto the stack
push R2 // Push R2 onto the stack
add // pop R1, pop R2, top of the stack = R1+R2

3.5 Common Machine Instructions

Assembler is a low-level language that gives you direct control over the processor.
It’s powerful, but complex and requires careful attention to detail. Learn assembler to

29

unlock the full potential of your computer.

• Basic Instructions :

- Data transfer: Load and store instructions move data between registers and
memory.

- Arithmetic: : Addition (add), subtraction (sub), multiplication (mult), and
division (div) operations on various data types like integers and floating-
point numbers.

- Logical: AND, OR, NOT, and other logical operations on bits and registers.

- Comparison: Compare two values and set flags based on the result (e.g.,
equal, greater than).

• Control Flow :

- Conditional jumps: Branch to a different instruction based on the value of
flags or a register.

- Loops: Loop instructions allow for repeated execution of a block of code.

- Subroutines: Call and return instructions for modular program execution.

• Advanced Instructions :

- Shift and rotate: Shift data left or right by a specified number of bits.

- Bit manipulation: Set, clear, or extract individual bits within a register.

- Floating-point arithmetic: Specialized instructions for efficient floating-
point computations.

- Memory management: Instructions for handling virtual memory and mem-
ory protection.

• Additional points to consider :

- Different architectures have different register sizes and types.

- Some instructions operate on immediate values instead of register values.

- Instructions can have varying addressing modes for specifying operand loca-
tions.

- Optimization techniques can impact instruction selection and code efficiency.

30

This is just a basic framework. Specific architectures will have their own unique
instructions and features. Remember, assembler programming requires careful attention
to detail and understanding of the underlying hardware. Get ready to master the MIPS
R300 instruction set in the next chapter! We’ll use various examples and exercises to
put your understanding to the test.

3.6 Instruction Execution cycle

The instruction execution cycle is the sequence of steps that a processor takes to
execute an instruction. It is a fundamental concept in computer architecture and is
essential for understanding how assembly programs work.

The instruction execution cycle can be divided into four main steps:

1. Fetch: The fetch step is the first step in the instruction execution cycle. In this
step, the processor reads the instruction from memory. The address of the instruc-
tion is typically stored in the program counter (PC) register. The instruction is
typically stored in memory as a sequence of bits. The processor decodes these
bits to determine what the instruction does.

2. Decode: The decode step is the second step in the instruction execution cycle. In
this step, the processor decodes the instruction to determine what it does. The
instruction format varies depending on the processor architecture. However, most
instructions have a common format that includes the following fields:

• Opcode: This field specifies the operation that the instruction performs.

• Operands: These fields specify the data that the instruction operates on.

• Addressing modes: These fields specify how the operands are located in
memory.

The processor uses the opcode field to determine what operation to perform.
The operands field specifies the data that the instruction operates on. The ad-
dressing modes field specifies how the operands are located in memory.

31

3. Execute: The execute step is the third step in the instruction execution cycle.
In this step, the processor executes the instruction. The specific steps involved
in the execute step vary depending on the instruction. However, some common
instruction types include:

• Data transfer: These instructions transfer data between registers or between
memory and registers.

• Arithmetic: These instructions perform arithmetic operations on data.

• Logical: These instructions perform logical operations on data.

• Control flow: These instructions control the flow of execution.

4. Writeback: The writeback step is the fourth and final step in the instruction
execution cycle. In this step, the processor writes back the result of the instruction
to memory or a register. The specific steps involved in the writeback step vary
depending on the instruction. However, some common instruction types require
the processor to write back the result to a register and the PC is updated for the
next instruction.

The exact details of each step can vary depending on the processor architecture.
However, the general sequence of steps is the same for all processors. The instruction
execution cycle is a fundamental concept in computer architecture. It is essential for
understanding how assembly programs work. By understanding the four steps of the
instruction execution cycle, you can gain a deeper understanding of how processors
work and how to write efficient assembly code.

3.7 The Clock and the Sequencer

The clock is a device that generates a periodic signal that synchronizes the operations
of the CPU. The sequencer is a circuit that controls the order in which instructions are
executed.

32

3.7.1 The Clock

Imagine a metronome keeping time for the processor. The clock sends regular pulses,
each tick triggering the next step in the instruction execution cycle. The clock frequency,
measured in Hertz (Hz), determines the processing speed. Higher frequency means more
instructions executed per second.

3.7.2 The Sequencer

Think of the sequencer as the brain of the instruction execution cycle. It receives
the clock pulses and orchestrates the four main stages: Fetch, Decode, Execute and
Writeback. The clock and the sequencer work together to ensure that instructions are
executed in a precise and orderly fashion.

Additional Points:

• Pipelining can overlap stages of multiple instructions, further increasing perfor-
mance by utilizing idle processing units.

• Control signals are used to communicate between the clock, sequencer, and func-
tional units, ensuring synchronized execution.

• Different architectures may have additional stages or variations in implementation,
but the core functionality remains the same.

Understanding how the clock and sequencer orchestrate the instruction execution
cycle is crucial for grasping assembler programs and processor functionality. Remember,
this is a general overview, and specific details will vary depending on the architecture
you’re interested in.

3.8 Conclusion

In this chapter, we have discussed the different types of instructions, the different
formats of instructions, and how instructions are executed. Instructions serve as the
foundational commands that dictate the operations within computer programs, encom-
passing arithmetic calculations, logical decisions, flow control, and interactions with

33

input/output devices. Encoded in machine language, these concise sequences of binary
digits form the direct communication interface with the computer’s central processing
unit (CPU). By exploring the various types and formats of instructions, we have gained
insights into their role in executing complex operations efficiently. By understanding
how instructions work, you can better understand how computers work.

34

Chapter 4

The processor

4.1 Introduction

The MIPS R3000 is a 32-bit RISC processor that was developed by MIPS Computer
Systems in 1988. It was the first commercial processor to implement the MIPS I
instruction set architecture. The R3000 was used in a variety of systems, including
workstations, servers, and embedded systems.

Figure 4.1: The MIPS R3000 [10]

35

The R3000 is a pipelined processor, which means that it can fetch, decode, exe-
cute, and write back instructions in parallel. This allows the R3000 to achieve high
performance. The MIPS R3000 was used in a variety of industrial applications such:
The MIPS Magnum (workstation), The Sun SPARCstation 1(server), The Nintendo
64(video game console)

4.2 External Architecture of the MIPS R3000 Proces-

sor

The external architecture of the MIPS R3000 processor represents what a programmer
needs to know in order to program in assembly language. It includes the following:

• Visible registers: The R3000 has 32 (32-bit general) purpose registers. These
registers are used to store data and instructions.

• Memory addressing: The R3000 uses a 32-bit address bus to access memory.

• Instruction set: The R3000 instruction set is a RISC instruction set. It includes
a variety of instructions for arithmetic, logical, and control operations.

• Interrupt and exception handling: The R3000 supports a variety of interrupt
and exception handling mechanisms.

4.2.1 Visible registers

A visible register is a register whose value can be read or modified by instructions.
Each visible register is a 32-bit register. The processor has two operating modes: user
and supervisor. These two operating modes require two categories of registers: unpro-
tected registers and protected registers.

• Unprotected registers: are registers that can be accessed by both user-level pro-
grams and operating system code. These registers are used to store data and
instructions. The following is a list of the unprotected registers in the MIPS
R3000 processor:

o $zero: Always contains the value 0

36

o $at: Reserved for use by the operating system

o $v0-$v1: Value registers

o $a0-$a3: Argument registers

o $t0-$t9: Temporary registers

o $s0-$s7: Saved registers

o $t8-$t9: Temporary registers

o $gp: Global pointer register

o $sp: Stack pointer register

o $fp: Frame pointer register

o $ra: Return address register

User-level programs can access these registers to store data and instructions.
The operating system can also access these registers to pass data and arguments
to user-level programs, and to return values from user-level programs. The op-
erating system is responsible for managing the use of unprotected registers. For
example, the operating system ensures that user-level programs cannot corrupt
the operating system itself by modifying the contents of unprotected registers.

• Protected registers: are registers that can only be accessed by operating system
code. They are used to control the operation of the processor and the system.

4.2.2 Memory addressing

The MIPS R3000 processor memory is organized as a sequence of 8-bit bytes. This
means that each memory location can store one byte of data. Addresses in the MIPS
R3000 processor are 32 bits long. This means that the processor can address up to 4GB
of memory. Instructions in the MIPS R3000 processor are also 32 bits long. Data can
be exchanged between registers and memory in the MIPS R3000 processor using the
following instructions:

• Load instructions: Load instructions load data from memory into registers.

• Store instructions: Store instructions store data from registers into memory.

37

The MIPS R3000 processor can transfer data between registers and memory in three
sizes:

• Word: A word is four bytes long.

• Halfword: A halfword is two bytes long.

• Byte: A byte is one byte long.

The addresses of words and instructions must be a multiple of four. The addresses of
halfwords must be a multiple of two. If an instruction calculates an address that does
not meet this constraint, the processor will generate an exception. The MIPS R3000
processor memory is divided into two segments, identified by the most significant bit
of the address:

• User segment: The user segment is accessible in both user mode and supervisor
mode.

• System segment: The system segment is only accessible in supervisor mode.

If a user mode instruction tries to access the system segment, the processor will gen-
erate an exception.

38

Figure 4.2: Central Memory Architecture in MIPS R3000 [14]

39

4.2.3 The MIPS R3000 Instruction Set

The MIPS R3000 instruction set is a 32-bit instruction set architecture (ISA) that was
introduced in 1988. The R3000 was the second implementation of the MIPS ISA, and it
was based on the Berkeley RISC I design. The MIPS R3000 instruction set is a simple
and efficient instruction set that is designed for high performance. The instruction set
consists of a total of 57 instructions, which are divided into the following categories:

• Arithmetic and logical instructions: These instructions perform arithmetic and
logical operations on data.

• Data transfer instructions: These instructions transfer data between registers and
memory.

• Control flow instructions: These instructions control the flow of execution of a
program.

• System instructions: These instructions perform system-level operations, such as
accessing I/O devices.

4.2.3.1 Arithmetic and logical instructions

The arithmetic and logical instructions in the MIPS R3000 instruction set are used
to perform arithmetic and logical operations on data. These instructions include:

add: Add the contents of two registers and store the result in a third register.

addu: Add the contents of two registers and store the result in a third register, treat-
ing the operands as unsigned integers.

addi: Add a signed immediate value to a register and store the result in the same
register.

addiu: Add an unsigned immediate value to a register and store the result in the
same register.

sub: Subtract the contents of one register from another register and store the result
in a third register.

40

subu: Subtract the contents of one register from another register and store the result
in a third register, treating the operands as unsigned integers.

mult: Multiply the contents of two registers and store the product in the HI and LO
registers.

multu: Multiply the contents of two registers and store the product in the HI and
LO registers, treating the operands as unsigned integers

div: Divide the contents of one register by another register and store the quotient and
remainder in the LO and HI registers, respectively.

divu: Divide the contents of one register by another register and store the quotient
and remainder in the LO and HI registers, respectively, treating the operands as
unsigned integers.

mfhi: Move the contents of the HI register to another register.

mflo : Move the contents of the LO register to another register.

mthi: Move the contents of a register to the HI register.

mtlo: Move the contents of a register to the LO register.

and : Performs a logical AND operation on the values of the two source registers and
stores the result in the destination register.

or : Performs a logical OR operation on the values of the two source registers and
stores the result in the destination register.

xor : Performs a logical XOR operation on the values of the two source registers and
stores the result in the destination register.

nor : Performs a logical NOT operation on the result of the logical AND operation
on the values of the two source registers and stores the result in the destination
register.

nand : Performs a logical NOT operation on the result of the logical AND operation
on the values of the two source registers and stores the result in the destination
register.

41

slt : Performs a logical comparison on the values of the two source registers and stores
the result in the destination register. The result is 1 if the value of source register
$rs1 is less than the value of source register $rs2, and 0 otherwise.

sltu: Performs a logical comparison on the values of the two source registers and stores
the result in the destination register. The result is 1 if the value of source register
$rs1 is less than or equal to the value of source register $rs2, and 0 otherwise.

Examples: Here are some examples of arithmetic and logical instructions in the MIPS
R3000 instruction set:

1) add Rd, Rs, Rt: Adds the values of the registers Rs and Rt and stores the result
in the register Rd (Rd = Rs + Rt).

2) mult Rs, Rt: Multiplies the values of the registers Rs and Rt and stores the result
in the two registers HI and LO. LO receives the lower 32 bits of the result, and
HI receives the higher 32 bits of the result.

3) and Rd, Rs, Rt: Performs a bitwise AND operation on the values of the registers
Rs and Rt and stores the result in the register Rd.

4) slt Rd, Rs, Rt: compares the value of register Rs to the value of register Rt and
stores the result in register Rd. If the value of register Rs is less than the value
of register Rt, the result is 1, otherwise the result is 0.

And with values: Code in MIPS R3000

li $8 ,0x1025DF14

li $10,0x20124DA0

add $11,8,10 | $11 = 0x30382CB4

and $12,8,10 | $12 = 0x00004D00

mult $8,10

mflo $13 | $13 = 0xAB2C7080

slt $14,8,10 | $14 = 0x00000001

42

4.2.3.2 Data transfer instructions

Data transfer instructions are used to move data between registers and memory. The
MIPS R3000 ISA has a variety of data transfer instructions, including:

Load Instructions: Load instructions load data from memory into a register. The
most common load instructions are:

lw : Loads a word (32 bits) from memory into a register.

lh : Loads a halfword (16 bits) from memory into the low-order 16 bits of the register.
The sign bit of the loaded value is extended to the remaining 16 high-order bits
of the destination register.

lhu : Loads a halfword (16 bits) from memory into the low-order 16 bits of the register,
and the remaining 16 high-order bits are padded with zeros.

lb : Loads a byte (8 bits) from memory into the low-order 8 bits of the register. The
sign bit of the loaded value is extended to the remaining 24 high-order bits of the
destination register.

lbu : Loads a byte (8 bits) from memory into the low-order 8 bits of the register, and
the remaining 24 high-order bits are padded with zeros.

Store Instructions: Store instructions store data from a register into memory. The
most common store instructions are:

sw : Stores a word (32 bits) from a register into memory.

sh : Stores a halfword (16 bits) from the low-order 16 bits of a register into memory.

sb : Stores a byte (8 bits) from the low-order 8 bits of a register into memory.

Examples: Here are some examples of data transfer instructions:

1) lw Rd, 0(Rs): Loads the word at memory address Rs + 0 into register Rd.

2) sh Rd, -4(Rs): Stores the value in register Rd at memory address Rs - 4.

43

And with values: Code in MIPS R3000

.data

A: .word 0x15D478C5

B: .word 0xF502B1F3

.text

_start:

li $8 ,0x1025DF14

la $20, A

lw $11,4($20) | $11 = 0x F502B1F3

lh $12,4($20) | $12 = 0x FFFFB1F3

lhu $13,4($20) | $13 = 0x 0000B1F3

lb $14,4($20) | $14 = 0x FFFFFFF3

lbu $15,4($20) | $15 = 0x 000000F3

lbu $15,4($20) | $15 = 0x 000000F3

sb $8,4($20) | B = 0x F502B114

sh $8,4($20) | B = 0x F502DF14

sw $8,4($20) | B = 0x 1025DF14

4.2.3.3 Control flow instructions

Control flow instructions are used to change the flow of execution of a program. The
MIPS R3000 ISA has a variety of control flow instructions, including:

Jump Instructions: Jump instructions transfer control to another part of the
program. The most common jump instructions are:

j: Jumps to a label.

jal: Jumps to a label and saves the return address in the $ra register.

44

Branch Instructions: Branch instructions transfer control to another part of the
program based on a condition. The most common branch instructions are:

beq: Branches to a label if two registers are equal.

bne: Branches to a label if two registers are not equal.

bgez: Branch to a label if one register is greater or equal zero

bgtz: Branch to a label if one register is greater than zero

blez: Branch to a label if one register is less or equal zero

bltz: Branch to a label if one register is less than zero

Return Instructions: Return instructions return from a subroutine. The most
common return instruction is:

jr: Returns from a subroutine.

Examples: Here are some examples of control flow instructions:
j main: Jumps to the label main.
jal sub1: Jumps to the subroutine sub1 and saves the return address in the $ra register.
beq Rs, Rt, eq: Branches to the label eq if the values in registers Rs and Rt are equal.
bne Rs, Rt, neq: Branches to the label neq if the values in registers Rs and Rt are not
equal.
jr $ra: Returns from the current subroutine.

1- Example with If :
If ($8 < 0) then $9 = $9+$10
else $9 = $9-$10
Code in MIPS :
bltz $8, label1
sub $9,$9,$10
j label2
label1 : add $9,$9,$10
label2:

45

2- Example with While :
While ($8 < 0) do {
$8 = $9+$10
$9 = $9-$10
}
Code in MIPS :
boucle : Bltz $8, label1
j label2
label1 : add $8,$9,$10
sub $9,$9,$10
j boucle
label2 :

4.2.3.4 Shift instructions

Shift instructions are used to manipulate the bits of a register by shifting them a
certain number of positions to the left or right. There are two main types of shift
instructions: logical shifts and arithmetic shifts. Logical shifts fill the vacated bits
with zeros. This means that when a bit is shifted out of the register, a zero is inserted in
its place. Logical shifts are commonly used to multiply unsigned integers by powers of
two. For example, shifting an unsigned integer by one position to the left is equivalent
to multiplying it by two. Arithmetic shifts fill the vacated bits with the sign bit
of the register. This means that if the sign bit is 1, then all of the vacated bits will
be filled with 1s. If the sign bit is 0, then all of the vacated bits will be filled with 0s.
Arithmetic shifts are commonly used to divide signed integers by powers of two. For
example, shifting a signed integer by one position to the right is equivalent to dividing
it by two.
The MIPS architecture has four basic shift instructions:

sll : (Shift Left Logical) Shifts the bits of a register to the left by a specified amount.

srl : (Shift Right Logical) Shifts the bits of a register to the right by a specified
amount.

46

sllv : (Shift Left Logical Variable) Shifts the bits of a register to the left by the value
in another register.

srlv : (Shift Right Logical Variable) Shifts the bits of a register to the right by the
value in another register.

srav : (Shift Right Arithmetic Variable) Shifts the bits of a register to the right by
the value in another register.

sra : (Shift Right Arithmetic) Shifts the bits of a register to the right by a specified
amount.

And with values: Code in MIPS R3000

.text
_start:
li $8 ,0xF025DF14
li $10,0x20124D04
sll $11,$8,8 | $11 = 0x25DF1400
srl $12,$8,8 | $12 = 0x00F025DF
sllv $13,$8,$10 | $13 = 0x025DF140
srlv $14,$8,$10 | $14 = 0x0F025DF1
srav $15,$8,$10 | $15 = 0xFF025DF1
sra $16,$8,8 | $16 = 0xFFF025DF

4.2.3.5 System instructions

System instructions are used to interact with the operating system and perform
privileged operations. The MIPS R3000 ISA has a variety of system instructions,
including:

syscall: Executes a system call.

break: Causes a breakpoint.

trap: Causes a trap.

47

eret: Returns from an exception.

Examples: Here are some examples of system instructions:
syscall 5, filename, oflag: Opens the file filename with the flags oflag.
break: Causes a breakpoint at the current instruction.
trap 2: Causes a trap with trap number 2.
eret: Returns from the current exception handler.

4.2.4 The instruction encoding

The MIPS R3000 instruction set has three main instruction encoding formats: R, J,
and I. These formats determine the arrangement of the instruction’s components within
the 32-bit instruction word.

48

Figure 4.3: Formats: R, J, and I [2]

49

4.2.4.1 Syntax and format of MIPS R3000 instructions

The following figures show all of the MIPS R3000 instructions, grouped by format.
Arithmetic and logical instructions

Figure 4.4: Arithmetic and logical instructions (a) [2]

Figure 4.5: Arithmetic and logical instructions (b)[2]

50

Figure 4.6: Arithmetic and logical instructions (c) [2]

Data transfer instructions

Figure 4.7: Data transfer instructions [2]

Control flow instructions

Figure 4.8: Control flow instructions (a) [2]

51

Figure 4.9: Control flow instructions (b) [2]

System instructions and shift instructions : All system instructions and shift
instructions use the R format

4.2.4.2 Encoding

The type of instruction is primarily determined by the opcode in the instruction op-
eration code field (INS 31:26). Example: the ADDI instruction has the opcode 001000.

Figure 4.10: Tables for encoding (a) [2]

• If the operation code is SPECIAL, you need to look at the 6 least significant bits
of the instruction (INS 5:0).

• If the operation code is BCOND, you need to look at bits 20 and 16.

52

• If the operation code is COPRO, you need to look at bits 25 and 23.

Figure 4.11: Tables for encoding (b) [2]

Figure 4.12: Tables for encoding (c) [2]

Figure 4.13: Tables for encoding (d) [2]

53

Example of encoding: instruction: nor $10, $5,$11

o Step 1: Find the syntax and format :
The syntax of the instruction is nor Rd, Rs, Rt. The format of the instruction is
R.

o Step 2: Find the opcode :
The opcode for the nor instruction is 000000. The function code for the nor
instruction is 100111.

o Step 3: Make the correspondences :
The correspondences for the registers are as follows:
Rd = $10 = 01010
Rs = $5 = 00101
Rt = $11 = 01011

o Step 4: Writing the instruction according to the format :
0000 0000 1010 1011 0101 0000 0010 0111

o Step 5: Convert the instruction to hexadecimal :
0x00AB5027

Example of decoding: instruction in hexadecimal: 0x868C0004

o Step 1: Convert hexadecimal to Binary :
Instruction in binary = 10000110100011000000000000000100

o Step 2: Find the Opcode in 6 high-order bits :
Opcode = 100001

o Step 3: Find the syntax and format :
Syntax = "lh Rt,I(Rs)" Format = "I"

o Step 4 :
Parse the string according to the format and find the values of Rt, Rs,
and I
Rt = 01100 = $12
Rs = 10100 = $20
I = 0000000000000100 = 4

54

o Step 5: Format the instruction according to the syntax :
lh $12,4($20)

4.3 MIPS R3000 programming

4.3.1 Rules of syntax:

• Structure of a MIPS program: A MIPS program is typically divided into three
sections: text, data, and stack. The text section contains the executable instruc-
tions of the program. The data section contains the variables and constants used
by the program. The stack section is used to store temporary data and return
addresses.

• Directives: Directives are instructions to the assembler that provide information
about the program or control the assembly process. Directives are written as
follows: .directive argument1, argument2, ... The period (.) indicates that the
word following it is a directive.

• Declaration of text, data, and stack sections: The .text directive is used to
declare the start of the text section. The .data directive is used to declare the
start of the data section. The .stack directive is used to declare the start of the
stack section.

• Declaration and initialization of variables: Variables are declared using the
.word directive. The .word directive reserves a word of memory for the vari-
able and initializes it to the specified value.
Example:
.data
var1 : .word 10
var2 : .word 20
var3 : .word 30
This code declares three variables named var1, var2, and var3. The values of the
variables are 10, 20, and 30, respectively. Variables can also be declared using
the .space directive. The .space directive reserves a specified number of bytes of
memory for the variable.

55

Example:
.data
Var4 : .space 10
This code declares a variable named var4 that is 10 bytes long.

• Declaration of data: Constants are declared using the .asciiz directive. The .asciiz
directive reserves a word of memory for the constant and initializes it to the
specified string.
Example:
.data
Message : .asciiz "Hello, world!"
This code declares a constant named message that is the string "Hello, world!".

• Identifiers (labels): Identifiers are used to identify labels, variables, and con-
stants. Identifiers must start with a letter or underscore (_) and can contain
any combination of letters, digits, and underscores.

• Types of data :

- Integers: Integers are whole numbers. Integers in MIPS can be represented
in a variety of sizes, including 8 bits, 16 bits, 32 bits, and 64 bits. The .word
directive is used to declare a 32-bit integer.

- Strings: Strings are sequences of characters. Strings in MIPS are represented
as arrays of characters. The .asciiz directive is used to declare a string.

- Reals: Reals are numbers with a decimal point. Reals in MIPS can be repre-
sented in a variety of sizes, including 32 bits and 64 bits. The .float directive
is used to declare a 32-bit real.

- Registers: Registers are special-purpose memory locations that are used to
store data quickly. MIPS has 32 registers, numbered from 0 to 31.

- Comments: Comments are used to provide human-readable explanations or
descriptions within the assembly code. Comments are written as follows:
; This is a comment or This is a comment The semicolon (;) indicates that
the text following it is a comment and should be ignored by the assembler.

56

Example:
Here is an example of a MIPS program that prints the message "Hello, world!"
to the console:
.data
message: .asciiz "Hello, world!"
.text
_start :
la $4, message
li $2, 4
syscall
li $2, 10
syscall
This program uses the following directives:

o .data to declare the start of the data section

o .asciiz to declare the constant message

o .text to declare the start of the text section

This program uses the following instructions:

o la to load the address of the constant message into register $4

o li to load the value 4 into register $2.

o ’syscall’ to invoke the system call ’print_string()’, which prints the string
pointed to by register

4.3.2 Macro instruction

A macro instruction is a pseudo-instruction that is not part of the machine instruction
set, but is accepted by the assembler that translates it into a sequence of several machine
instructions. Macro instructions use register $1 if they need to perform an intermediate
calculation. Therefore, this register should not be used in programs.

• Loading an address into a register :
Syntax: la $rr, adr

57

Description: The address considered as an unsigned quantity is loaded into the
register.

• Loading an immediate operand on 32 bits into a register :
Syntax: li $rr, imm
Description: The immediate value is loaded into register $rr.
Examples:
la $t0, message
This instruction loads the address of the variable message into register $t0.
li $t1, 10
This instruction loads the value 10 into register $t1.

4.3.3 System calls in MIPS R3000

MIPS R3000 provides a number of system calls that allow programs to interact with
the operating system. These system calls are implemented in assembly language and
are called by using the syscall instruction.

• Writing an integer: To write an integer to the console, you need to do the follow-
ing:

- Load the integer to be written into register $4. This is the value that will be
written to the console.

- Load the value 1 into register $2. This is the system call code for writing an
integer.

- Call the syscall() function. This function calls the operating system to write
the integer to the console.

Example:
.text
_start:
li $4, 0x00FF00CC # Load the hexadecimal value 0x00FF00CC into $4
ori $2, $0, 1 # Set the ’print_integer’ code in $2

58

syscall # Print 0x00FF00CC

• Reading an integer from the console: To read an integer from the console,
you need to do the following:

- Load the value 5 into register $2. This is the system call code for reading an
integer.

- Call the syscall() function. This function calls the operating system to read
the integer from the console.

- Store the result in register $2. This is the value that was read from the console.

Example:
.text
_start:
ori $2, $0, 5 # Set the ’read_integer’ code in $2
syscall # Read an integer

• Writing a string : To write a string to the console, you need to do the following:

- Load the address of the string to be displayed into register $4. This is the
address of the first character in the string.

- Load the value 4 into register $2. This is the system call code for writing a
string.

- Call the syscall() function. This function calls the operating system to write
the string to the console.

Example:
.data
str: .asciiz "String to write r "
.text
_start:
la $4, str # Load the address of the string into $4

59

ori $2, $0, 4 # Set the ’print_string’ code in $2
syscall # Write the string

• Reading a string from the console: To read a string from the console, you
need the following:

- Load the value of the pointer into register $4. This is the address of the first
character in the buffer.

- Load the value of the size of the buffer into register $5. This is the maximum
number of characters that can be read.

- Execute the system call number 8. This calls the operating system to read
the string from the console into the buffer pointed to by register $4.

Example:
.data
ch: .space 256
.text
_start:
la $4, ch # Load the pointer into $4
ori $5, $0, 152 # Load max length into $5
ori $2, $0, 8 # Set the ’read_string’ code in $2
syscall # Copy the string into the buffer pointed to by $4

• Exiting a program: To exit a program, you need to execute system call number
10. This is done by the following steps:

- Load the value 10 into register $2.

- Call the syscall() function.

Example:
ori $2, $0, 10 # Set the ’exit’ code in $2
syscall # exit

60

4.4 Conclusion

In this chapter, we delved into the heart of a computer system - the processor. Our
exploration began with the MIPS R3000 processor, examining its external architec-
ture, including its visible registers, memory addressing mechanisms, instruction set,
and instruction encoding. We then delved into the world of MIPS R3000 programming,
understanding the rules of syntax, macro instructions, and system calls. Through this
journey, we gained a deeper appreciation for the processor’s role in executing instruc-
tions and managing data within a computer system.

This chapter serves as a foundation for further exploration of processor design and
architecture. As you delve deeper, you’ll discover more complex architectures with
advanced features like pipelining and caching. Remember, the processor remains the
fundamental building block of modern computing, and understanding its workings em-
powers you to better grasp the heart of a computer system.

61

Chapter 5

Special Instructions

5.1 Introduction

This chapter examines special instructions in computer architecture, focusing on the
MIPS R3000 processor.

5.2 Interrupt Handling

5.2.1 Definition and Types of Interrupts

An interrupt is an event that suspends the execution of the current program to handle
an urgent external event. The processor can handle two types of interrupts:

Internal Interrupts:

• Arithmetic overflow

• Page fault

• Stack overflow

• Division by zero

62

External Interrupts:

• Signal from an I/O device (device ready, service request)

• Timer

• Bus error

5.2.2 Interrupt Handling Mechanism

1. Save the context of the current program: o Program registers (PC, PSR, GPR)

o Processor control registers (EPC, Cause, Status)

2. Determine the source of the interrupt: o Interrupt vector (exception vector
for internal interrupts)

o Each interrupt has its own ID number and vector location

3. Load the interrupt handler: o Address of the interrupt handler stored in the
interrupt vector

o The interrupt handler is an Interrupt Service Routine (ISR)

4. Execute the interrupt handler: o Process the event that caused the interrupt

o Read data from the device

o Send data to the device

o Acknowledge the interrupt

5. Restore the context of the current program: o Restore saved registers

o Resume program execution at the next instruction

Example:

A user presses a key on the keyboard.

1. The keyboard controller generates an interrupt.

2. The processor suspends the execution of the current program and saves its context.

63

3. The processor determines the source of the interrupt (keyboard) by consulting the
interrupt vector.

4. The processor loads the keyboard interrupt handler.

5. The interrupt handler reads the key code and stores it in memory.

6. The interrupt handler sends an end-of-interrupt signal to the processor.

7. The processor restores the context of the current program and resumes program
execution.

5.3 Input/Output (I/O)

5.3.1 I/O Instructions

The MIPS R3000 has a set of instructions dedicated to I/O operations: (As seen in
Chapter 4)

o lw (Load Word): Load a word from memory to a register

o sw (Store Word): Store a word from a register to memory

o lb (Load Byte): Load a byte from memory to a register

o sb (Store Byte): Store a byte from a register to memory

o lhu (Load Halfword Unsigned): Load an unsigned halfword from memory to a reg-
ister

o sh (Store Halfword): Store a halfword from a register to memory

5.3.2 Types of I/O Access

• Programmed I/O:

o The programmer controls the data transfer.

o Specific I/O instructions for each device.

64

o Example: lw $t0, 0x1000 (read a word at address 0x1000 into register $t0)

• Interrupt-driven I/O:

o The device signals the end of an operation with an interrupt.

o The interrupt handler handles the data transfer.

o Reduces the processor load.

o Example: Keyboard end-of-read interrupt

5.4 System Instructions

The MIPS R3000 has a set of instructions for managing system tasks: (As seen in
Chapter 4)

• Memory Management:

o lui (Load Upper Immediate): Load the upper half of a register

o ori (Or Immediate): Perform a logical OR with a register and an immediate
value

o sw (Store Word): Write a word from a register to memory

• Control Flow:

o beq (Branch on Equal): Branch to a target address if two registers are equal

o bne (Branch on Not Equal): Branch to a target address if two registers are
not equal

o j (Jump): Jump to a target address

5.5 Conclusion

In this chapter, we explored the concept of special instructions in computer architec-
ture, with a focus on the MIPS R3000 processor. We covered the following topics:

• Interrupts: We discussed the different types of interrupts, the mechanism for han-
dling them, and an example of an interrupt scenario.

65

• Input/Output (I/O): We examined the I/O instructions available in the MIPS
R3000, as well as the two main types of I/O access: programmed I/O and
interrupt-driven I/O.

• System Instructions: We explored the various system instructions available in
the MIPS R3000, including those for memory management, control flow, and
processor control.

66

Chapter 6

Practice exercises

6.1 Series 1: Reminders and Revisions

Exercise 1:

Conversion Exercises between Bases 10, 2, and 16 Here are some exercises to practice
converting numbers between bases 10, 2 (binary), and 16 (hexadecimal):

Level 1: Decimal to Binary and Hexadecimal

1. Convert the following decimal numbers to binary and hexadecimal:

o 25

o 144

o 777

o 1023

2. Choose any two random decimal numbers between 1 and 1000 and convert them
to binary and hexadecimal. Share your results with a classmate and compare
your answers.

Level 2: Binary to Decimal and Hexadecimal

1. Convert the following binary numbers to decimal and hexadecimal:

67

o 10101

o 1110010

o 10011111

2. Generate your own binary numbers using a random number generator or coin
flips (heads = 1, tails = 0). Convert them to decimal and hexadecimal. Then,
challenge a friend to do the same and compare your results.

Level 3: Hexadecimal to Decimal and Binary

1. Convert the following hexadecimal numbers to decimal and binary:

o A3

o F9C

o 10EC

2. Use an online hexadecimal converter or a calculator with hexadecimal functionality
to find two random hexadecimal numbers between 10 and FF. Convert them to
decimal and binary. Share your findings with a group and discuss the different
representations of the same number.

Exercise 2 : Arithmetic Operations with Binary and Hexadecimal

Level 0: Complete the following tables:
Table 1 : A+ B

A B Result Carry

68

Table 2 : A- B

A B Result Carry

Level 1: Warm-up

1. Binary Addition: Add the following binary numbers:

- 1101 + 1010 = ?

- 10011 + 1100 = ?

2. Hexadecimal Addition: Add the following hexadecimal numbers:

- A3 + 2F = ?

- 10EC + C1D = ?

Level 2: Up the Game

1. Binary Subtraction: Subtract the following binary numbers:

- 1110 - 1011 = ?

- 100101 - 10001 = ?

2. Hexadecimal Subtraction: Subtract the following hexadecimal numbers:

- B5 - 6A = ?

- 1F2E - D9C = ?

Level 3: Master Challenge

1. Binary Multiplication: Multiply the following binary numbers:

- 101 x 11 = ?

- 1101 x 100 = ?

69

2. Hexadecimal Multiplication: Multiply the following hexadecimal numbers:

- A x 5 = ?

- 1C x 2D = ?

Exercise 3 :Logic Operations

Complete the following truth table

A B A AND B A OR B A NAND B A NOR B A XOR B

Exercise 4 : Tow’s Complement

Recall : The two’s complement of a binary number is the number obtained by :

• Step 1: Invert all the bits of the binary number (flip 0s to 1s and vice versa). (1’s
Complement)

• Step 2: Add 1 to the resulting inverted number (carry over if necessary).

1 Find the two’s complement of the following binary numbers:

o 1001

o 1101

o 1011

70

2 Convert the following decimal numbers to two’s complement:

o -1

o -2

o -3

71

6.2 Series 2: Course Questions

Exercise 1:

Draw the two architectures seen in chapter 2 and give the main difference between
the two architectures.

Exercise 2: What is the meaning of the following acronyms:

1) CPU: .

2) UAL: .

3) RAM: .

4) ROM: .

5) DMA: .

6) USB: .

Exercise 3: True or false

1. Magnetic and optical disks constitute the main memory.

True

False

2. Random access memory is the place where programs are stored.

True

False

3. The execution of an instruction goes through the execution phase and then the
fetch phase.

True

False

4. The program counter stores the instruction that is currently being executed.

72

True

False

5. RAM is the storage location for programs.

True

False

6. The instruction register stores the result of the currently executing instruction.

True

False

7. The Accumulator register is located in the CU.

True

False

8. Read-only memory (ROM) is the storage location for currently running programs
and data used

True

False

9. The accumulator is a register in the arithmetic and logic unit.

True

False

10. PC is the Program Counter Register

True

False

73

6.3 Series 3: application exercises

Exercise 1: Give the machine code (hexadecimal form) of the following MIPS
instructions:

1. add $20, $10, $8

2. sub $21, $19, $6

3. addi $18, $13, 8

4. or $10, $15, $9

5. and $16, $15, $7

6. ori $13, $24, 15

7. srav $10, $8, $13

8. sllv $15, $13, $17

9. mfco $19, $15

10. sltu $21, $14, $3

Exercise 2: Decode the following MIPS instructions:

1. 0x80137800

2. 0x01C3A82B

3. 0x022D7804

4. 0x01A85007

5. 0x370D000F

6. 0x01E78024

7. 0x01E95025

8. 0x21B20008

9. 0x0266A822

10. 0x0148A020

74

Exercise 3: Execute the following instructions: (Given: $8 = 0x054F3CB2, $10 =
0xF502B1F3)

1. add $20, $10, $8

2. sub $21, $10, $8

3. addi $18, $10, 8

4. or $10, $10, $8

5. and $16, $10, $8

6. ori $13, $10, 8

7. srav $10, $10, $8

8. sllv $15, $10, $8

9. div $10, $8

10. sltu $10, $8

Exercise 4: In a memory, the byte order used is Little Endian, given $10 =
0x0FEA001A, $8 = 0x5F1A2238. Execute the following instructions:

0x0FEA001A AA
F3
33
A0
50
31
EF

0x0FEA0021 00

1. lhu $11, 2($10)

2. lh $11, 2($10)

3. lbu $11, 6($10)

75

4. lb $11, 6($10)

5. lw $11, 2($10)

6. sb $8, 1($10)

7. sh $8, 2($10)

8. sw $8,4($10)

Exercise 5: Using the memory of exercise 4, give the addressing mode for each
instruction: RI = 0x0FEA001F et BR = 0x0FEA001C

a. Load 0x0FEA001A =⇒ acc = AA

b. Load 0x1A =⇒ acc = 1A

c. Load 0x0FEA001A =⇒ acc = 31

d. Load 0x0FEA001A =⇒ acc = 33

Exercise 6: For each of the following instructions, write the corresponding MIPS
code

Q1 : If $8 < $10 then $13 = $11 * $12 ;
end_if ;

Q2 : If $8 < $10 then $13 = $11 * $12 ;
else $9 = $9 - 1 ;
end_if ;

Q3 : While $8 <> $10 do
$13 = $11 * $12 ;
$14 = $11 / $12 ;
End_while ;

Q4 : If $8 < $10 then
While $8 <> $10 do
$13 = $11 * $12 ;

76

$14 = $11 / $12 ;
End_while ;
else $9 = $9 - 1 ;
end_if ;

Q5 : While $8 <> $10 do
If $8 < $10 then $13 = $11 * $12 ;
else $9 = $9 - 1 ;
end_if ;
End_while ;

Exercise 7: Assume a MIPS processor that executes the following program:

xor $t0 , $t0 , $t0
addi t1 , $t0 , 0 x50
a : lw $t2 , 0 ($t1)
beq $t2 , $zero , c
s l t $t3 , $t0 , $t2
beq $t3 , $zero , b
lw $t0 , 0 ($t1)
b : addi $t1 , $t1 , 4
j a
c : sw \$t0 , 0 (\ $t1)

Q. Explain the function of the program ?

Exercise 8: Consider the following C program snippet

i n t x , y ;
main () {

whi l e (x !=y) {
i f (x > y) x=x−y ;
e l s e y=y−x ;
}

}

Q. Write the corresponding assembly program using MIPS instructions

77

Exercise 9: Give the sequence of MIPS instructions to perform the following actions:

Q1. Using the system call capabilities for input and output, write a program that
repeatedly reads an integer from the keyboard and adds it to the previously read
integers. The program stops when the integer read is 0, and then displays the
message "Sum = ", followed by the result.

Q2. Write a MIPS program that displays the elements of an array, indicating the
size and elements.

Q3. Set the 8000 bytes starting at memory address 014FA1B2 to zero (assuming that
register R2 contains 014FA1B2)

78

Bibliography

[1] YESSAD Samira et BELKHIRI Louiza, Cours et Exercices Architecture des Or-
dinateurs, Plateforme E-learning de l’université de Bejaia., 2020.

[2] Kara Abdelaziz. Cours de Computer Architecture. Computer Science Department,
Faculty of Sciences, University of Setif 1, 2020.

[3] en.wikipedia.org. https://en.wikipedia.org/wiki/Harvard_architecture. 2024.

[4] en.wikipedia.org. https://en.wikipedia.org/wiki/VonNeumann_architecture.2024.

[5] John L. Hennessy and David A. Patterson. Introduction to computer architecture.
Morgan Kaufmann, 2017.

[6] https://shawngraham.io. https://shawngraham.io/?p=1147. 2024.

[7] Andrew J. Smith. A survey of emerging memory technologies. IEEE Transactions
on Computer Architecture, 45(5):1341–1365, 2018.

[8] William Stallings. Computer organization and architecture: a modern synthesis.
Pearson, 2017.

[9] Andrew S. Tanenbaum and Herbert Bos. Operating systems: three easy pieces.
Pearson Education, 2015.

[10] wikimedia.org. https://upload.wikimedia.org/wikipedia/6/60/MIPSR3000Adie.JPG.
2024.

[11] www.btechsmartclass.com. https://www.btechsmartclass.com/c_programming/C-
Computer-Languages.html. 2024.

[12] www.codingninjas.com. https://www.codingninjas.com/studio/library/memory-
hierarchy. 2024.

[13] www.geeksforgeeks.org. https://www.geeksforgeeks.org/computer-organization-
hardwired-vs-micro-programmed-control-unit/. 2024.

[14] www.it.uu.se. https://www.it.uu.se/education/course/homepage/os/vt18/module-
0/mips-and-mars/mips-memory-layout/. 2024.

79

