Série de TD N°1 (Rappels)

Exercice N°1:

- 1- Les éléments alcalins du constituent le groupe **IA** du tableau périodique. Donner leur configuration électronique générale et en déduire la propriété caractéristique fondamentale de ce groupe ?
- 2- Commenter en quelques mots l'évolution au sein du tableau périodique :
 - Le rayon ionique des atomes
 - L'électronégativité
 - L'énergie d'ionisation

Ci-après un tableau représentant les valeurs des électronégativités de quelques éléments chimiques.

H 2,1							He 0
Li	Be	B	C	N	O	F	Ne
1,0	1,5	2,0	2,5	3,0	3,5	4,0	0
Na	Mg	Al	Si	P	S	CI	Ar
0,9	1,2	1,5	1,8	2,1	2,5	3,0	0

Echelle d'électronégativité de PAULING pour quelques éléments chimiques (en unité atomique de moment dipolaire : 1 u.a.m.d = 2,54 Debye)

- 3- Expliquer pourquoi les valeurs de l'électronégativité des éléments de la dernière colonne sont nulles ?
- 4- Compléter le tableau suivant :

Composé chimique	ΔΕΝ	Caractère de la liaison	Solubilité
\mathbf{F}_2			
HCl			
NaCl			

- 5- Quelles informations pouvez-vous utiliser pour prédire si une liaison entre deux atomes est covalente ou ionique ?
- 6- La solubilité des composés : AgF ; AgCl ; AgBr est décroissante. Commenter cette évolution en fonction des électronégativités (EN).

On donne : EN (F) = 3.98; EN (Cl) = 3.16; EN (Br) = 2.96; EN (Ag) = 1.93.

Exercice 2

Partie A:

Une lampe à vapeur de sodium émet des radiations de fréquence v égale à $5.1 \times 10^{14} Hz$

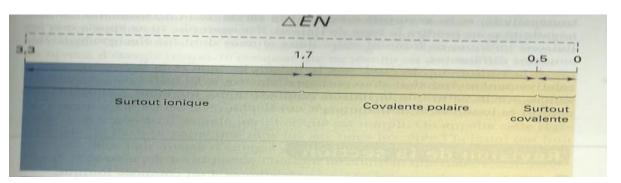
- 1. Calculer l'énergie associée à cette radiation, en joule et en électronvolt.
- 2. Quelle particule transporte cette énergie ?

Partie B:

Calculer la fréquence et la longueur d'onde d'une onde émise ou reçue par un téléphone portable pour laquelle l'énergie d'un photon est $Ephoton = 1,19 \times 10^{-24}J$

Partie C:

Calculer l'énergie en joule (J) puis en électron-volt (eV) d'un photon issu d'un pointeur laser de longueur d'onde λ =650 nm


Données : La célérité (vitesse) de la lumière dans le vide : $c = 3,00 \times 10^8 \text{ m/s}$.

La constante de Planck $h = 6.63 \times 10^{-34} \text{ J.s}$

1 eV=1.6.10⁻¹⁹ J

Annexe

Différence d'électronégativité	0,00	0,65	0,94	1,19	1,43	1,67	1,91	2,19	2,54	3,03
Pourcentage de caractère de liaison ionique	0%	10%	20 %	30 %	40 %	50 %	60 %	70 %	80 %	90 %
Pourcentage de caractère de liaison covalente	100 %	90 %	80 %	70 %	60 %	50 %	40 %	30 %	20 %	10%

