Travail à remettre sous format papier <u>le Mardi 13 Mai</u> durant les séances de TD. Aucun travail ne sera reçu à partir de cette date.

Afin de connaître l'évolution quotidienne d'une épidémie, on souhaite construire un modèle avec les variables suivantes :

$$Y_t = \frac{1}{w} \left[(\lambda)^{\alpha} (Y_{t-1}^{\beta}) \right]$$

Avec Y_t : Le nombre de cas quotidien enregistré. W : un paramètre qui indique le nombre moyen d'heure de distance sociale par habitant (en % de nombre d'heure totale de la journée). λ : représente le coefficient de contamination défini par l'organisation mondiale de la santé (OMS). α et β sont les paramètres du modèle.

- 1. Discuter la forme non linéaire du modèle.
- 2. Linéariser le modèle, interpréter les paramètres α et β
- 3. A votre avis si je remplace la variable Y_{t-1} par une autre variable ΔY_t qui mesure la variation du nombre de cas enregistré, le modèle sera-t-il plus performant. Justifier votre réponse.

L'estimation de cette fonction a donné les résultats suivants (n = 65):

Paramètre	Valeur	T Student
W	0,36	4,26
α	0,45	8,11
β	0,57	3,21

- 4. Si le paramètre W augmente, quel sera l'impact de cette augmentation sur le nombre de cas enregistré. Justifier.
- 5. L'estimation de l'équation intermédiaire a donné les résultats suivants : $e_t = 32,43 + 0,14Y_{t-1} + 0,75\lambda + 0,124 e_{t-1} + 0,32e_{t-2}$. $R^2 = 0,23$. Khi deux = 1,96. Tester l'autocorrélation des erreurs. S'il y a une autocorrélation corriger la par la méthode MCG (évoquer la procédure sans faire les estimations et les calculs).
 - 6. Evoquer la procédure de correction de l'autocorrélation par le passage en quasi différence première (sans faire les calculs).
 - 7. Comment peut-on interpréter la présence d'une variance instable dans un modèle de régression ?