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Introduction 

 

Machine Learning is a rapidly growing field that enables computers to learn from data and make 

intelligent decisions without being explicitly programmed. This course aims to provide students 

with both theoretical knowledge and practical skills necessary to understand and apply machine 

learning techniques effectively. It is structured into two main parts: lectures and practical 

sessions (labs). 

 

The lecture sessions will cover fundamental concepts, mathematical foundations, and key 

machine learning algorithms, including supervised and unsupervised learning, model 

evaluation, and optimization techniques. The focus will be on developing a deep understanding 

of how these algorithms work and when to use them. 

 

The practical sessions (labs) will complement the lectures by providing hands-on experience 

with implementing machine learning models using programming tools and real-world datasets. 

Students will work on exercises, case studies, and projects to strengthen their problem-solving 

skills and gain confidence in applying machine learning techniques to real-world problems. 

 

By the end of this course, students will be able to: 

• Grasp the core principles and methodologies of machine learning. 

• Implement and evaluate different machine learning models. 

• Utilize programming frameworks and libraries for data analysis and model training. 

• Develop critical thinking and problem-solving skills through hands-on labs. 

 

This course is designed for students who wish to build a strong foundation in machine learning, 

whether for academic research or industry applications. Through a combination of theoretical 

knowledge and practical exercises, students will gain valuable insights into one of the most 

exciting fields in artificial intelligence today. 
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I.1. Machine Learning – an overview 

We are living in a world of Humans and Machines. Humans have been learning and 

evolving from experience for billions of years, on the other hand, the era of 

machines and robots has just begun. 

In today’s world, these machines or robots need to be instructed to perform, but 

what if machines started to learn from their own and this is where machine learning 

appears. 

AI is a term being applied broadly in the technological world to describe solutions 

that can learn on their own. These algorithms can look at vast amounts of data and 

finding trends in it, trends that unveil insights, insights that would be extremely hard 

for a human to find. However, AI algorithms can’t think like you and me. They are 

trained to perform very specialized tasks, whereas the human brain is a generic 

thinking system. 

 

Figure 1: Artificial intelligence in pratice 

Here are some definitions of machine learning: 

Machine learning is the field of study that gives computers the ability to learn 

without being explicitly programmed. Arthur L. Samuel, AI pioneer, 1959. 

Now, before we introduce machine learning more formally, here is what some other 

people said about the field: 

"The field of machine learning is concerned with the question of how to construct 

computer programs that automatically improve with experience".  
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Tom Mitchell, Professor Machine Learning at Carnegie Mellon University and 

author of the popular \Machine Learning" textbook 

"Machine learning is the hot new thing". 

John L. Hennessy, President of Stanford (2000-2016) 

"A breakthrough in machine learning would be worth ten Microsofts". 

Bill Gates, Microsoft Co-Founder 

In general, Machine learning is a subset of AI, which enables the machine to 

automatically learn from data, improve performance from past experiences, and 

make predictions. Machine learning contains a set of algorithms that work on a huge 

amount of data. Data is fed to these algorithms to train them, and based on training, 

they build the model & perform a specific task. 

Machine Learning is different from traditional programming. In traditional 

programming, we would feed the input data and a well written and tested program 

into a machine to generate output. When it comes to machine learning, input data 

along with the output associated with the data is fed into the machine during the 

learning phase, and it works out a program for itself. 

 

I.2. Machine Learning – How it works 

While we go over some of these applications in class, it is a good exercise to think 

about how machine learning could be applied in these problems or tasks listed 

above: 

• What is the desired outcome? 

• What could the dataset look like? 

• What machine learning types (we see them further) and algorithms would you use? 

• How would you measure success? 

• What are potential challenges or difficulties? 
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Figure 2 : Machine Learning Steps 

 

Every machine learning project goes throw different steps : 

 

• Data collection 

This is maybe the most important and time-consuming process. In this step, we need 

to collect data that can help us to solve our problem.  

For example, if you want to predict the prices of the houses, we need an appropriate 

dataset that contains all the information about past house sales and then form a 

tabular structure. We are going to solve a similar problem in the implementation 

part. 

 

• Data processing 

Once we have the data, we need to bring it in proper format and preprocess it. There 

are various steps involved in pre-processing such as data cleaning, for example, if 

your dataset has some empty values or abnormal values(e.g, a string instead of a 

number) how are you going to deal with it? There are various ways in which we can, 

but one simple way is to just drop the rows that have empty values.  

Also sometimes in the dataset, we might have columns that have no impact on our 

results such as id’s, we remove those columns as well.  

 

• Model building:  

Once data is ready is to be fed into a Machine Learning algorithm. A model is the 

output of a machine-learning algorithm run on data. For example, after 

https://www.mygreatlearning.com/blog/most-used-machine-learning-algorithms-in-python/
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implementing Linear Regression on data, we get an equation of the best-fit line and 

this equation is termed as a model.  

 

• Model training:  

This step learning is the process of teaching a machine learning model to make 

predictions or decisions based on input data.  

This process involves feeding the model with a labeled dataset (in supervised 

learning) or an unlabeled dataset (in unsupervised learning) and adjusting its internal 

parameters to minimize error and improve accuracy 

 

• Model evaluation:  

Model evaluation in machine learning is the process of assessing how well a trained 

model performs on unseen data. It helps determine whether the model generalizes 

well to new data and meets the desired performance criteria. Proper evaluation is 

essential to avoid issues like overfitting (performing well on training data but poorly 

on new data) or underfitting (failing to capture patterns in the data). 

  

I.3. Applications for Machine Learning 

Machine leaning is involved in various domains, here are some examples:  

• Email spam detection 

• Face detection and matching (e.g., iPhone X, Windows laptops, etc.) 

• Web search (e.g. Bing, Google) 

• Sports predictions 

• Post office (e.g., sorting letters by zip codes) 

•  Credit card fraud 

• Stock predictions 

• Smart assistants (Apple Siri, Amazon Alexa, . . . ) 

• Product recommendations (Amazon) 

• Self-driving cars (e.g., Uber, Tesla) 

• Language translation (Google translation) 

• Sentiment analysis 

• Medical diagnoses 
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I.4. Machine Learning – Types 

Based on the methods and way of learning, machine learning is divided into mainly 

three types, which are (figure 3): 

• Supervised Machine Learning 

• Unsupervised Machine Learning 

• Reinforcement Learning 

Supervised learning is the most developed branch of machine learning. 

 

 

Figure 3 : Machine Learning Types 

 

In this course, we will provide a detailed description of the types of Machines 

Learning along with their respective algorithms. 

 
I.4.1. Supervised Machine Learning 

Supervised learning is the subcategory of machine learning that focuses on learning 

a classification or regression model. As its name suggests, supervised machine 

learning is based on supervision. It means in the supervised learning technique, we 

train the machines using the "labelled" dataset, and based on the training, the 

machine predicts the output. 

https://www.javatpoint.com/supervised-machine-learning
https://www.javatpoint.com/supervised-machine-learning
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In supervised learning, you train your model on a labelled dataset that means we 

have both raw input data as well as its results. We split our data into a training 

dataset and test dataset where the training dataset is used to train our network 

whereas the test dataset acts as new data for predicting results or to see the accuracy 

of our model. 

The main goal of the supervised learning technique is to map the input variable(x) 

with the output variable(y). Some real-world applications of supervised learning 

are Risk Assessment, Fraud Detection, Spam filtering, etc. 

 

Figure 4 : Supervised learning Example 

Real-life examples: 

• Email Spam (Classification)– The algorithm takes historical spam and non-

spam emails as input. Consequently, it draws patterns in data to classify spam 

from others. 

• Stock Price Prediction (Regression)– Historical business market data is fed to 

the algorithm in this method. With proper regression analysis, the new price 

for the future is predicted. 

Supervised machine learning can be classified into two types of problems, which are 

given below: 

• Classification 

• Regression 

Since supervised learning work with the labelled dataset so we can have an exact 

idea about the classes of objects. These algorithms are helpful in predicting the 
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output based on prior experience. However, supervised learning algorithms present 

some drawbacks: 

• They are not able to solve complex tasks. 

• It may predict the wrong output if the test data is different from the training data. 

• It requires lots of computational time to train the algorithm. 

a. Classification 

The prediction task is a classification when the target variable is discrete. An 

application is the identification of the underlying sentiment of a piece of text.  

Some real-world examples of classification algorithms are Spam Detection, Email filtering, etc. 

Some popular classification algorithms are given below: 

• Random Forest Algorithm (RF) 

• Decision Tree Algorithm (DT) 

• Logistic Regression Algorithm (LR) 

• Support Vector Machine Algorithm (SVM) 

 

b. Regression 

The prediction task is a regression when the target variable is continuous. An 

example can be the prediction of the salary of a person given their education degree, 

previous work experience, geographical location, and level of seniority. 

Some popular Regression algorithms are given below: 

• Simple Linear Regression Algorithm 

• Multivariate Regression Algorithm 

• Decision Tree Algorithm 

• Lasso Regression 

 

I.4.2. UnSupervised Machine Learning 

In contrast to supervised learning, unsupervised learning is a branch of machine 

learning that is concerned with unlabeled data. The common task in unsupervised 

learning is clustering. 
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Unsupervised learning is different from the supervised learning technique; as its 

name suggests, there is no need for supervision. It means, in unsupervised machine 

learning, the machine is trained using the unlabeled dataset, and the machine 

predicts the output without any supervision. 

 

Figure 5 : Unsuppervised learning Example 

In unsupervised learning, the models are trained with the data that is neither 

classified nor labelled, and the model acts on that data without any supervision. 

The main aim of the unsupervised learning algorithm is to group or categories the 

unsorted dataset according to the similarities, patterns, and differences. Machines 

are instructed to find the hidden patterns from the input dataset. 

Let's take an example to understand it more preciously; suppose there is a basket of 

fruit images, and we input it into the machine learning model. The images are totally 

unknown to the model, and the task of the machine is to find the patterns and 

categories of the objects. 

So, now the machine will discover its patterns and differences, such as color 

difference, shape difference, and predict the output when it is tested with the test 

dataset. 

For Example: 

Data with similar traits are asked to group by the algorithm. These groups are called 

clusters, and the process is called clustering. In retail analytics, various customers 

are usually clustered based on their purchase and other behaviors. 

https://www.javatpoint.com/unsupervised-machine-learning
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Unsupervised Learning can be further classified into two types, which are given 

below: 

• Clustering 

• Association 

a. Clustering 

The clustering technique is used when we want to find the inherent groups from the 

data. It is a way to group the objects into a cluster such that the objects with the most 

similarities remain in one group and have fewer or no similarities with the objects of 

other groups. An example of the clustering algorithm is grouping the customers by 

their purchasing behavior. 

Some of the popular clustering algorithms are given below: 

• K-Means Clustering algorithm 

• Mean-shift algorithm 

• DBSCAN Algorithm 

• Principal Component Analysis 

• Independent Component Analysis 

b. Association 

Association rule learning is an unsupervised learning technique, which finds 

interesting relations among variables within a large dataset. The main aim of this 

learning algorithm is to find the dependency of one data item on another data item 

and map those variables accordingly so that it can generate maximum profit. This 

algorithm is mainly applied in Market Basket analysis, Web usage mining, 

continuous production, etc. 

Some popular algorithms of Association rule learning are Apriori Algorithm, Eclat, 

FP-growth algorithm. 

Unsupervised algorithms can be used for complicated tasks compared to the 

supervised ones because these algorithms work on the unlabeled dataset and  

Unsupervised algorithms are preferable for various tasks as getting the unlabeled 

dataset is easier compared to the labelled dataset. 
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However, these algorithms present some drawbacks:  

• The output of an unsupervised algorithm can be less accurate as the dataset is not 

labelled, and algorithms are not trained with the exact output in prior. 
 

• Working with Unsupervised learning is more difficult as it works with the 

unlabeled dataset that does not map with the output. 

Some examples of unsupervised learning: Recommendation Systems, Anomaly 

Detection, Network Analysis:  

I.4.3. Reinforcement Learning 

Reinforcement learning (RL) is the process of learning from rewards while 

performing a series of actions. In reinforcement learning, we do not tell the learner 

or agent (for example, a robot), which action to take but merely assign a reward to 

each action and/or the overall outcome (figure 6). Instead of having "correct/false" 

labels for each step, the learner must discover or learn a behavior that maximizes the 

reward for a series of actions. In that sense, it is not a supervised setting. 

 

 

Figure 6 : Reinforcment learning  

RL is somewhat related to unsupervised learning; however, reinforcement learning 

really is its own category of machine learning. Reinforcement learning will not be 

covered further in this class.  

For an easier explanation, let’s take the example of a dog. 
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We can train our dog to perform certain actions, of course, it won’t be an easy task. 

You would order the dog to do certain actions and for every proper execution, you 

would give a biscuit as a reward. The dog will remember that if it does a certain 

action, it will get biscuits. This way it will follow the instructions properly next 

time. 

Typical applications of reinforcement learning involve playing games and some 

forms of robots, e.g., drones, warehouse robots, and more recently self-driving cars. 

 

I.5. Machine Learning – Languages 

Among the programming languages, Python is the most important to build machine 

learning models. This is due to the various benefits mentioned in the section below. 

Other programming languages that could use for Machine Learning Applications are 

R, C++, JavaScript, Java, C#. 

Here are the main reasons: 

• Today, Python aids to develop many data heavy. 

• Highly readable, less complexity, fast prototyping 

• Easy to offload number crunching to underlying C/Fortran/… 

• Easy to install and import many rich libraries such as :  

o numpy: used for data structures and working with images  

o scipy: fast numerical recipes and Scientific Computing 

o Pandas for high-level data structures and analysis 

o Matplotlib, Seaborn, and Scikit for data representation 

o scikit-learn machine learning algorithms 

o TensorFlow and Pytorch for Deep Learning applications 

 

I.6. Evaluation of a machine-learning model 

Evaluation metrics are crucial in assessing the performance of machine 

learning models. They provide quantitative measures that guide the selection of 

models and the tuning of hyperparameters. Different tasks require different metrics, 

and understanding which metric to use is key to interpreting model results 

effectively. 
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There are different model evaluation criteria in machine learning. 

We decide which metrics to choose depending on whether our problem is 

classification or a regression problem. Accuracy, precision, recall, F1 

Score, ROC, AUC are used for classification tasks. Metrics such as MSE, 

RMSE, MAE, R2 Score can be used for regression tasks. 

I.6.1 Performance Metrics for Classification Problems 

The first thing to look for in model evaluation metrics is whether the class 

distribution in the dataset is unbalanced. Whether the dataset is balanced or 

unbalanced; we should look at the recal, precision, and their harmonic mean, F1 

Score metrics. We also look at the AUC value and get an idea about the 

classification we have made. 

In machine learning, model evaluation metrics such as accuracy, precision, recall, 

F1 Score, ROC, and AUC are used for classification tasks. 

• Accuracy 

Accuracy is used to describe the closeness of a measurement to the true value. It is a 

correct classification rate, in other words, the number of correct predictions of the 

model on all predictions made. 

 

Where : 

⎯ TP : True Positive which represents actual value Positive and predicted value 

Positive. 

⎯ TN : True Negative which reprsents actual value Negative and predicted 

value Negative. 

⎯ FP : False Positive which reprsents actual value Negative and predicted value 

Positive. 

⎯ FN : False Negative which reprsents actual value Positive and predicted value 

Negative. 
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Accuracy can be used if the classification problem we have has a balanced class 

distribution. If there is an unbalanced distribution in our dataset, we cannot use 

accurate value directly. We also need to look at the Recall and Precision values. 

• Precision 

Precision in machine learning is a metric used to evaluate the accuracy of positive 

predictions in a classification model. It measures how many of the instances 

predicted as positive are correct.  

 

Precision is particularly important in scenarios where false positives carry 

significant consequences, such as fraud detection or medical diagnosis. A high 

precision indicates that when the model predicts a positive case, it is likely correct. 

However, precision alone does not provide a complete picture of performance, as it 

does not consider false negatives. It is often used alongside recall balancing 

predictive performance, especially in imbalanced datasets.  

• Recall 

Accuracy in machine learning is a performance metric that measures the proportion 

of correctly classified instances out of the total instances in the dataset.  

 

It provides a straightforward way to evaluate the overall effectiveness of a model by 

showing how often the model’s predictions match the actual labels. While accuracy 

is a useful metric for balanced datasets, it may be misleading in cases where the 

classes are imbalanced (e.g., rare events or diseases).  

In such cases, a model could achieve high accuracy by simply predicting the 

majority class most of the time, but it may fail to correctly identify the minority 

class. 
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• F1 Score 

The F1 score is a performance metric in machine learning that combines both 

precision and recall into a single value. It is the harmonic means of precision and 

recall, meaning it balances the trade-off between the two.  

 

The F1 score is particularly useful when dealing with imbalanced datasets, as it 

provides a more balanced view of a model's performance than accuracy alone. A 

high F1 score indicates that the model has a good balance between identifying 

positive instances correctly (recall) and minimizing false positives (precision).  

It's especially important in scenarios where both false positives and false negatives 

are costly, such as in medical diagnostics or fraud detection. 

• ROC Curve (Receiver Operating Characteristic Curve) 

The ROC curve (Receiver Operating Characteristic curve) is a graphical 

representation used to evaluate the performance of a binary classification model 

across various threshold values. It plots the True Positive Rate (Recall) on the 

y-axis and the False Positive Rate (FPR) on the x-axis.  

The ROC curve shows how the model's predictions change as the threshold for 

classifying positive instances is adjusted. 

An ideal model will have a curve that hugs the top left corner, indicating high 

recall (detecting most positives) and low false positives. The AUC (Area Under 

the Curve) is often used to quantify the model’s performance—higher AUC 

values indicate better overall performance in distinguishing between the two 

classes.  

The ROC curve is particularly useful when comparing multiple models and 

selecting the optimal threshold for a given application. 
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• Confusion Matrix 

A confusion matrix is a probability table containing the actual  and  predicted dimensions of 

the number of correct and incorrect predictions made by a classifier. 

 

 

A confusion matrix is a performance evaluation tool for classification models, 

commonly used in supervised learning tasks. It summarizes the outcomes of a 

model’s predictions by comparing them to the actual labels in a dataset. The 

confusion matrix is especially useful in identifying how well a classification model 

is performing, especially in imbalanced datasets. 

The confusion matrix is a powerful tool for understanding a classification model's 

performance, highlighting its strengths and weaknesses. It is especially important for 

problems where the costs of false positives and false negatives vary, such as in fraud 

detection, medical diagnostics, and spam classification. 

I.6.2 Performance Metrics for Regression Problems 

In regression problems, where the goal is to predict continuous values, the 

performance of the model is assessed using different metrics compared to 

classification tasks. These metrics evaluate how close the model's predictions are to 

the actual target values. Below are the key performance metrics commonly used in 

regression problems:Mean Squared Error (MSE). 

Each of these metrics provides valuable insights depending on the nature of the 

regression problem and the specific requirements of the application. Understanding 

them is essential for accurately assessing model performance and making 

improvements where needed. 
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• Mean Squared Error 

Mean Squared Error (MSE) is the mean of the squared error. It’s more popular than 

Mean Absolute Error because the focus is geared more towards large errors. This is 

due to the squared term exponentially increasing larger errors in comparison to 

smaller ones. 

 

• Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) is the square root of MSE. It is a standard way of 

measuring the error of a model. Generally, the lower the RMSE, the better. 

 

• Mean Absolute Error 

It is the mean of the absolute value of the errors. This is the easiest of the metrics to 

understand since it’s just an average error. 

 

• R2 Score 

The R2 Score is the percentage of the dependent variable explanation of the 

independent variables in the dataset. It represents how close the data points are to 

the fitted regression line. The best possible score is 1.0 and it can be negative 

(because the model can be arbitrarily worse). 

How to choose the right metric ? 

The choice of evaluation metric 
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 depends on the specific application and the business or research goals. For instance, 

in medical diagnosis, recall might be more important than precision because missing 

a positive case could be life-threatening. In contrast, in email spam detection, 

precision might be more critical because false positives (non-spam emails marked as 

spam) are more inconvenient to users than false negatives (spam emails not marked 

as spam). 

It is also common to use multiple metrics to get a more holistic view of the model's 

performance. For example, in a classification task, one might look at both the 

accuracy and the F1 score to understand both the overall correctness and the balance 

between precision and recall. 

In conclusion, evaluation metrics are indispensable tools in machine learning that 

provide insights into the effectiveness of models. They guide the model 

development process and help stakeholders make informed decisions based on 

model performance. Understanding and selecting the appropriate metric is therefore 

fundamental to the success of machine learning projects. 

I.7. Conclusion 

Machine learning has revolutionized the way we process and analyze data, enabling 

intelligent systems to make predictions and automate decision-making. This chapter 

introduced the key concepts of machine learning, including supervised learning, 

where models learn from labeled data, unsupervised learning, which uncovers 

hidden patterns in data, and reinforcement learning, where agents learn through trial 

and error. 

We also explored different types of machine learning models and their evaluation 

techniques, emphasizing the importance of performance metrics such as accuracy, 

precision, recall, and error rates. Proper model evaluation ensures that a trained 

model generalizes well to new data and avoids common pitfalls like overfitting and 

underfitting. 

Understanding these foundational principles is crucial for developing robust and 

efficient machine learning models. As we delve deeper into more advanced topics, 

practical applications, and optimization techniques, mastering these fundamentals 
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will provide a strong foundation for real-world problem-solving in artificial 

intelligence and data science. 

As we move forward, the next chapter will provide a deeper dive into supervised 

learning algorithms, exploring key models such as linear regression. Understanding 

these techniques will lay the groundwork for building more advanced and efficient 

machine learning solutions. 
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II.1. Regression – an overview 

Linear Regression is a machine-learning algorithm based on supervised learning. 

Regression models a target prediction value based on independent variables. It is 

mostly used for finding out the relationship between variables and forecasting.  

 

Figure 7:  Linear regression line 

Linear regression performs the task of predicting a dependent variable value (y) 

based on a given independent variable (x). Hence, the name is Linear Regression. 

For example, in the figure above, X (input) is the work experience and Y (output) 

is the salary of a person. The regression line is the best-fit line for the model.  

The formula for simple linear regression is: 

 

• Y : is the predicted value of the dependent variable (y) for any given value 

of the independent variable (x). 

• B0  is the intercept, the predicted value of y when the x is 0. 

• B1 is the regression coefficient – how much we expect y to change 

as x increases. 

• X is the independent variable ( the variable we expect is influencing y). 

• e is the error of the estimate, or how much variation there is in our estimate 

of the regression coefficient. 

There are a range of different approaches used in machine learning to perform 

regression. Some of the most common regression techniques in machine learning 

can be grouped into the following types of regression analysis:  
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• Simple Linear Regression  

A simple straight-line equation involving slope (dy/dx) and intercept (an 

integer/continuous value) is utilized in simple Linear Regression. Here a simple 

form is:  y=mx+c where y denotes the output x is the independent variable, and c is 

the intercept when x=0. With this equation, the algorithm trains the model of 

machine learning and gives the most accurate output  

• Multiple linear regression 

When several independent variables more than one, the governing linear equation 

applicable to regression takes a different form like:  y= 

c+m1x1+m2x2… mnxn where represents the coefficient responsible for impact of 

different independent variables x1, x2 etc. This machine-learning algorithm, when 

applied, finds the values of coefficients m1, m2, etc., and gives the best fitting line.  

• Logistic regression  

Logistic regression is used when the dependent variable can have one of two values, 

such as true or false, or success or failure. Logistic regression models can be used to 

predict the probability of a dependent variable occurring. Generally, the output 

values must be binary.  

II.2. Linear Regression – How does it work 

Linear regression uses the relationship between the data-points to draw a straight 

line through all them. This line can be used to predict future values. 

Thus, linear regression is a supervised learning algorithm that simulates a 

mathematical relationship between variables and makes predictions for continuous 

or numeric variables such as sales, salary, age, product price, etc. 

We will consider the process of applying Linear Regression in a Machine Learning 

project in the labs part.  

II.3. Linear Regression Terminologies 

The following terminologies are important to be familiar with before moving on to the linear 

regression algorithm. 
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• Cost Function 

The best fit line can be based on the linear equation given below. The dependent 

variable that is to be predicted is denoted by Y. 

 

⎯ A line that touches the y-axis is denoted by the intercept b0. 

⎯ b1 is the slope of the line, x represents the independent variables that 

determine the prediction of Y. 

⎯ The error in the resultant prediction is denoted by e. 

The cost function provides the best possible values for b0 and b1 to make the best-fit 

line for the data points. We do it by converting this problem into a minimization 

problem to get the best values for b0 and b1. The error is minimized in this problem 

between the actual value and the predicted value. 

 

We choose the function above to minimize the error. We square the error difference 

and sum the error over all data points, the division between the total number of data 

points. Then, the produced value provides the averaged square error over all data 

points. 

It is also known as MSE(Mean Squared Error), and we change the values of b0 and 

b1 so that the MSE value is settled at the minimum. 

• Gradient Descent 

The next important terminology to understand linear regression is gradient descent. It is a 

method of updating b0 and b1 values to reduce the MSE.  
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The idea behind this is to keep iterating the b0 and b1 values until we reduce the MSE to a 

minimum. 

To update b0 and b1, we take gradients from the cost function. To find these gradients, we take 

partial derivatives with respect to b0 and b1. These partial derivatives are the gradients and are 

used to update the values of b0 and b1. 

 

Let us look at a few advantages and disadvantages of linear regression for machine 

learning. 

Advantages Disadvantages 

Linear regression performs 

exceptionally well for linearly 

separable data 

The assumption of linearity between 

dependent and independent variables 

Easier to implement, interpret and 

efficient to train 

It is often quite prone to noise and 

overfitting 

It handles overfitting well using 

dimensionally reduction techniques, 

regularization, and cross-validation 

Linear regression is quite sensitive to 

outliers 

One more advantage is the 

extrapolation beyond a specific data 

set 

It is prone to multicollinearity 

II.4. Implementing Linear Regression 

The process takes place in the following steps: 

1. Loading the Data 

2. Exploring the Data 

3. Slicing The Data 
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4. Train and Split Data 

5. Generate The Model 

6. Evaluate The accuracy 

To conclude, in simple linear regression, the equation of the regression line is: 

y=aX+by = aX + by=aX+b 

The formula for calculating a (the slope) is: 

 

Once we have the slope a, the intercept b is calculated using the formula: 

 

Let's say we have the following data: 
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• Number of data points n=5 

 Compute a: 

 

So, a=8125 (the salary increases by $8,125 per year of experience). 

3. Compute b: 

 

So, b=24,375 (the predicted salary for 0 years of experience). 

Final Regression Equation:  Salary=8125 x Years of Experience + 24,375 

This equation can now be used to predict salaries for different years of experience. 

Quiz 

1. Which of these is an example of a parameter that is calculated during 

training for a linear regression model? 

a. Weight 

b. Learning rate 

c. Prediction 

d. Label 

 

2. Fill-in-the-blanks 

Enter one or more words to complete the sentence. 

Suppose you are building a linear regression model to predict the sale price of a used 

car. The training dataset includes the following information: sale price (label), 
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model year (feature), MSRP (feature), odometer mileage (feature), gas mileage 

(feature). How many weights will there be for this model ?  

 

3. Fill-in-the-blanks 

Enter one or more words to complete the sentence. 

Review the graph below. What is the mean squared error?  

 

4. Which of these controls the size of the steps of the gradient descent 

algorithm? 

a. Learning rate 

b. Loss function 

c. Batch size 

d. Regularization rate 

5. Suppose you are training a linear regression model and after about 100 

iterations you notice that the loss is high and trending downward, but not by 

a significant amount. What is likely to be the problem? 

a. The learning rate is too large. 

b. The learning rate is too small. 

c. Your dataset has too many examples. 

d. Your dataset does not have enough examples. 

II.5. Exercises 

Exercise 1 

Given a simple linear model: Yt = β0 + β0Xt + ut.  The following information is given: 
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Questions :  

⎯ Estimate the coefficients of the model. 

⎯ Evaluate the quality of the fit. 

⎯ Test the overall significance of the model 

Solution : 

Depending on the data available, the following formulae will be used to answer the 

three questions: 

 

After calculation, knowing that ΣYX =ΣXY, we have the following results: 

 

Since the R2 is relatively high, around 85%, the fitness is of good quality. And since 

F > F [1 ; 5] =6.61, we can conclude that the model is good overall. 

Exercise 2 

We have 14 trees in this forest and have measured the 

height and radius (in cm) of each of them, then plotted 

these results in the table below. 

So, we want to know the radius of a 15th tree whose 

height we know (135 cm), and we also want to know 

the height of a 16th tree whose radius we know (25 

cm)... 

 

We plot these measurements on a graph and obtain the 

following scatter plot. These are the observed values. 

Size Radius 

A1 

A2 



Dr. H. EL BOUHISSI BRAHAMI                  Machine Learning For Big Data                        Page 32  

 

Human beings immediately see a relationship between size and radius. They could 

therefore easily draw a straight line that would best connect all these points. 

 

We're now going to look at how the machine ‘finds’ this straight line that relates the 

size of a tree to its radius. 

The first thing to understand is that there are an infinite number of possible straight 

lines, but which one is the best? 

It’s very simple: the best line is the one that minimizes the differences between 

reality (the sizes and radii observed) and predictions (the calculated sizes and 

radius). 

To understand this, remember your math lessons: a straight line representing a 

relationship between 2 variables x and y has the function : 

f(x) = a*x + b /  a represents the slope, b the intersection. 

To do, Use random gradient descent. As a reminder, we want the sum of the squared 

errors to be as small as possible. To continue the explanation, we're not going to take 

the sum but the average. This average is called the cost function. It can be written as 

follows: 

Size 

Ra
di

us
 

Size 

Ra
di

us
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m = represents the number of observations, in our example, the number of trees, i.e. 

14 trees. (Remark: the literature divides the cost function by 2m and not by m. I've 

chosen to divide by m here so as not to complicate the explanation). 

With our example data, which as a reminder is as follows, we would have the 

following cost function: 

J(a, b) = 

          (1/14) * 

          [ 

            (a*184+b-38)^2 

            + (a*246+b-45)^2 

            + (a*322+b-65)^2 

            + (a*257+b-57)^2 

            + (a*248+b-46)^2 

            + (a*215+b-43)^2 

            + (a*173+b-32)^2 

            + (a*93+b-17)^2 

            + (a*71+b-10)^2 

            + (a*52+b-17)^2 

            + (a*68+b-13,60)^2 

            + (a*60+b-13)^2 

            + (a*80+b-18)^2 

            + (a*140+b-28)^2 

          ] 

What we want to find out is the minimum of this cost function, i.e. the values of a 

and b that minimize the cost function. To begin with, we're going to simplify the 

function to better understand gradient descent. 

The function is no longer ‘f(x) = a*x + b’ but ‘f(x) = a*x’ (this means that the 

straight line must pass through the point {y; x = 0; 0}). 

The cost function then becomes :  

 

With our example data, this cost function is as follows:  
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J(a) = (1/14)*((a*184-38)^2+(a*246-45)^2+(a*322-65)^2+(a*257-57)^2+ (a*248-46)^2+(a*215-43)^2+(a*173-

32)^2+(a*93-17)^2+(a*71-10)^2+ (a*52-17)^2+(a*68-13,60)^2+(a*60-13)^2+(a*80-18)^2+(a*140-28)^2) 

= (452 381/14)*a^2 – 12867,114*a + 1290,854 

By replacing a with a few random values, we 

obtain the following table. 

If we display these figures on a scatter plot and 

draw a curve, we obtain the following graph. 

 

Visually, a human being can find the value of a that minimizes the cost function 

J(a); in our example, it seems to be a = 0.2. But how can the machine find this value, 

and above all how can it find it more precisely than the human being (after all, 

visually it seems to be 0.20, but isn't it rather 0.199, 0.201, 0.20001... etc.? 

To do this, we'll use the derivative. As a reminder, the derivative measures the slope 

of a point on a curve. The random gradient descent is a sequence of operations as 

follows. 

Step 1 : The machine randomly chooses a number for a.  Example : a = -758. 

Step 2 : The machine calculates the derivative to determine whether it is to the left 

or right of the minimum point. 

A=0.2 appears visually to 
be the lowest point. How 
can we ensure that it is 

discovered by the 
machine? 
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The derivative of ‘a = -758’ is negative, which means that the slope is going down 

and we are to the left of the minimum. We can therefore continue and propose an ‘a’ 

greater than ‘-758’. 

Step 3 : The machine randomly suggests a new number greater than ‘-758’. 

Example : a = -432. 

Step 4 : The machine calculates the derivative to determine whether it is to the left 

or right of the minimum point. 

 

The derivative of ‘a = -432’ is always negative, which means that the slope is 

decreasing, and we are to the left of the minimum. We can therefore continue and 

propose a greater than ‘-432’. 

Step 5 : The machine randomly suggests a new number greater than ‘-432’. 

Example : a = 23. 

Step 6 : The machine calculates the derivative to determine whether it is to the left 

or right of the minimum point. 

 

The derivative of ‘a = 23’ is positive, which means that the slope is increasing, and 

we are to the right of the minimum. We can therefore continue and propose an a 

between ‘-432’ and ‘23’. 

Step n : The machine stabilizes and finds the value of a that minimizes the cost 

function. 

This method works, but it can be very time-consuming and requires a lot of 

calculations, so we're going to look at how to save time and minimize the number of 

calculations required. 

 

derivative of a a 

derivative of a 

derivative of a 
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Chapter Three 

Supervised Learning – KNN algorithm -  
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III.1. Introduction 

Supervised Machine Learning algorithms are used to solve classification or regression 

problems. The output of a regression problem is a real number (a decimal number with a 

decimal point).  

For example, we could estimate a person's weight based on their height. A 

classification problem has a discrete value as its output. For example, the 2 

headings, like horror films’ and ‘doesn't like horror films’ are discrete data. There is 

no middle ground. 

III.2. Nearest Neighbors (KNN) 

The KNN algorithm assumes that similar objects exist nearby. In other words, 

similar elements are close to each other. 

The k nearest neighbours algorithm is one of the algorithms used in the field of 

artificial intelligence. It is a supervised machine learning algorithm that assigns a 

category to an element based on the majority class of its nearest neighbours in the 

training sample. Its principle can be summed up in this sentence: Tell me who your 

friends are, and I'll tell you who you are. 

III.3. Principles  

• The K nearest neighbours algorithm is a supervised learning algorithm.  

• The aim of the algorithm is to label data.  

• Labelled data is available for training and for measuring the quality of 

predictions. 

• Once the algorithm has been trained and tested, it can be used to predict the 

label of new data. 

In general, KNN works as follows : 

• Load the data. 

• Initialise k to the chosen number of nearest neighbours. 

• For each example in the data:  
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1. Calculate the distance between our query and the current iterative 

loop observation from the data. 

2. Add the distance and index of the relevant observation to an ordered 

collection of data. 

• Sort this ordered collection containing distances and indices from smallest 

distance to largest (in ascending order). 

• Select the first k entries in the sorted data collection (equivalent to the k 

nearest neighbours). 

• Obtain the labels of the selected entries. 

• If regression, return the mean of the k labels. 

• If classification, return the mode (most frequent/common value) of the k 

labels 

 

Figure 8: KNN Principles 

The KNN algorithm uses various distance functions to compute 

the proximity amongst the data points.  

There is no need to code these distances yourself, generally, Machine Learning 

libraries like Scikit Learn, perform these calculations internally. You just have to 

indicate the distance measure you want to use. 

• Euclidean distance: calculates the square root of the sum of the square differences 

between the coordinates of two points. The formula says:  
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Where:  (xj, yj) are the coordinates of the points and De(x,y) is the distance 

between (x1, y1) and (x2, y2). 

 

• Manhattan distance: calculates the sum of the absolute values of the 

differences between the coordinates of two points. The formula says: 

 

• Hamming distance: the distance between two given points is the maximum 

difference between their coordinates on one dimension. The formula says: 

 

If X=Y → D = 0 

If X Y → D = 1 

Note that there are other distances depending on the use case of the algorithm, but 

the Euclidean distance remains the most used. 

III.4. Choose the correct value for k 

To select the right value of k for your data, we run the KNN algorithm several times 

with different values of k. Then we choose the k that reduces the number of errors 

encountered while maintaining the algorithm's ability to make accurate predictions 

when it receives new (previously unseen) data. 

The choice of the K value to be used to make a prediction with KNN varies 

according to the dataset. In general, the fewer neighbours we use (a small K 

number), the more we are subject to underfitting. On the other hand, the more 

neighbours we use (a large number K), the more reliable our prediction will be. 

However, if we use a number K of neighbours with K=N and N being the number of 

observations, we run the risk of overfitting and therefore a model that generalises 

incorrectly on observations that it has not yet seen. 

In KNN classification, a new data point is assigned to the most common class 

among its K nearest neighbors. If K is even, there is a possibility of a tie between 
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two or more classes, making it unclear which class to assign. Choosing an odd value 

for K reduces the likelihood of ties, ensuring a clear majority class in most cases. 

The main disadvantage of KNN is that it slows down considerably as the volume of 

data increases, making it an impractical choice in a context where predictions need 

to be made quickly. In addition, some faster algorithms can produce more accurate 

classification and regression results. 

Example 

We consider two species: crocodiles and alligators. It is assumed that they can 

be distinguished by measuring the width of their mouths and the length of their 

bodies. 

Mouth Length class 

0.17 2.84 alligator 

0.24 3.82 alligator 

0.24 3.39 alligator 

0.2 2.60 alligator 

0.25 4.21 crocodile 

0.47 4.64 crocodile 

0.47 4.48 crocodile 

0.49 4.9 crocodile 

0.46 4.08 Crocodile 

0.19 2.91 ? 

 

We add a new animal whose characteristics we know, but not its species: 

New : gueule = 0.19, longueur = 2.91 (animal) 

What species does it belong to? 

The distance separating this animal from the others is added to the previous 

data. We'll use the usual Euclidean distance here:  
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𝑨𝑩 =  √(𝑿𝑩 − 𝑿𝑨)2 + (𝒀𝑩 − 𝒀𝑨)² 

 

Distance  Classe  

0.072 alligator 

0.911 alligator 

0.482 alligator 

0.310 alligator 

1.301 crocodile 

1.752 crocodile 

1.594 crocodile 

2.012 crocodile 

1.200 crocodile 

Distance  Class 

0.072 alligator 

0.310 alligator 

0.482 alligator 

0.911 alligator 

1.200 crocodile 

1.301 crocodile 

1.594 crocodile 

1.752 crocodile 

2.012 crocodile 

New : Mouth = 0.19, Length = 2.91 (animal) 

Choose k=3 and keep only the three animals closest to our new animal: 

Distance  Class  

0.072 alligator 

0.310 alligator 

0.482 alligator 

 

Mouth Length class 

0.17 2.84 alligator 

0.24 3.82 alligator 

0.24 3.39 alligator 

0.2 2.60 alligator 

0.25 4.21 crocodile 

0.47 4.64 crocodile 

0.47 4.48 crocodile 

0.49 4.9 crocodile 

0.46 4.08 Crocodile 

0.19 2.91 ? 

 

We calculate the 
distance of each 

observation from our 
animal (new) 

We then sort from 
the smallest to the 

largest value 
according to 

distance 
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In this subset made up of three elements, the majority class is alligator, and this 

is the one we assign to our new animal. We chose a class because this is a 

classification problem. 

For a regression problem: for example, predicting a person's weight as a 

function of height, we follow the same principle, only at the end we calculate 

the average of the values, let's look at the following example: 

Height  Weight 

160 80 

150 60 

10 20 

12 25 

140 ? 

 

So, we calculate the distance of each observation from the point (our point is size 140) and 

we sort these distances in ascending order, then we choose the lines according to the value 

of K, here k=2 (for example), so we'll have the lines in yellow. 

As a result, the weight is the average of the weights of the two lines chosen (60+80)/2 

=70 

So, 140 has a weight of 70 

Distance Weight 

10 60 

20 80 

128 25 

130 20 

III.5. KNN applications 

- Comparison of people with similar financial characteristics for bank loans.  

- Drawing up a profile to suggest appropriate films to subscribers.  

We want to know the weight of a person whose 

height is 140. 
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- Classify a potential voter as ‘will vote’ or ‘will not vote’ for a particular candidate.  

This list is far from exhausting. 

In python, the KNN classification algorithm is implemented in the 

KNeighborsClassifier class in the neighbor's module. Before we can use the model, 

we need to instantiate the class into an object. This is when we will set any 

parameters of the model. The most important parameter of KNeighbor sClassifier is 

the number of neighbors. 

In conclusion,  

The KNN algorithm is a simple supervised machine learning algorithm that can be 

used to solve classification and regression problems. It is easy to implement and 

understand but has the major disadvantage of slowing down considerably as the size 

of the data used increases. 

KNN searches for the distances between an ‘unknown’ and all the data in the training database, 

selects the specified number of examples (K) closest to the query, then votes for the most 

frequent label (in the case of classification) or for the average of the labels (in the case of 

regression). 

In the case of classification and regression, we saw that choosing the right K for our data was 

done by trying several Ks and choosing the one that worked best. 

III.6. Exercises 

Exercise 1 

Suppose we have a classification problem which consists of determining the class to 

which new instances Xi. The value domain of the possible classes is [1,2,3]. 

Using the following knowledge base, determine by hand (or using a spreadsheet) the 

class of X6 whose values for the numerical attributes A1 to A5 are <3,12,4,7,8> 

using the k-nearest neighbour algorithm (K-NN) with K=1  then K=3. 

Exercise 2 

Let the points have the following coordinates : 

A(1,6),B(2,6),C(3,1),D(4,2),E(6,0),F(7,5),G(7,3),H(10,3) 

Using Euclidean distance, what are the two nearest neighbours of point P(5,5)  ? 
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Chapter Four 

Supervised Learning – Naïve Bayes-  

Lecture Notes 
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IV.1 Introduction 

When dealing with machine learning problems involving labeled training data, 

algorithms fall into two categories: classification and regression. Delving a little 

deeper, one of the most basic algorithms you will come up to is the Naive Bayes 

algorithm. 

Naïve Bayes Classifier is a popular algorithm in Machine Learning. It is a 

Supervised Learning algorithm used for classification. It is particularly used for text 

classification (such as SPAM).  

Naïve Bayes classifies a set of observations according to rules determined by the 

algorithm itself. This classification tool must first be trained on a training dataset 

that shows the expected class based on the inputs.  

During the training phase, the algorithm develops its classification rules on this 

dataset and then applies them to the classification of a prediction dataset.  

The naive Bayesian classifier implies that the classes in the training dataset are 

known and provided, hence the supervised nature of the tool. 

 

IV.2 Bayes' theorem 

The naive Bayes classifier is based on Bayes' theorem. This theorem is based on 

conditional probabilities (what is the probability of an event occurring knowing that 

another event has already occurred). 

Let's take the following example: suppose we have a class of high school students. 

Let A and B be the following two events: 

⎯ Event A: The pupil is a girl. 

⎯ Event B: the pupil takes German. 

What is the probability of randomly choosing a girl who practises German? 

Bayes' theorem can be used to calculate this kind of probability. 

Let P be the probability of an event. 

The term P(A\B): the probability that event A will occur knowing that event B has 

already occurred (A: Evidence, B: Outcome). 
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⎯ A, B : events 

⎯ P(A\B) : probability of A knowing that B is true 

⎯ P(B\A) : probability of B knowing that A is true 

⎯ P(A), P(B): independent probabilities of A and B 

We consider now another example – Say the likelihood of a person having Arthritis 

if they are over 65 years of age is 49%. 

Check the above stats at: Centre for Disease Control and Prevention 

Now, let’s assume the following: 

• Class Prior: The probability of a person stepping in the clinic being >65-year-

old is 20% 

• Predictor Prior: The probability of a person stepping into the clinic having 

Arthritis is 35% 

What is the probability that a person is >65 years given that he has Arthritis using 

the bayes theorem? 

 

We will now take the example of the pupils at the lycée who speak German: 
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 Girls Boys Total 

German 10 7 17 

Other language 4 9 13 

Total 14 16 30 

Let's calculate the following probability: What is the probability of randomly 

drawing a student who speaks German, knowing that she is a girl? 

According to Bayes' formula, we have the following: 

Consider  the set of high school students in our example, so cardinal () = 30 

Remember: Cardinal of a set = number of elements in the set

 

For this example, we applied Bayes' theorem with a single predictor variable 

(Evidence): Namely the gender of the student (Girl). In real applications of Naive 

Bayes, the result (Outcome) is calculated based on several variables rather than a 

single variable.  

Applying Bayes' theorem to several variables makes the calculation more complex. 

To get round this, one approach is to consider these variables independently of each 

other.  

This is a strong assumption. Generally, the predictive variables are linked together. 

The term ‘naive’ comes from the fact that this independence of variables is assumed. 

 

If we take the example of classifying emails into spam and non-spam, Naïve Bayes 

will base its classification on the frequency of occurrence of words in the email.  
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When classifying, the algorithm will assume that the words in the email ‘appear’ 

independently of each other. Obviously, from a linguistic and semantic point of 

view, this assumption is false. 

 

IV.3 Limitations of Naïve Bayes 

• Assumes that all the features are independent, which is highly unlikely in 

practical scenarios. 

• Unsuitable for numerical data. 

• The number of features must be equal to the number of attributes in the data 

for the algorithm to make correct predictions. 

• Encounters ‘Zero Frequency’ problem: If a categorical variable has a 

category in the test dataset that wasn’t included in the training dataset, the 

model will assign it a 0 probability and will be unable to make a prediction. 

This problem can be resolved using smoothing techniques which are out of 

scope of this article. 

• Computationally expensive when used to classify a large number of items. 

 

Example  

Let’s be a set of individuals with the characteristics :  cheveux, taille, poids, crème 

solaire, on désire classer ces individus selon la classe Classe. 

  

 

1. Give the decision model deduced from this database using Bayesian 

classification. 

2. Find the classes of the following examples: 
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Solution: 

1. Let's start by filling in this table, which summarises the probabilities of the 

classes in relation to the attributes: 

 

Attributs Valeurs 

P(classe =Oui = 

Coup de soleil) = 

3/8 

P(classe =Non = 

Bronzé) = 5/8 

Cheveux 

Blond = 4 2/3 2/5 

Brun = 3 0/3 3/3 

Roux = 1 1/3 0/5 

Taille 

Petite = 3 1/3 2/5 

Moyenne = 3 2/3 1/5 

Grande = 2 0/3 2/5 

Poids 

Leger = 2 1/3 1/5 

Moyen = 3 1/3 2/5 

Lourd = 3 1/3 2/5 

Crème solaire 
Oui = 3 0/3 3/5 

Non = 5 3/3 2/5 

 

Note that our table contains zero values, in which case we will use the Laplace 

estimator. 

Important: When the headcount is 0 (for a given class, and for a given attribute a): add a value 

(for example 1) to each count on the headcount table (for the class in question). Then consider 

that there is k more examples (k: number of possible values a). 

The general idea is the following: 

⎯ Add a value μ to each denominator for the attribute under consideration a and 

the class under consideration. 
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⎯ Add μ/k to the number of people associated with each value of the attribute 

under consideration and the class under consideration. This quantity, μ/k of 

the attribute considered, can be seen as an a priori probability of observing 

each of the values of the attribute. 

 

Using Laplace's estimator, we obtain the following values: 

 

The table above shows the Bayesian model we will use to make predictions. 

Note that the step of calculating the Laplace estimator only comes into play if we 

have zero probabilities and concerns the range of the attribute in question. 

2. Find the classes for the following examples (these data do not belong to the 

dataset): 

 

 

Bayes' theorem :  𝑃(𝑋\𝑌) =
P(Y\X)∗P(X)

P(Y)
 

X(? , petite, ?, Oui) 

 

To classify X in one class or another, we will calculate We will calculate :  

P(Classe = Oui\X) = 
𝑃(𝑋\𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)∗𝑃(𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)

𝑃(𝑋)
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P(Classe = Non\X) = 
𝑃(𝑋\𝐶𝑙𝑎𝑠𝑠𝑒=𝑁𝑜𝑛)∗𝑃(𝐶𝑙𝑎𝑠𝑠𝑒=𝑁𝑜𝑛)

𝑃(𝑋)
 

Et on choisira la plus grande probabilité. 

• Class coup de soleil : 

(1) P(Classe = Oui\X) = 
𝑃(𝑋\𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)∗𝑃(𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)

𝑃(𝑋)
 

(2) P(Classe = Non\X) = 
𝑃(𝑋\𝐶𝑙𝑎𝑠𝑠𝑒=𝑁𝑜𝑛)∗𝑃(𝐶𝑙𝑎𝑠𝑠𝑒=𝑁𝑜𝑛)

𝑃(𝑋)
 

• Class bronzé : 

(1) P(Classe = Oui\X) = 
𝑃(𝑋\𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)∗𝑃(𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)

𝑃(𝑋)
 

(2) P(Classe = Non\X) = 
𝑃(𝑋\𝐶𝑙𝑎𝑠𝑠𝑒=𝑁𝑜𝑛)∗𝑃(𝐶𝑙𝑎𝑠𝑠𝑒=𝑁𝑜𝑛)

𝑃(𝑋)
 

 

(1) P(Classe = Oui\X) = 
𝑃(𝑋\𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)∗𝑃(𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)

𝑃(𝑋)
=

𝑃(?\𝑐𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)∗𝑃(𝑝𝑒𝑡𝑖𝑡𝑒\𝑐𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)∗𝑃(?\𝑐𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)∗𝑃(𝑂𝑢𝑖\𝑐𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)∗𝑃(𝐶𝑙𝑎𝑠𝑠𝑒=𝑂𝑢𝑖)

𝑃(?)∗𝑃(𝑝𝑒𝑡𝑖𝑡𝑒)∗𝑃(?)∗𝑃(𝑂𝑢𝑖)
 

 

We calculate all the probabilities and take the highest probability. 

 

 

Exercise : 

A bank has the following information on a group of customers: 
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The customer attribute indicates the customer's number; the M attribute indicates the 

average credit on the customer's account; the A attribute gives the age group; the R 

attribute describes the customer's location; the E attribute has the value yes if the 

customer has a level of education higher than the baccalaureate; the I attribute (the 

class) indicates whether the customer carries out his account management operations 

via the Internet. 

 

1. Give the decision model deduced from this database using naive Bayesian 

classification. 

2. Find the classes for the following examples: 

 

IV.4 Conclusion 

Today, Naïve Bayes is a renowned algorithm with applications in a wide range of 

fields. Naïve Bayesian classification achieves remarkable results in many everyday 

applications, making it the algorithm of choice among Machine Learning tools.  

Among its strengths are its rapid learning curve, which does not require a large 

volume of data, the probability calculations are not very costly, and its extreme 

speed of execution compared with other more complex methods.  

However, the Naïve Bayes Classifier algorithm assumes the independence of the 

variables: this is a strong assumption that is violated in most real cases. 
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Chapter Five 

UnSupervised Learning – Kmeans –  

Lecture Notes 
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V.1 Introduction  

Supervised learning is a learning technique in which the machine is shown X, y 

examples of what it needs to learn. Unsupervised learning, on the other hand, 

involves providing the machine with X data only, and asking it to analyse the 

structure of this data to learn how to perform certain tasks on its own.  

Clustering is one of the most popular applications of unsupervised learning. The 

principle is to let the machine learn to sort data according to their similarities (and 

therefore by analysing only features X). Well-known algorithms : K-Means. 

 

V.2 Clustering  

This unsupervised classification method brings together a set of learning algorithms 

whose aim is to group together unlabelled data with similar properties.  

Clustering is used when it is costly to label data. It is, however, a mathematically ill-

defined problem: different metrics and/or different representations of the data will 

result in different groupings without any of them necessarily being better than 

another.  

So, the clustering method needs to be chosen carefully depending on the expected 

result and the intended use of the data. 

 

V.3 KMeans  

This is one of the most widely used clustering algorithms. It is used to analyse a 

dataset characterised by a set of descriptors, to group ‘similar’ data into groups (or 

clusters). 

The similarity between two data sets can be inferred from the ‘distance’ between 

their descriptors; two very similar data sets are two data sets whose descriptors are 

very close. This definition allows us to formulate the data partitioning problem as 

the search for K ‘prototype data’, around which the other data can be grouped. 

These prototype data are called centroids; in practice, the algorithm associates each 

data item with its closest centroid, to create clusters. On the other hand, the averages 
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of the descriptors of the data in a cluster define the position of their centroid in the 

descriptor space: this is the origin of the name of this algorithm (K-means). 

After initialising its centroids by taking random data from the dataset, K-means 

alternates these two steps several times to optimise the centroids and their clusters: 

1. Group each object around the nearest centroid. 

2. Replace each centroid according to the average of the descriptors in its group. 

After a few iterations, the algorithm finds a stable division of the dataset: we say that 

the algorithm has converged. 

Like all algorithms, K-means has advantages and disadvantages: it is simple, fast 

and easy to understand; however, it cannot find groups with complex shapes. 

Here the key Objectives of K-Means Clustering : 

• Organizing Similar Data Points K-Means clustering focuses on grouping data 

points with shared characteristics into distinct clusters. Whether used for 

customer segmentation or image analysis, this method helps uncover 

underlying patterns in the dataset. 

 

• Minimizing Variability Within Clusters A key goal is to ensure that data 

points within each cluster are closely positioned around the cluster’s centroid. 

By reducing internal dispersion, the algorithm forms compact and well-

defined clusters, improving result accuracy. 

 

• Enhancing Separation Between Clusters K-Means also strives to maximize 

the distance between different clusters, ensuring clear distinctions between 

groups. This separation prevents overlapping and provides better insights into 

the structure of the data. 

 

V.4 How K Means works 

The K-means algorithm identifies a number of centroids in a dataset, a centroid 

being: the arithmetic mean of all the data points belonging to a particular cluster’. 
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The algorithm then assigns each data point to the nearest cluster, trying to keep the 

clusters as small as possible (the term ‘means’ in K-means refers to the average of 

the data or finding the centroid). 

At the same time, K-means tries to keep the other clusters as different as possible. 

 

K-means algorithm 

Input :  

K the number of clusters to form 

The dataset 

Begin 

Randomly select K points (one row of the data matrix). These points are the cluster 

centres (called centroids). 

 Repeat 

Assign each point (element of the data matrix) to the cluster whose centre it is 

closest to. 

Recalculate the centre of each cluster and modify the centroid. 

Until Convergence OR (stabilisation of the total inertia of the population) 

End. 

Note: The convergence of the K-Means algorithm can be one of the following 

conditions: 

⎯ Several iterations fixed in advance, in which case K-means will perform the 

iterations and stop regardless of the shape of the composed clusters. 

⎯ Stabilisation of cluster centres (centroids no longer move during iterations). 

A point is assigned to a cluster according to its distance from the various centroids. 

In addition, the point will be assigned to a cluster if it is closer to its centroid 

(minimum distance). Finally, the distance between two points in the case of K-

Means is calculated using the methods described in the ‘notion of similarity’ section. 

 

Example 

There are 8 points: from A1 to A8, with the following coordinates: 



Dr. H. EL BOUHISSI BRAHAMI                  Machine Learning For Big Data                         Page 57 

A1= (2.10), A2= (2.5), A3= (8.4), A4= (5.8), A5= (7.5), A6= (6.4), A7= (1.2), A8= (4.9) 

We want to apply the K-means algorithm to format 3 clusters, initially choosing A1, 

A4 and A7 as cluster centres. 

Show all the calculation steps until you reach the result. Draw the intermediate states 

and the result. 

 

Solution 

Here's the point cloud 

            

Let μ1, μ2 and μ3 be the centres of gravity of clusters (respectively) cluster1, 

cluster2 and cluster3. 

μ1 = A1 

μ2 = A4 

μ3 = A7 

- Iteration 1 : 

Start by calculating the distance of points A1, ...A8 from the centres μi (Euclidean distance) 

- For A1 (distance between A1 and the centres μ1, μ2 and μ3) 

d(A1, μ1)=0 

d(A1, μ2)= sqrt(13)  

d(A1, μ3)= sqrt(65) 

                               A1 ∈ cluster1 (we choose the smallest value, A1 must belong to cluster1) 

- For A2 (distance between A2 and the centres μ1, μ2 and μ3) 

d(A2, μ1)=sqrt(25)= 5 

d(A2, μ2)= sqrt(18) = 4.24 

d(A2, μ3)= sqrt(10) = 3.16 

2, 10
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8, 4

5, 8

7, 5
6, 4

1, 2
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0

2

4

6

8

10

12
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                              A2 ∈ cluster3 (choose the smallest value, A2 must belong to cluster3) 

- For A3: (distance between A3 and the centres μ1, μ2 and μ3) 

d(A3, μ1)= sqrt(36) = 6 

d(A3, μ2)= sqrt(25) = 5 

d(A3, μ3)= sqrt(53) = 7.28 

                             A3 ∈ cluster2 (choose the smallest value, A3 must belong to cluster2) 

- For A4: (distance between A4 and the centres μ1, μ2 and μ3) 

d(A4, μ1)= sqrt(13) 

d(A4, μ2)=0 

d(A4, μ3)= sqrt(52) 

                           A4 ∈ cluster2 (choose the smallest value, A4 must belong to cluster2) 

- For A5: (distance between A5 and the centres μ1, μ2 and μ3) 

d(A5, μ1)=sqrt(50)=7.07 

d(A5, μ2)=sqrt(13)=3.60 

d(A5, μ3)=sqrt(45)=6.70 

                           A5 ∈ cluster2 (choose the smallest value, A5 must belong to cluster2) 

- For A6: (distance between A6 and the centres μ1, μ2 and μ3) 

d(A6, μ1)=sqrt(52)=7.21 

d(A6, μ2)=sqrt(17)=4.12 

d(A6, μ3)=sqrt(29)=5.38 

                            A6 ∈ cluster2 (choose the smallest value, A6 must belong to cluster2) 

- For A7: (distance between A7 and the centres μ1, μ2 and μ3) 

d(A7, μ1)=sqrt(65)=7.21 

d(A7, μ2)=sqrt(52)=4.12 

d(A7, μ3)=0 

                            A7 ∈ cluster3(choose the smallest value, A7 must belong to cluster3) 

- For A8: (distance between A8 and the centres μ1, μ2 and μ3) 

d(A8, μ1)=sqrt(5) 

d(A8, μ2)=sqrt(2) 

d(A8, μ3)=sqrt(58) 

                           A8 ∈ cluster2(we choose the smallest value, A8 must belong to cluster2) 
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So the new clusters are : Cluster1: {A1}   

                                                       Cluster2: {A3, A4, A5, A6, A8} 

                                                       Cluster3: {A2, A7} 

 

Now the cluster centres will be updated: 

μ1= (2, 10) here we have a single point 

μ2= ((8+5+7+6+4)/5, (4+8+5+4+9)/5) = (6, 6), here we calculate the average (hence the name 

means) 

μ3= ((2+1)/2, (5+2)/2) = (1.5, 3.5) here we calculate the average (hence the name means) 

μ1= (2, 10)  

μ2= (6, 6) 

μ3= (1.5, 3.5) 

 

- Iteration 2: we will follow the same principle of calculating the distance from the 

points to the centres. 

We found the new clusters :  

cluster1: {A1, A8} 

cluster2: {A3, A4, A5, A6} 

cluster3: {A2, A7} 

And the new centres : 

μ1=(3, 9.5), 

μ2=(6.5, 5.25) 

μ3=(1.5, 3.5). 
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- Iteration 3: we will follow the same principle of calculating the distance from 

points to centres. 

We found the new clusters :  

cluster1: {A1, A4, A8} 

cluster2: {A3, A5, A6} 

cluster3: {A2, A7} 

As well as the new centres : 

μ1=(3.66, 9), 

μ2=(7, 4.33) 

μ3=(1.5, 3.5) 

 

- Iteration 4: we will follow the same principle of calculating the distance from 

point to centres. 

The new clusters are : 

cluster1: {A1, A4, A8} 

cluster2: {A3, A5, A6} 

cluster3: {A2, A7} 
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As well as the new centres : 

μ1=(3.66, 9), 

μ2=(7, 4.33) 

μ3=(1.5, 3.5) 

We stop at this stage because the centres μ1, μ2 and μ3 do not change and we have 

obtained the same clusters. 

 

V.5 Limits of KMeans 

Despite its many advantages, K-Means has certain limitations: 

⎯ What problems do we have to deal with if we want to implement a clustering 

method? 

⎯ Nature observations: Binary, textual, numerical data, etc.? 

⎯ Notion of similarity (or dissimilarity) between observations 

⎯ Définition of a cluster 

⎯ Evaluation of the validity of a cluster 

⎯ Nombre of clusters that can be identified in the data 

⎯ Comparaison of different clustering results 

 

Exercise 1 

We want to perform clustering using the K-means method for the data set 

D={1,3,6,8,10,11,12,22,24,26,31,57}, assuming that the initial centres are: 

5,10,25,30 for the 4 clusters. 



Dr. H. EL BOUHISSI BRAHAMI                  Machine Learning For Big Data                         Page 62 

Questions : 

1. Knowing that the distance used is a Euclidean distance, apply the K-means 

algorithm for a single iteration. 

2. How many iterations are needed to achieve stabilisation? 

3. Give the result of K-means clustering. 

4. What are the final cluster centres? 

 

Exercise 2 

A shopping mall wants to analyze customer purchasing behavior to create targeted 

marketing campaigns. The mall’s management has collected data on 100 customers, 

including: 

• Annual Income (in $1000s) 

• Spending Score (a measure of customer engagement, from 1 to 100) 

The goal is to group similar customers using K-Means clustering to identify 

different spending patterns. 

Explain how to do this task 
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Chapter Six 

Supervised Learning – Decision Tree –  

Lecture Notes 
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VI.1 Introduction  

A decision tree is a non-parametric supervised learning algorithm used for both 

classification and regression tasks. It has a hierarchical, tree-like structure, 

consisting of a root node, branches, internal nodes and leaf nodes. 

A decision tree is a graphical representation (figure 9) of different options for 

solving a problem and shows how different factors are related. It has a hierarchical 

tree structure starts with one main question at the top called a node which further 

branches out into different possible outcomes where: 

• Root Node is the starting point that represents the entire dataset. 

• Branches: These are the lines that connect nodes. It shows the flow from one 

decision to another. 

• Internal Nodes are Points where decisions are made based on the input 

features. 

• Leaf Nodes: These are the terminal nodes at the end of branches that 

represent final outcomes or predictions 

 

Figure 9 : Decisoon Tree structure 

For example, let's say you're trying to decide whether to go surfing. You can use the 

following decision rules to make your choice: 
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Decision This type of flowchart structure also creates a representation of decision 

making, allowing different groups within an organisation to better understand why a 

decision has been made. 

Decision tree learning employs a divide-and-conquer strategy by performing a 

greedy search to identify optimal splitting points within a tree. This splitting process 

is then repeated in a top-down, recursive manner until all or most of the data sets 

have been classified under specific class labels. Whether or not all data points are 

classified as homogeneous sets depends largely on the complexity of the decision 

tree.  

For small trees, it is easier to achieve pure leaf nodes, i.e. data points in a single 

class. However, as a tree grows, it becomes increasingly difficult to maintain this 

purity, usually resulting in an insufficient number of data points from a given sub-

tree. When this happens, it is called data fragmentation and can often lead to 

overfitting.  

As a result, decision trees prefer small trees, in line with Occam's Razor's principle 

of parsimony: 'entities should not be multiplied more than necessary'. In other 

words, decision trees should only add complexity, when necessary, as the simplest 

explanation is often the best.  

To reduce complexity and avoid overfitting, pruning is commonly used, a process 

that removes branches that split into less important functionalities. The fit of the 
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model can then be assessed using cross-validation. Decision trees can also retain 

their accuracy by forming an ensemble using a random forest algorithm; this 

classifier predicts more accurate results, particularly when individual trees are not 

correlated with each other. 

VI.2 Decision Tree Types 

We have mainly two types of decision tree based on the nature of the target 

variable: classification trees and regression trees. 

• Classification trees: They are designed to predict categorical outcomes, which 

means they classify data into different classes. They can determine whether 

an email is “spam” or “not spam” based on various features of the email.  

• Regression trees : These are used when the target variable is continuous. It 

predict numerical values rather than categories. For example, a regression tree 

can estimate the price of a house based on its size, location, and other 

features. 

 VI.3 How do you select the best attribute at each node? 

Although there are several ways to select the best attribute at each node, the two 

methods, information gain and Gini impurity, are popular splitting criteria for 

decision tree models. They help to assess the quality of each test’s condition and the 

extent to which it will be able to classify samples.   

It is difficult to explain information gain without first mentioning entropy. Entropy 

is a concept from information theory that measures the impurity of sample values. It 

is defined by the following formula, where :   

 

⎯ S represents the data set in which the entropy is calculated. 

⎯ c represents the classes in the set, S. 

⎯ p(c) is the proportion of data points belonging to class c relative to the total 

number of data points in the set, S. 
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Entropy values can be between 0 and 1. If all the samples in the dataset S belong to 

a single class, the entropy is zero. If half of the samples are classified in one class 

and half in another, the entropy will be less than or equal to 1. To select the best 

feature to divide and find the optimal decision tree, the attribute with the smallest 

amount of entropy should be used.  

The information gain represents the difference in entropy before and after a split on 

a given attribute. The attribute with the highest information gain will produce the 

best split, as it is best able to classify the training data according to its target 

classification. The information gain is generally represented by the following 

formula, where : 

⎯ a represents a specific attribute or class label. 

⎯ Entropy(S) is the entropy of the dataset, S. 

⎯ |Sv| / |S| is the proportion of values in Sv relative to the number of values in 

the dataset, S. 

⎯ Entropy(Sv) is the entropy of the dataset, Sv. 

Let's take an example to illustrate these concepts. Suppose we have the following 

arbitrary data set: 
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For this dataset, the entropy is 0.94. This can be calculated by finding the proportion 

of days when ‘Play Tennis’ is ‘Yes’, which is 9/14, and the proportion of days when 

‘Play Tennis’ is ‘No’, which is 5/14. These values can then be incorporated into the 

entropy formula above. 

Entropy (tennis) = -(9/14) log2(9/14) - (5/14) log2 (5/14) = 0.94 

We can then calculate the information gain for each of the attributes individually. 

For example, the information gain for the ‘Humidity’ attribute would be as follows: 

Gain (Tennis, Humidity) = (0.94)-(7/14)*(0.985) - (7/14)*(0.592) = 0.151 

As a reminder, 

⎯ 7/14 represents the proportion of values where the humidity is equal to ‘high’ 

in relation to the total number of humidity values. In this case, the number of 

values where the humidity is equal to ‘high’ is the same as the number of 

values where the humidity is equal to ‘normal’. 

⎯ 0.985 is the entropy when the humidity is ‘high’. 

⎯ 0.59 is the entropy when humidity = ‘normal’. 

Next, repeat the information gain calculation for each attribute in the table above 

and select the attribute with the highest information gain as the first split point in the 

decision tree. In this case, Outlook generates the highest information gain. The 

process is then repeated for each sub-tree. 

The Gini impurity is the probability of misclassifying a random data point in the 

dataset if it were labelled according to the class distribution of that dataset. Similar 

to entropy, if it is defined, S is pure, i.e. belonging to a class), then its impurity is 

zero. This is reflected in the following formula: 

 

Decision tree uses the tree representation to solve the problem in which each leaf 

node corresponds to a class label and attributes are represented on the internal node 

of the tree. We can represent any boolean function on discrete attributes using the 

decision tree. 
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Example: Predicting Whether a Person Likes Computer Games 

Imagine you want to predict if a person enjoys computer games based on their age 

and gender. Here’s how the decision tree works: 

1. Start with the Root Question (Age): 

• The first question is: “Is the person’s age less than 15?” 

• If Yes, move to the left. 

• If No, move to the right. 

2. Branch Based on Age: 

• If the person is younger than 15, they are likely to enjoy computer 

games (+2 prediction score). 

• If the person is 15 or older, ask the next question: “Is the person 

male?” 

3. Branch Based on Gender (For Age 15+): 

• If the person is male, they are somewhat likely to enjoy computer 

games (+0.1 prediction score). 

• If the person is not male, they are less likely to enjoy computer games 

(-1 prediction score) 
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Example: Predicting Whether a Person Likes Computer Games Using Two 

Decision Trees 

Tree 1: Age and Gender 

1. The first tree asks two questions: 

• “Is the person’s age less than 15?” 

o If Yes, they get a score of +2. 

o If No, proceed to the next question. 

• “Is the person male?” 

o If Yes, they get a score of +0.1. 

o If No, they get a score of -1. 

Tree 2: Computer Usage 

1. The second tree focuses on daily computer usage: 

• “Does the person use a computer daily?” 

o If Yes, they get a score of +0.9. 

o If No, they get a score of -0.9. 

Combining Trees: Final Prediction. The final prediction score is the sum of scores 

from both trees 
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VI.4 Decision Tree Limits 

Although decision trees can be used for a wide range of applications, other 

algorithms generally perform better. That said, decision trees are particularly useful 

for data mining and knowledge discovery tasks. 

• We cite here some limits : Overfitting: Overfitting occurs when a decision 

tree captures noise and details in the training data and it perform poorly on 

new data. 

• Instability: instability means that the model can be unreliable slight variations 

in input can lead to significant differences in predictions. 

• Bias towards Features with More Levels: Decision trees can become biased 

towards features with many categories focusing too much on them during 

decision-making. This can cause the model to miss out other important 

features, led to less accurate predictions. 

VI.5 Exercises 

Exercise 1 

A bank wants to improve its loan approval process by predicting whether a 

customer is likely to repay a loan or default based on their financial profile. The 

bank has collected historical data on previous loan applicants, including: 

• Age (years) 

• Annual Income (in $1000s) 

• Credit Score (rating from 300 to 850) 

• Loan Amount Requested (in $1000s) 

• Repayment Status (Target Variable: "Repaid" or "Defaulted") 

Your task is to use a Decision Tree Classifier to build a model that helps the bank 

decide whether to approve or reject future loan applications. 

Exercise 2 

Consider the following table, which shows a training set drawn randomly from a 

database of a company's customer purchases. 
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We want to construct a decision tree to predict the class (A purchased) of a new 

customer, based on this table. Use the information gain technique to choose the 

attribute at the root of the of the tree. 

Where: m is the number of classes present in D, v is the number of distinct 

values of an attribute A. 

Q.1 - Using the maximum information gain, determine only the root attribute of 

the tree (with the maximum gain) and then deduce the final tree without making 

any further calculations. 

Q.2 - Use the decision tree constructed to classify and calculate the accuracy on 

the following test set: 

 



Dr. H. EL BOUHISSI BRAHAMI                  Machine Learning For Big Data                         Page 73 

 

 

 

 

 

Chapter Seven 

Supervised Learning – Random Forest –  

Lecture Notes 
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VII.1 Introduction  

The random forest algorithm is a supervised classification algorithm. As the name 

suggests, this algorithm creates the forest with several trees. 

In general, the more trees in the forest the more robust the forest looks . In the same 

way in the random forest classifier, the higher the number of trees in the forest 

gives the higher the accuracy results. 

If you know the decision tree algorithm. You might be thinking are we creating 

more number of decision trees and how can we create more number of decision 

trees. As all the calculation of nodes selection will be the same for the same dataset. 

To model a greater number of decision trees to create the forest you are not going to 

use the same apache of constructing the decision with information gain or Gini 

index approach. 

Here are some random forest algorithm advantages : 

• The same random forest algorithm or the random forest classifier can use for 

both classification and the regression task. 

• Random forest classifier will handle the missing values. 

• When we have more trees in the forest, a random forest classifier 

won’t overfit the model. 

• Can model the random forest classifier for categorical values also. 

Let’s see this example : Imagine you are trying to predict whether a customer will 

buy a product based on their past behavior. Instead of relying on just one decision 

tree, Random Forest creates multiple decision trees and combines their results to 

make a more accurate prediction. 

How It works : 

1. Multiple Trees: The algorithm builds several decision trees using different 

random subsets of the data. 

2. Voting System: For classification tasks (e.g., "Buy" or "Not Buy"), each tree 

gives its own prediction, and the most common result wins. 

3. Averaging for Accuracy: In regression tasks (predicting numbers like sales or 

prices), the final output is the average of all three predictions. 
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VII.2 Decision Tree basis 

The decision tree concept is more to the rule-based system. Given the training 

dataset with targets and features, the decision tree algorithm will come up with 

some set of rules. The same rules can be used to perform the prediction on the test 

dataset. 

Suppose you would like to predict that your daughter will like the newly 

released animation movie or not. To model the decision tree, you will use the 

training dataset like the animated cartoon characters your daughter liked in the past 

movies. 

Therefore, once you pass the dataset with the target as your daughter will like the 

movie or not to the decision tree classifier. The decision tree will start building the 

rules with the characters your daughter likes as nodes and the targets like or not as 

the leaf nodes. By considering the path from the root node to the leaf node. You can 

get the rules. 

The simple rule could be if some x character is playing the leading role, then your 

daughter will like the movie. You can think of a few more rules based on this 

example. 

Then to predict whether your daughter will like the movie or not. You just need to 

check the rules which are created by the decision tree to predict whether your 

daughter will like the newly released movie or not. 

In decision tree algorithm calculating these nodes and forming the rules will happen 

using the information gain and Gini index calculations. 

In a random forest algorithm, instead of using information gain or Gini index for 

calculating the root node, the process of finding the root node and splitting the 

feature nodes will happen randomly.  

Next, you are going to learn why random forest algorithms are used. When we have 

other classification algorithms to play with. 

VII.3. How Random Firest Works 

The random Forest algorithm works in several steps: 
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• Random Forest builds multiple decision trees using random samples of 

data. Each tree is trained on a different subset of data which makes each tree 

unique. 

• When creating each tree, the algorithm randomly selects a subset of features 

or variables to split the data rather than using all available features at a time. 

This adds diversity to the trees. 

• Each decision tree in the forest makes a prediction based on the data it was 

trained on. When making final predictions, random forest combines the 

results from all the trees. 

o For classification tasks the final prediction is decided by a majority 

vote. This means that the category predicted by most trees is the final 

prediction. 

o For regression tasks the final prediction is the average of the 

predictions from all the trees. 

• The randomness in data samples and feature selection helps to prevent the 

model from overfitting by making the predictions more accurate and reliable. 

Random Forest has the following a assumptions : 

• Each tree makes its own decisions: Every tree in the forest makes its own 

predictions without relying on others. 

• Random parts of the data are used: Each tree is built using random samples 

and features to reduce mistakes. 

• Enough data is needed: Sufficient data ensures the trees are different and 

learn unique patterns and variety. 

• Different predictions improve accuracy: Combining the predictions from 

different trees leads to a more accurate result. 

VII.4. Random Forest in pratice 

There are mainly four sectors where Random Forest mostly used: 

• Banking: Banking sector mostly uses this algorithm for the 

identification of loan risk. 
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• Medicine: With the help of this algorithm, disease trends and risks of 

the disease can be identified. 

• Land Use: We can identify the areas of similar land use by this 

algorithm. 

• Marketing: Marketing trends can be identified using this algorithm. 

Here are some reasons why we choose Random Forest : 

• Random Forest can perform both Classification and Regression tasks. 

• It is capable of handling large datasets with high dimensionality. 

• It enhances the accuracy of the model and prevents the overfitting issue. 

However, random forest can be used for both classification and regression 

tasks, it is not more suitable for Regression tasks. 

Example : 

A bank wants to automate its loan approval process using a Random Forest 

classifier. The goal is to predict whether a customer’s loan application will be 

approved or rejected based on their financial profile. 

The dataset includes the following features: 

• Age (years) 

• Annual Income (in $1000s) 

• Credit Score (300-850) 

• Loan Amount Requested (in $1000s) 

• Employment Status (Employed/Unemployed) 

• Repayment History (Number of past late payments) 

• Loan Approval (Target Variable: Approved or Rejected) 
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Step 1: Create Multiple Decision Trees 

Each Decision Tree is trained on a random subset of the data (this is called bootstrap 

sampling). 

For simplicity, let’s assume we have 3 trees: 

• Tree 1 (Built on 4 random applicants A1, A2, A3, A5):Splitting based on 

Credit Score > 600 → Approves A1, A2 and rejects A3, A5 

• Tree 2 (Built on 4 different applicants A2, A3, A4, A6) : Splitting based on 

Annual Income > 60 → Approves A2, A4, A6, rejects A3 

• Tree 3 (Built on 4 different applicants A1, A3, A4, A5): Splitting based on 

Loan Amount > 35 → Approves A1, A4, rejects A3, A5 

Step 2: Predict a New Applicant (A7)  

 

Each tree predicts whether A7's loan is approved or rejected: 

• Tree 1: Approved (because Credit Score > 600) 

• Tree 2: Approved (because Income > 60) 

• Tree 3: Rejected (because Loan Amount > 35) 

Step 3: Majority Voting for Final Prediction 

The final prediction is based on majority voting among the trees: 

 

Since 2 out of 3 trees predicted "Approved", the final decision for A7 is 

"Approved".  
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Part Two : Labs 
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Introduction 
 

The second part of the document delves into hands-on Machine Learning 

labs with Python, guiding readers through practical implementation of core 

ML concepts. Using libraries like NumPy, Pandas, Scikit-Learn, and 

TensorFlow, readers engage in data preprocessing, model training, and 

performance evaluation. Labs cover essential topics such as data 

visualization, feature engineering, model selection, and hyperparameter 

tuning, applying both supervised and unsupervised learning to real-world 

datasets.  

Each lab emphasizes code optimization, experimentation, and insightful 

result interpretation, equipping readers with practical skills for effective ML 

development.  

This section aims to build a comprehensive understanding of ML workflows 

and industry’s best practices. 

  



Dr. H. EL BOUHISSI BRAHAMI          Machine learning for Big Data                     Page 81 

Lab 1 : Python review 

Objective 

The aim of this lab is to review some useful libraries (numpy, pandas matplotlib, 

etc.) to implement a machine learning model. The students must do all the activities 

to prepare the rest of the labs. 

Instructions 

Use Anaconda's jupyter notebook to implement the codes. Each pair must present its 

work in the form of a notebook file (Lab1.ipynb) and send the corrected version to 

the following address :houda.elbouhissi@univ-bejaia.dz with all necessary 

explanations. 

The numpy library 

The numpy library is a module for manipulating matrixes or multi-dimensional 

arrays. NumPy also includes functions for generating arrays. numpy is installed by 

default on Anaconda, but if you're using another editor, you can install it with:  

pip install numpy 

numpy functions begin with importing this library: import numpy as np 

Using shortcuts (here np, which you can modify, rather than numpy) makes it easier 

to write library function calls. 

Activity 1 

 

Is A invertible? If so, calculate A-1 (round the elements of A to 10-3). 

Activity 2 

What does the following code give?  

import numpy  

v = numpy.array([1, 2, 3, 4]) * numpy.pi / 4 # numpy.pi = π  

w = numpy.sin(v)  

print(w)  
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What do the following NumPy functions do: zeros([num]), ones([num]), 

linspace(start, end, num), random.random([num])? 

Activity 3 

For this activity, the answer to each question must contain just one line of code. 

- Create an array T1 containing only even numbers between 0 and 50. 

- Create an array T2 that contains the cosines of the squares of the elements in T1. 

- What is the minimum of array T2? 

- What is the number of times that the maximum of the array T2 is present in T2. 

The Matplotlib library 

Matplotlib is a Python library that can be used to do all sorts of plots. Matplotlib is installed by 

default on Anaconda, but if you use another editor, you can install it with:  

pip install Matplotlib 

The first step in using Matplotlib functions is to import the library: 

import Matplotlib.pyplot as plt 

Using shortcuts (here plt, which you can modify) makes it easier to write calls to 

functions in the library. 

x = [0, 1, 2] # abscissa list 

y = [1, -1, 0] # ordinate list 

plt.plot(x, y) # plots y as a function of x plt.show() 

# displays the plot window 

Activity 1 

Using the linspace and cos functions in NumPy, plot the function y = cos(x) on [0, 

10π]. What influence does the number of points passed to the linspace function 

have? Using a second call to the plt.plot function before calling plt.show, 

superimpose the graph of the function y = exp(-x/10) cos(x). Still before calling 

plt.show, add a title with plt.title(‘The title of your choice’) and names to the axes 

with plt.xlabel(‘x’) and plt.ylabel(‘y=f(x)’). 

The Pandas library 
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The Pandas library is an important library for manipulating data in Python. Pandas 

implements the DataFrame class, which is a table structure (row, column). Each 

column has a name and contains a single type of data.  

Pandas is installed by default on Anaconda, but if you use another editor you can install it with: 

pip install pandas 

Using the Pandas functions starts with importing this library: 

import pandas as pd 

Using shortcuts (here pd , which you can modify, rather than pandas) makes it easier to write 

calls to functions in the library. 

Activity 1 

This first workshop involves manipulating covid data using the Pandas library. The data to be 

retrieved ‘covid-hospit-incid-reg-2023-03-31-18h01.csv’ is available at 

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/   

1. Using the tail (or head) function, view the structure of the table. Identify the different 

data and their type (use dtypes).  

2. Dates are considered to be character strings. It is easier to perform operations by 

converting the column into dates (use to_datetime). 

3. Columns relating to departments and gender are deleted and then aggregated by day. 

4. Now plot the data (use the logy option for a logarithmic scale). 

5. Redo the same graph for your gender. 

Activity 2 

1. From the same link in Workshop 1, retrieve the temperature.csv file.  

2. Use the describe function on the dataframe. What does this function do?  

3. Create a new dataframe containing only the months March, June, September and 

December and deleting the cities in the ‘East’ region.  

4. Retrieve the data using numpy and calculate the average temperature for each month. 

Also determine the correlation matrix between the 4 months of the year. 

The Seaborn library 

Seaborn allows you to produce a similar graph using Seaborn, a slightly more elaborate library 

for Python. Seaborn is based on Matplotlib and simplifies certain types of graphs related to 

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
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statistics. We can use the distplot function to plot a histogram with a kernel density estimate. A 

kernel density estimate is a curve - which is actually a smoothed version of the histogram that 

is easier to analyze. 

Seaborn is installed by default on Anaconda, and if you use another editor, you can install it 

with: pip install seaborn 

Using Seaborn's functions starts with importing this library: 

import seaborn as sn 

Using shortcuts (here sn , which you can modify, rather than seaborn) makes it easier to write 

calls to functions in the library. 

For the next two workshops, we will use the dataset: 

https://www.data.gouv.fr/fr/datasets/impot-de-solidarite-sur-la-fortune-impot-sur-la-fortune-

immobiliere-par-collectivite-territoriale/ , choose ISF 2017, then use the arrow to access the 

contents. 

Activity 1 

From the ISF table, draw a vertical bar chart representing the number of towns with more than 

20,000 inhabitants that have more than 50 ISF taxpayers. 

Activity 2 

Using the ISF table, plot the average tax according to average wealth (for towns with more than 

20,000 inhabitants and more than 50 ISF taxpayers). 

  

https://www.data.gouv.fr/fr/datasets/impot-de-solidarite-sur-la-fortune-impot-sur-la-fortune-immobiliere-par-collectivite-territoriale/
https://www.data.gouv.fr/fr/datasets/impot-de-solidarite-sur-la-fortune-impot-sur-la-fortune-immobiliere-par-collectivite-territoriale/
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Lab 2 : Regression (Supervised learning) 

1/ Introduction 

This second lab provides a general overview on how to build and evaluate a 

supervised learning algorithm such as regression. We focus on linear regression 

(simple) and logistic regression. 

 

2/ Learning Objectives 

• Train and test data 

• Making predictions 

• Evaluating predictions 

3/ Some vocabulary 

Machine Learning is a vast and complex field. There are 4 important concepts that 

you use during all your machine learning projects, so you must be aware of that. 

• Dataset: In Machine Learning, everything starts with a Dataset containing our 

data. In supervised learning, the Dataset contains the questions (𝑦) and answers 

(x) to the problem that the machine must solve. 

 

• The model and its parameters: starting from the Dataset, we create a model (a 

mathematical function). The coefficients of this function are the model 

parameters. 

 

• Cost Function: When we test our model on the Dataset, it returns some errors. 

The sum of these errors is called the Cost Function. 

 

• Learning algorithm: The central idea of Machine Learning is to let the machine 

find the parameters of the model that minimize the Cost Function. 

 

• Overfitting: Overfitting occurs when the model fits the training data too closely, 

capturing noise or random fluctuations in the data. This leads to a model that 

performs very well on the training data but doesn't generalize well to new data. 

Example: Suppose we're building a linear regression model to predict house 

prices based on their size. If we have a dataset with outliers or unrepresentative 

data points, a complex machine learning model might try to fit to these points 

even if they don't truly represent the overall trend. This would result in 



Dr. H. EL BOUHISSI BRAHAMI          Machine learning for Big Data                     Page 86 

overfitting, where the model is too complex relative to the size of the training 

data. 

 

• Underfitting: Underfitting occurs when the model is too simple to capture the 

underlying structure of the data. This results in a model that fails to fit well even 

on the training data, leading to poor performance on both training and test data. 

Example: Let's revisit our house price prediction example. If we use a very simple 

linear regression model with just one feature (e.g., only the house size), it might 

underestimate the relationship between size and price, failing to account for other 

important factors like the number of bedrooms, location, etc. In this case, the 

model would be too simplistic to capture the complexity of the actual data. 

How to address these issues: 

• To avoid overfitting, techniques such as regularization (e.g., L1 or L2) can be used to 

penalize overly complex models, or cross-validation can be employed to select optimal 

hyperparameters. 

• To avoid underfitting, one can try more complex models or add relevant features to the 

data. 

In summary, overfitting occurs when the model is too complex relative to the training data, 

while underfitting occurs when the model is too simple to capture the data's structure. Both 

issues need to be monitored and addressed to achieve high-performing and generalizable 

machine learning models (we’ll see these concepts with more detail so far). 

4/ Programming steps  

To implement these 4 steps in Python, we need to take the following steps: 

• Import all the necessary libraries. 

 

• Preparing the DataSet. The machine receives data characterized by X variables 

(called features) and annotated with a y variable (called a label or target). 

 

• Select the model (or estimator) the machine needs to learn, specifying the model's 

hyperparameters (for example, LinearRegression, …etc.). 

 

• Train the model on data X and Y :  model.fit(X,Y) 

 

• Evaluate the model : model.score(X,Y) 
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• Use the model : model.predict(x) 

5/ Software tools 

You install anaconda (https://www.anaconda.com/), which is the best environment 

for machine learning codes and the sklearn library. If you use just Jupyter or spyder, 

you must install the appropriate libraries. 

Duration: 2 hours (+ 2 hours homework) 

------------------------------------------- Preliminaries --------------------------------------------- 

Regression is a supervised learning problem where there is an input x and an output y and the 

task are to learn the mapping from the input to the output. We have also seen that the approach 

in machine learning is that we assume a model, that is, a relation between x and y containing a 

set of parameters, say, _ in the following form: 

y = g(x; ) 

g(x; ) is the regression function. The machine learning program optimizes the parameters  

such that the approximation error (called cost function) is minimized, that is, our estimates are 

as close as possible to the correct values given in the training set. 

Several methods are proposed to optimize cost function such as variance, covariance, …etc. the 

best optimization method is called gradient descent.  

Logistic regression is used when the dependent variable is binary (0/1, True/False, Yes/No) in 

nature. Even though the output is a binary variable, what is being sought is a probability 

function which may take any value from 0 to 1. 

---------------------------------------------- Examples ----------------------------------------------------- 

• Let see this simple example about linear regression with one variable as we called 

usually simple regression, we need to predict the house price using regression. 

The used dataset involves one features, one Target (price) and downloaded from 

Kaggle : https://www.kaggle.com/datasets/harlfoxem/housesalesprediction. 

First, we import useful libraries. 

import numpy as np 

import pandas as pd 

import seaborn as sb 

from sklearn.preprocessing import StandardScaler 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn import linear_model 

from sklearn.metrics import classification_report 

https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
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%matplotlib inline 

Read the dataset, we use here the kc_house_data.csv 

downloaded from 

: https://www.kaggle.com/datasets/harlfoxem/housesalespredict

ion 

df = pd.read_csv("kc_house_data.csv") 

df.head(15) 

Now, we explore our data set to find missed values. We Determine the 

features that affect (theoretically) house prices. 

df.info() 

df.isnull().sum() 

df = df.drop(['id','date', 'lat', 'long','zipcode'], axis =1) 

df.head() 

plt.figure(figsize=(48, 6)) 

sb.stripplot(x="yr_built", y="bedrooms", data=df); 

plt.figure(figsize=(20, 8)) 

sb.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 

2.5}) 

sb.stripplot(x="bedrooms", y="price", data=df); 

plt.figure(figsize=(48, 8)) 

sb.barplot(x="bedrooms", y="price", hue="grade", data=df); 

sb.countplot(x='bedrooms',data=df, palette='hls') 

 

Next, we try to build our model using linear regression, we split our data set to 70% for training 

and 30% for testing. 

 

columns = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 

'floors', 'waterfront', 'view', 'condition', 'grade','sqft_above', 

'sqft_basement', 'yr_built','yr_renovated', 'sqft_living15', 

'sqft_lot15'] 

labels = df['price'].values 

features = df[list(columns)].values 

X_train, X_test, y_train, y_test = train_test_split(features, 

labels, test_size=0.30) 

regr = linear_model.LinearRegression() 

regr.fit(X_train, y_train) 

We evaluate our model. 

Accuracy = regr.score(X_train, y_train) 

print ("Accuracy in the training data: ", Accuracy*100, "%") 

accuracy = regr.score(X_test, y_test) 

print ("Accuracy in the test data", accuracy*100, "%") 

 

Now, let us see another example about logistic regression. We use a dataset 

provided by the teacher to predict id a client purchased an object or no, that means 

we study the influence of some features on the result. 

https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
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Here is an excerpt about the dataset : 

 

# import libraries 

%matplotlib 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

from matplotlib.colors import ListedColormap 

from mpl_toolkits.mplot3d import Axes3D 

import seaborn as sns 

# Import the dataset 

dataset = pd.read_csv('clients.csv') 

# Data visualisation 

dataset.head() 

# Dataset visualisation 

plt.scatter(dataset.EstimatedSalary, dataset.Purchased) 

# Delete User ID  

dataset.drop(['User ID'],axis='columns',inplace=True) 

# Data visualisation 

dataset.head() 

# Transformation of gender variable  

dataset.Gender = dataset.Gender.map({'Male': 1, 'Female': 2}) 

dataset.head() 

ax = plt.axes(projection='3d') 

ax.scatter(dataset.Gender,dataset.Age,dataset.EstimatedSalary, 

c=dataset.Purchased) 

# Achat percent 

count_sub = len(dataset[dataset['Purchased']==1]) 

count_no_sub = len(dataset[dataset['Purchased']==0]) 

pct_of_no_sub = count_no_sub/(count_no_sub+count_sub) 

print("Pourcentage absence d'achat", pct_of_no_sub*100) 
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# genre Influence on Purchases 

table= pd.crosstab(dataset.Gender,dataset.Purchased) 

table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', 

stacked=True) 

plt.title('Gender / Purchases') 

plt.xlabel('Gender') 

plt.ylabel('Pourcentage de client') 

dataset.drop(['Gender'],axis='columns',inplace=True) 

dataset.head() 

table= pd.crosstab(dataset.Age,dataset.Purchased) 

table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', 

stacked=True) 

plt.title('Age / Purchases') 

plt.xlabel('Age') 

plt.ylabel('Client percentage') 

plt.savefig('Age-Purchases') 

table= pd.crosstab(dataset.EstimatedSalary,dataset.Purchased) 

table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', 

stacked=True) 

plt.title('Salaire / Achat') 

plt.xlabel('Salaire') 

plt.ylabel('Pourcentage de client') 

# define Y dependent variable and X independent variable 

X = dataset.iloc[:, [0, 1]].values 

y = dataset.iloc[:, -1].values 

 

# points Visualisation  

plt.scatter(X[:,0],X[:,1], c=y) 

# Split the dataset 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size 

= 0.25, random_state = 0) 

# Feature Scaling 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

X_test 

# Build the model 

classifier = LogisticRegression(random_state = 0, 

solver='liblinear') 

classifier.fit(X_train, y_train) 

# Faire de nouvelles prédictions 

y_pred = classifier.predict(X_test) 

classifier.score(X_test,y_test) 

# confusion matrix 

cm = confusion_matrix(y_test, y_pred) 

print(cm) 
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#print(classification_report(y_test, y_pred)) 

 

# Results Visualisation 

X_set, y_set = X_train, y_train 

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = 

X_set[:, 0].max() + 1, step = 0.01), 

                     np.arange(start = X_set[:, 1].min() - 1, stop = 

X_set[:, 1].max() + 1, step = 0.01)) 

plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), 

X2.ravel()]).T).reshape(X1.shape), 

             alpha = 0.4, cmap = ListedColormap(('red', 'green'))) 

plt.xlim(X1.min(), X1.max()) 

plt.ylim(X2.min(), X2.max()) 

for i, j in enumerate(np.unique(y_set)): 

    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], 

                c = ListedColormap(('red', 'green'))(i), label = j) 

plt.title('Résultats du Training set') 

plt.xlabel('Age') 

plt.ylabel('Salaire Estimé') 

plt.legend() 

plt.show() 

x_predict = sc.transform([[35,15000]]) 

classifier.predict(x_predict) 

 

----------------------------------------------- Activities ----------------------------------------------- 

Activity 1 

The aim of this activity is to predict the relationship between the price of a pizza and its size 

using linear regression. As previously specified, and as we have chosen a linear regression, this 

means that we are making the hypothesis that there is a linear relationship between the price of 

a pizza and its size. 

• Dataset : We will first generate a set of points for the training set: 

Size (Feature) Price (Target) 

6 7 

8 9 

10 13 

14 17.5 

18 18 

We then need to declare a numpy array containing the data (pizza sizes) and declare an array 

containing the corresponding prices , for example : 

X = np.array([[6], [8], [10], [14], [18]]) 

y = [7, 9, 13, 17.5, 18] 
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• Now display the data in a graph to see if there is a relationship between the size and 

price of a pizza. To do this, we'll use matplotlib. We can see that there is indeed a 

relationship: the price of a pizza increases with its size, which is consistent with our 

expertise on the subject. 

 
We are going to use the sklearn library and in particular the linear regression model: 

from sklearn.linear_model import LinearRegression 

• Now use the functions fit for training and predict to predict the model's response to an 

example.  

• We now need to evaluate our model. To do this we need to define a loss function (also 

called a cost function). The difference between the actual price of the pizzas and the 

price predicted by our model is called the residual error or learning error. When we 

evaluate our model on an independent test basis, the resulting error is called the 

prediction error or test error. 

We can create the best possible model by minimizing the sum of the residual error. This error 

is called the residual sum of squares (RSS). 

The cost function associated with this error is defined as follows :  

 

With Yi  the observed value (real value) and f(xi) the predicted value. 

 

Calculate the error obtained in python (Residual sum of squares : 8.75) 

 

Activity 2 

The second activity involves applying simple linear regression on the dataset below using the 

least-squares method. The student would build his own model using Python without using the 

Python machine learning instructions.  
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Size (x) Price (y) 

2104 4.5 

1416 3.5 

1534 3.2 

852 1.6 

 

Our objective is to find the equation y= ax+b that fits with the cloud points. 

• Calculate a and b? 

• Calculate the correlation indicator? 

• Indicate whether the equation found is accurate ? 

Do the same work using gradient descent. Compare your prediction results with the python 

machine learning code. 

Activity 3 

In the first part of this exercise, we'll build a logistic regression model to predict whether a 

student gets admitted to a university.  

Suppose that you are the administrator of a university department, and you want to determine 

each applicant's chance of admission based on their results on two exams. You have historical 

data from previous applicants that you can use as a training set for logistic regression. For each 

training example, you have the applicant's scores on two exams and the admissions decision.  

To accomplish this, we're going to build a classification model that estimates the probability of 

admission based on the exam scores. 

Let's start by examining the data : 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

%matplotlib inline 

import os 

path = os.getcwd() + '\data\ex2data1.txt' 

data = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 

'Admitted']) 

data.head() 
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Let's create a scatter plot of the two scores and use color coding to visualize if the example is 

positive (admitted) or negative (not admitted). 

positive = data[data['Admitted'].isin([1])] 

negative = data[data['Admitted'].isin([0])] 

 

fig, ax = plt.subplots(figsize=(12,8)) 

ax.scatter(positive['Exam 1'], positive['Exam 2'], s=50, c='b', 

marker='o', label='Admitted') 

ax.scatter(negative['Exam 1'], negative['Exam 2'], s=50, c='r', 

marker='x', label='Not Admitted') 

ax.legend() 

ax.set_xlabel('Exam 1 Score') 

ax.set_ylabel('Exam 2 Score') 

 

 

It looks like there is a clear decision boundary between the two classes. Now we need to 

implement logistic regression so we can train a model to predict the outcome.  

First, we need to create a sigmoid function. The code for this is simple. 

def sigmoid(z): 

    return 1 / (1 + np.exp(-z)) 

Let's do a quick sanity check to make sure the function is working. 

nums = np.arange(-10, 10, step=1) 
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fig, ax = plt.subplots(figsize=(12,8)) 

ax.plot(nums, sigmoid(nums), 'r') 

 

Now we need to write down the cost function to evaluate a solution. 

def cost(theta, X, y): 

    theta = np.matrix(theta) 

    X = np.matrix(X) 

    y = np.matrix(y) 

    first = np.multiply(-y, np.log(sigmoid(X * theta.T))) 

    second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) 

    return np.sum(first - second) / (len(X)) 

 

Now we need to do some setup, like what we did in exercise 1 for linear regression. 

# add a ones column - this makes the matrix multiplication work out 

easier 

data.insert(0, 'Ones', 1) 

 

# set X (training data) and y (target variable) 

cols = data.shape[1] 

X = data.iloc[:,0:cols-1] 

y = data.iloc[:,cols-1:cols] 

 

# convert to numpy arrays and initalize the parameter array theta 

X = np.array(X.values) 

y = np.array(y.values) 

theta = np.zeros(3) 

 
Let's quickly check the shape of our arrays to make sure everything looks good. 

X.shape, theta.shape, y.shape 

Now let's compute the cost for our initial solution (0 value for theta). 

cost(theta, X, y) 
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Looks good. Next, we need a function to compute the gradient (parameter updates) given 

our training data, labels, and some parameters theta. 

def gradient(theta, X, y): 

    theta = np.matrix(theta) 

    X = np.matrix(X) 

    y = np.matrix(y) 

    parameters = int(theta.ravel().shape[1]) 

    grad = np.zeros(parameters) 

 

    error = sigmoid(X * theta.T) - y 

 

    for i in range(parameters): 

        term = np.multiply(error, X[:,i]) 

        grad[i] = np.sum(term) / len(X) 

    return grad 

Note that we don't perform gradient descent in this function - we just compute a single 

gradient step. In the exercise, an Octave function called "fminunc" is used to optimize the 

parameters given functions to compute the cost and the gradients. Since we're using Python, 

we can use SciPy's "optimize" namespace to do the same thing. 

Let's look at a single call to the gradient method using our data and initial parameter values 

of 0. 

gradient(theta, X, y) 

Now we can use SciPy's truncated newton (TNC) implementation to find the optimal 

parameters. 

import scipy.optimize as opt 

result = opt.fmin_tnc(func=cost, x0=theta, fprime=gradient, 

args=(X, y)) 

result 

Let's see what our cost looks like with this solution. 

cost(result[0], X, y) 

cost(result[0], X, y) 

Next, we need to write a function that will output predictions for a dataset X using our learned 

parameters theta. We can then use this function to score the training accuracy of our classifier. 

def predict(theta, X): 

    probability = sigmoid(X * theta.T) 

    return [1 if x >= 0.5 else 0 for x in probability] 
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theta_min = np.matrix(result[0]) 

predictions = predict(theta_min, X) 

correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 

for (a, b) in zip(predictions, y)] 

accuracy = (sum(map(int, correct)) % len(correct)) 

print 'accuracy = {0}%'.format(accuracy) 

Our logistic regression classifier correctly predicted if a student was admitted or not 89% of 

the time. Not bad! Keep in mind that this is training set accuracy though. We didn't keep a 

hold-out set or use cross-validation to get a true approximation of the accuracy so this number 

is likely higher than its true performance (this topic is covered in a later exercise). 
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Lab 3 : Random Forest (Supervised learning) 

Activity 1 

Loading the dataset into a pandas dataframe 

import numpy as np 

import pandas as pd 

df = pd.read_csv('diabetes.csv') 

df.head() #Display the first 5 lines 

 

We separate the properties/labels and extract only the values from the frame 

columns = ['Pregnancies', 'Glucose', 'BloodPressure', 

'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 

'Age'] 

labels = df['Outcome'].values 

features = df[list(columns)].values 

At this step , we have two arrays 

Labels = labels (values only) 

Features = properties only 

The next step is to split the data into training and test samples 

train_test_split = the function asked to split the data and takes the three-parameter matrices 

features and labels and then the size of the test sample 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(features, 

labels, test_size=0.30) 

 

The results from the previous operation are four matrices 

x_train = training matrix for properties 

y_train = training matrix for attributes 

X_test = the test matrix for properties 
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y_test = the test matrix for labels 

Almost everything is ready for data and data engineering. 

Now there are two important steps 

1- Initialize the model (in this case we chose Random Forest) 

2- Train the model by passing the two training matrices (properties and labels) 

 

clf = RandomForestClassifier(n_estimators=1) 

clf = clf.fit(X_train, y_train) 

 

We evaluate the performance of the model by calculating the accuracy as follows : 

accuracy = clf.score(X_train, y_train) 

print(accuracy*100) 

accuracy = clf.score(X_test, y_test) 

print(accuracy*100) 

confusion matrix and classification report for the testing sample 

from sklearn.metrics import classification_report 

from sklearn.metrics import confusion_matrix 

ypredict = clf.predict(X_train) 

print('\nTraining classification report\n', 

classification_report(y_train, ypredict)) 

print("\n Confusion matrix of training \n", 

confusion_matrix(y_train, ypredict)) 

ypredict = clf.predict(X_test) 

print '\nTraining classification report\n', 

classification_report(y_test, ypredict) 

print "\n Confusion matrix of training \n", confusion_matrix(y_test, 

ypredict) 

 

Activity 2 

In the code below we use a Random Forest Classifier to analyze the Titanic dataset. The 

Random Forest Classifier learns from the training data and is tested on the test set and we 

evaluate the model's performance using a classification report to see how well it predicts the 

outcomes and used a random sample to check model prediction. 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, classification_report 

import warnings 

warnings.filterwarnings('ignore') 

# Corrected URL for the dataset 
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url = 

"https://raw.githubusercontent.com/datasciencedojo/datasets/master/t

itanic.csv" 

titanic_data = pd.read_csv(url) 

# Drop rows with missing 'Survived' values 

titanic_data = titanic_data.dropna(subset=['Survived']) 

# Features and target variable 

X = titanic_data[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare']] 

y = titanic_data['Survived'] 

# Encode 'Sex' column 

X.loc[:, 'Sex'] = X['Sex'].map({'female': 0, 'male': 1}) 

# Fill missing 'Age' values with the median 

X.loc[:, 'Age'].fillna(X['Age'].median(), inplace=True) 

# Split data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

# Initialize RandomForestClassifier 

rf_classifier = RandomForestClassifier(n_estimators=100, 

random_state=42) 

# Fit the classifier to the training data 

rf_classifier.fit(X_train, y_train) 

# Make predictions 

y_pred = rf_classifier.predict(X_test) 

# Calculate accuracy and classification report 

accuracy = accuracy_score(y_test, y_pred) 

classification_rep = classification_report(y_test, y_pred) 

# Print the results 

print(f"Accuracy: {accuracy:.2f}") 

print("\nClassification Report:\n", classification_rep) 

# Sample prediction  

sample = X_test.iloc[0:1]  # Keep as DataFrame to match model input 

format 

prediction = rf_classifier.predict(sample) 

# Retrieve and display the sample 

sample_dict = sample.iloc[0].to_dict() 

print(f"\nSample Passenger: {sample_dict}") 

print(f"Predicted Survival: {'Survived' if prediction[0] == 1 else 

'Did Not Survive'}") 

The output of the program : 

Accuracy: 0.80 

Classification Report: 

               precision    recall  f1-score   support 

           0       0.82      0.85      0.83       105 

           1       0.77      0.73      0.75        74 

  Sample Passenger: {'Pclass': 3, 'Sex': 1, 'Age': 28.0, 'SibSp': 1, 

'Parch': 1, 'Fare': 15.2458}  

Predicted Survival: Did Not Survive 
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Activity 3 

 

Advantages of Random Forest3 

• Random Forest provides very accurate predictions even with large datasets. 

• Random Forest can handle missing data well without compromising with accuracy. 

• It doesn’t require normalization or standardization on datasets. 

• When we combine multiple decision trees it reduces the risk of overfitting the model. 

Limitations of Random Forest 

• It can be computationally expensive especially with a large number of trees. 

• It’s harder to interpret the model compared to simpler models like decision trees. 
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Lab 4 : K-means(Unsupervised learning) 

Activity 1 

Here’s a simple example of how to use the K-means algorithm to cluster students based on their 

study hours and exam scores. 

Suppose you have data on students’ study hours and their scores on an exam according to their 

hours of study. Let us group in cluster them to identify patterns in study habits and performance. 

The dataset contains a couple of study hours and corresponding exam scores. The aim is to 

identify the different clusters.  

This example helps visualize how students with similar study habits perform similarly on 

exams.  

Study hours Score 

2 50 

3 60 

5 80 

8 90 

1 40 

4 70 

6 85 

7 88 

5 75 

2 55 

Here is the python code: 

First, we import useful libraries 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.cluster import KMeans 

Load the data 

data = np.array([ 

    [2, 50], 

    [3, 60], 

    [5, 80], 

    [8, 90], 

    [1, 40], 

    [4, 70], 

    [6, 85], 

    [7, 88], 

    [5, 75], 

    [2, 55], 

]) 
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Now, we apply the algorithm to find 3 clusters 

kmeans = KMeans(n_clusters=3, random_state=0) 

kmeans.fit(data) 

y_kmeans = kmeans.predict(data) 

we plot the results 

plt.scatter(data[:, 0], data[:, 1], c=y_kmeans, s=100, 

cmap='viridis') 

centers = kmeans.cluster_centers_ 

plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, 

alpha=0.75, marker='X') 

plt.title('Student Clustering: Study Hours vs Exam Scores') 

plt.xlabel('Study Hours') 

plt.ylabel('Exam Scores') 

plt.grid() 

plt.show() 

 

 

Activity 2 
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Lab 5 : KNN(Supervised learning) 

1/ Introduction 

This lab provides a general overview on how to build and evaluate a supervised learning 

algorithm such as classification. We focus on the KNN algorithm. 

 

2/ Learning Objectives 

• Train and test data 

• Making predictions 

• Evaluating predictions 

3/ Programming steps  

To implement these 3 steps in Python, we need to take the following steps: 

• Import all the necessary libraries. 

• Preparing the DataSet. The machine receives data characterized by X variables 

(called features) and annotated with a y variable (called a label or target). 

• Select the model (or estimator) the machine needs to learn, specifying the model's 

hyperparameters (KNeighborsClassifier). 

• Train the model on data X and Y :  model.fit(X,Y) 

• Evaluate the model : model.score(X,Y) 

• Use the model : model.predict(x) 

4/ Software tools 

You install anaconda (https://www.anaconda.com/), which is the best environment 

for machine learning coding and the sklearn library. If you use just Jupyter or 

spyder, you have to install the appropriate libraries. 

Duration: 2 hours (+ 2 hours homework) 

----------------------------------------------- Activities ----------------------------------------- 

Activity 1 

Suppose we have the height, weight and T-shirt size of some customers and we need to predict 

the T-shirt size of a new customer based only on the height and weight information we have. 

The height, weight and T-shirt size data are shown below. 

Height (in cm) Weight (in kgs) T Shirt Size 

158 58 M 

158 59 M 
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158 63 M 

160 59 M 

160 60 M 

163 60 M 

163 61 M 

160 64 L 

163 64 L 

165 61 L 

165 62 L 

165 65 L 

168 62 L 

168 63 L 

168 66 L 

170 63 L 

170 64 L 

170 68 L 

1. Create the KNN model in Python with two different solutions : the first using 

the sklearn library, the second without using sklearn. 

2. Predict the size of the T Shirt for values not belonging to the dataset. 

 

Activity 2 

Consider a regression problem that generates a real numerical value (1; 3.5; 7.2) as an output. 

For example, the table below estimates the age of a crab (decimal value label) as a function 

of its width and mass (predictors). 

 

 

Width Mass Age 
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Create a jupyter notebook to predict new values (width and mass) using the KNN algorithm. 

(The first step is to run the algorithm manually). 

 

Activity 3 

 

This activity concerns the IRIS classification using KNN. 

 

In the activity shown above the following steps are performed: 

1. The k-nearest neighbor algorithm is imported from the scikit-learn package. 

2. Create features and target variables. 

3. Split data into training and test data. 

4. Generate a k-NN model using neighbors value. 

5. Train or fit the data into the model. 

6. Predict the future. 

 

  
 

First, we import the libraries to: 

import pandas as pd 

from sklearn.datasets import load_iris 

iris = load_iris() 

 

Now, we display dataset features : 

 

iris.feature_names 

 
iris.target_names 

array(['setosa', 'versicolor', 'virginica'], dtype='<U10') 
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The dataset in a dataframe : 

 
df = pd.DataFrame(iris.data,columns=iris.feature_names) 

df.head() 

 

df['target'] = iris.target 

df.head() 

 

df[df.target==1].head() 

 

df[df.target==2].head() 

 

df['flower_name'] =df.target.apply(lambda x: iris.target_names[x]) 

df.head() 

 



Dr. H. EL BOUHISSI BRAHAMI          Machine learning for Big Data                     Page 108 

df[45:55] 

 

 

 

 

 

 

 

Train test split 

from sklearn.model_selection import train_test_split 

X = df.drop(['target','flower_name'], axis='columns') 

y = df.target 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=1) 

len(X_train) 

120 

len(X_test) 

30 

Create KNN (K Neighrest Neighbour Classifier) 

from sklearn.neighbors import KNeighborsClassifier 

knn = KNeighborsClassifier(n_neighbors=10) 

knn.fit(X_train, y_train) 

knn.score(X_test, y_test) 

knn.predict([[4.8,3.0,1.5,0.3]]) 

array([0]) 

 

Plot Confusion Matrix 

from sklearn.metrics import confusion_matrix 

y_pred = knn.predict(X_test) 

cm = confusion_matrix(y_test, y_pred) 

cm 

array([[11,  0,  0], 

       [ 0, 12,  1], 

       [ 0,  0,  6]], dtype=int64) 

 

Print classification report for precision, recall and f1-score for 

each class 

from sklearn.metrics import classification_report 

print(classification_report(y_test, y_pred)) 

 

Activity 4 
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Imagine we want to classify a new fruit based on its characteristics. We have a dataset of fruits 

with features such as weight, color, and sweetness, and we want to classify a new fruit as either 

"Apple," "Orange," or "Banana." 

You have a table of fruits with the following characteristics: 

Fruit Weight (g) Color Sweetness (1-10) 

Apple 150 Red 7 

Apple 160 Red 8 

Orange 130 Orange 6 

Orange 140 Orange 5 

Banana 120 Yellow 9 

Banana 125 Yellow 8 

We want to classify a new fruit (that does not belong to the dataset) with the KNN algorithm:  

Fruit Weight (g) Color Sweetness (1-10) 

? 145 Orange 7 

This example illustrates how the KNN algorithm classifies a new data point by examining its 

nearest neighbors in the feature space. By calculating distances and using majority voting, KNN 

can effectively categorize data based on similarity. 

Let’s start……… 

We use a distance metric (e.g., Euclidean distance) to measure how similar the new fruit is to 

each fruit in the dataset. 

For each fruit, we calculate the distance to the new fruit based on the features: 

- Distance to Apple (150, Red, 7):  

     d = \sqrt{(145-150)^2 + (0-1)^2 + (7-7)^2} = \sqrt{25 + 1 + 0} = \sqrt{26} \approx 5.1 

- Distance to Orange (130g, Orange, 6):  

     d = \sqrt{(145-130)^2 + (0-1)^2 + (7-6)^2} = \sqrt{225 + 1 + 1} = \sqrt{227} \approx 15.1 

- Distance to Orange (140g, Orange, 5):  

     d = \sqrt{(145-140)^2 + (0-1)^2 + (7-5)^2} = \sqrt{25 + 1 + 4} = \sqrt{30} \approx 5.5 

- Distance to Banana (120g, Yellow, 9):  

     d = \sqrt{(145-120)^2 + (0-1)^2 + (7-9)^2} = \sqrt{625 + 1 + 4} = \sqrt{630} \approx 25.1 

- Distance to Banana (125, Yellow, 8):  

    d = \sqrt{(145-125)^2 + (0-1)^2 + (7-8)^2} = \sqrt{400 + 1 + 1} = \sqrt{402} \approx 20.0 

Now, after calculating distances, we list the results in order from smallest to largest: 

     - Apple 1 (5.1) 
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     - Orange 2 (5.5) 

     - Apple 2 (6.4) 

     - Orange 1 (15.1) 

     - Banana 1 (25.1) 

     - Banana 2 (20.0) 

Choose the number of neighbors (k). For example, we choose k = 3. 

The closest 3 neighbors are : Apple, Orange, Orange, so the majority class among these 

neighbors is Orange. 

Finally, the new fruit is classified as Orange according to the obtained results (The nearest 

neighbors). 

Here is the python code : 

from sklearn.neighbors import KNeighborsClassifier 

import numpy as np 

# Features: [Weight (grams), Color (1=Red, 2=Orange, 3=Yellow), 

Sweetness (1-10)] 

# Labels: 0=Apple, 1=Orange, 2=Banana 

data = np.array([ 

    [150, 1, 7],  # Apple 

    [160, 1, 8],  # Apple 

    [130, 2, 6],  # Orange 

    [140, 2, 5],  # Orange 

    [120, 3, 9],  # Banana 

    [125, 3, 8],  # Banana 

]) 

 

labels = np.array([0, 0, 1, 1, 2, 2]) 

 

# Train the KNN classifier 

knn = KNeighborsClassifier(n_neighbors=3)  # k=3 

knn.fit(data, labels) 

 

# New fruit to classify: [Weight, Color, Sweetness] 

new_fruit = np.array([[145, 2, 7]]) 

 

# Predict the class of the new fruit 

prediction = classifier.predict(new_fruit) 

class_names = ["Apple", "Orange", "Banana"] 

print(f"The new fruit is classified as: 

{class_names[prediction[0]]}") 
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Appendix A 

Anaconda & Jupyter Notebook Installation Guide 

Lecture Notes 
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A.1. Introduction  

The Jupyter Notebook is an open-source web application for creating and sharing 

documents that contain code, equations, visualizations, and narrative text. Jupyter 

supports different programming languages (for over 40 with Python). This guide 

will focus on using Python, as it is the most common language used in data science 

and for our labs. 

This tutorial will explain step-by-step how to install Jupyter Notebook locally and 

create a first file. We explain here to a beginner how to install jupyter and work with 

the main features. 

Essentially, Jupyetr works with notebooks. A Notebook is a document that combines 

code and its output seamlessly. It allows to run code, display the results, and add 

explanations, formulas, and charts all in one place. This makes work more 

transparent, understandable, and reproducible and it is particularly beneficial for 

education and project presentations. 

Jupyter Notebooks have become an essential part of the data science workflow in 

companies and organizations worldwide. They enable data scientists to explore data, 

test hypotheses, and share insights efficiently. 

As an open-source project, Jupyter Notebooks are completely free. You can 

download the software directly from the Project Jupyter website or as part of 

the Anaconda data science toolkit. 

If your goal is to work with data, using Jupyter Notebooks will streamline your 

workflow and make it easier to communicate and share your results. 

A.2. Installation 

The easiest way for a beginner to get started with Jupyter Notebooks is by installing 

Anaconda. Anaconda is the most widely used Python distribution for data science 

and comes pre-loaded with all the most popular libraries and tools. 

Some of the biggest Python libraries included in Anaconda are : Numpy, pandas, 

and Matplotlib, and many other useful librairies. 

https://pandas.pydata.org/
https://matplotlib.org/
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Anaconda is available on https://www.anaconda.com/download/ , download the 

laster version. Installing Anaconda on our computer is very easy, follow the 

instructions on the download page and/or in the executable. 

 

Figure : Anaconda Interface Screenshot 

However, if you don’t need Anaconda et you are an advanced python programmer, 

and you have already installed python on your system, and you prefer to manage the 

useful packages manually, you use from your terminal : use pip3  to install any 

package. 

For example , use this line to install jupyter : pip3 install jupyter 

Note that Python is a requirement (Python 3.3 or greater, or Python 2.7) for 

installing the Jupyter Notebook itself (if Python is not installed before). 

A.3. Creating a First Notebook 

In this section, we’re going to learn to run and save notebooks, familiarize ourselves 

with their structure, and understand the interface. We’ll define some core 

terminology that will steer you towards a practical understanding of how to use 

Jupyter Notebooks by yourself and set us up for the next section, which walks 

through an example data analysis and brings everything we learn here to life. 

https://www.anaconda.com/download/
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On Windows, you can run Jupyter via the shortcut Anaconda adds to your start 

menu, which will open a new tab in your default web browser that should look 

something like the following screenshot: 

 

Figure : Jupyter Interface Screenshot 

A.3.1. What is an ipynb File? 

Each .ipynb file is a notebook, so each time you create a new notebook, a new .ipynb 

file will be created. Each .ipynb file is a text file that describes the contents of your 

notebook in a format called JSON. Each cell and its contents, including image 

heads, links. 

To create a new notebook, click on the new button at the top right corner. Click it to 

open a drop-down list and then if you click on Python3, it will open a new notebook 

(see the figure below) 

 

Figure : Creating a new Notebook 
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The web page should look like this: 

  

Figure : First Notebook (MyFirstFile.ipynb) 

After successfully installing and creating a notebook in Jupyter Notebook, let’s see 

how to write code in it. Jupyter notebook provides a cell for writing code in it. The 

type of code depends on the type of notebook you created.  

For example, if you create a Python3 notebook then you can write Python3 code in the cell. 

Now, let’s add the following code which displays the message Hello World as output :: 

print("Hello World") 

We save our file and name it MyFirstFile.ipynb (File → Save as). 

To run a cell either click the run button or press shift ⇧ + enter ⏎ after selecting the 

cell you want to execute. After writing the above code in the jupyter notebook, the 

output was:Note: When a cell has executed the label on the left i.e. ln[] changes to 

ln[1]. If the cell is still under execution the label remains ln[*]. 

 

Figure : Running step 

A.3.2. Cells in Jupyter Notebook 

Cells can be considered as the body of the Jupyter. In the above screenshot, the box 

with the green outline is a cell.  

There are 3 types of cells: code, Markup and Raw NBConverter. 

Put here the code 
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Figure : Cells in Jupyter Notebook 

• Code 

This is where the code is typed and when executed the code will display the output 

below the cell. The type of code depends on the type of notebook you have created.  

For example, if the notebook of Python3 is created then the code of Python3 can be 

added.  

• Markup 

Markdown is a popular markup language that is the superset of HTML. Jupyter 

Notebook also supports markdown. The cell type can be changed to markdown 

using the cell menu. 

Heading can be added by prefixing any line by single or multiple ‘#’ followed by 

space.  

Example : 

Input Output 

 

 

In addition, adding List is simple in Jupyter Notebook. The list can be added by 

using ‘*’ sign. And the Nested list can be created by using indentation.  

 

Example : 
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Input Output 

 

 

Latex expressions can be added by surrounding the latex code by ‘$’ and for writing 

the expressions in the middle, surrounds the latex code by ‘$$’. 

Example: 

Input Output 

 

 

A table can be added by writing the content in the following format. 

Input Output 

 

 

The text can be made bold or italic by enclosing the text in ‘**’ and ‘*’ respectively. 
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A.3.3. Kernel 

A kernel runs behind every notebook. Whenever a cell is executed, the code inside 

the cell is executed within the kernel and the output is returned to the cell to be 

displayed. The kernel continues to exist to the document as a whole and not for 

individual cells.  

For example, if a module is imported into one cell then, that module will be 

available for the whole document. See the below example for better understanding.  

Example: 

 

Figure : Cells in Jupyter Notebook 

The order of execution of each cell is stated to the left of the cell. In the above 

example, the cell with In[1] is executed first then the cell with In[2] is executed.  

Jupyter Notebook provides various options for kernels. This can be useful if you 

want to reset things: 

• Restart: to restart the kernels and clear all the variables that were defined, 

clearing the modules that were imported, etc. 

• Restart and Clear Output: This will do the same as above but will also clear 

all the output that was displayed below the cell. 

• Restart and Run All: This is also the same as above but will also run all the 

cells in the top-down order. 
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• Interrupt: This option will interrupt the kernel execution. It can be useful in 

the case where the programs continue for execution, or the kernel is stuck 

over some computation. 

A.3.3. Lunch a Notebook 

To launch a Jupyter notebook, open your terminal and navigate to the directory 

where you would like to save your notebook. Then type the command jupyter 

notebook and the program will instantiate a local server at localhost:8888 (or 

another specified port). 

A browser window should immediately pop up with the Jupyter Notebook interface, 

otherwise, you can use the address it gives you. The notebooks have a unique token 

since the software uses pre-built Docker containers to put notebooks on their own 

unique path. To stop the server and shut down the kernel from the terminal, 

hit control-C twice. 

Jupyter Notebook files are very useful. You can navigate the interface using your 

mouse with menus and buttons or use keyboard shortcuts. They let you run small 

pieces of code, save your progress, or restart resetting everything. 

Besides running code, you can use Markdown to organize your notebook and make 

it look neat and clear for others. 

If you want to learn more, check out the Jupyter Notebook documentation. You can 

also try a notebook in your browser at https://try.jupyter.org/. 

 

 

 

https://try.jupyter.org/
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Appendix B 

Useful Python librairies for Machine Leanring 

Lecture Notes 
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B.1. Introduction 

Python has become the leading programming language for Machine Learning and 

Data Science due to its simplicity, flexibility, and vast ecosystem of libraries. It 

provides powerful tools to handle large datasets, build predictive models, and 

automate decision-making processes. 

One of Python’s biggest advantages is its extensive collection of open-source 

libraries such as NumPy, Pandas, Scikit-Learn, TensorFlow, and PyTorch. These 

libraries allow developers to efficiently perform data preprocessing, model training, 

and evaluation with minimal effort. 

Python’s strong community support, combined with its integration with big data 

technologies and cloud platforms, makes it an essential tool for modern AI 

applications. Whether for image recognition, fraud detection, or medical diagnosis, 

Python empowers businesses and researchers to extract valuable insights from data 

and build intelligent systems. 

We present here the main useful python librairies to start a machine leanring project. 

B.2. NumPy 

NumPy is a widely used Python library for handling multi-dimensional arrays and 

matrices, offering a broad range of mathematical operations. Its ability to perform 

linear algebra, Fourier transforms, and other numerical computations make it a 

valuable tool for machine learning and AI applications. With its efficient matrix 

manipulation capabilities,  

NumPy helps enhance machine learning performance. Additionally, it is faster and 

more user-friendly compared to many other Python libraries. 

B.3. Scikit-learn 

Scikit-learn is a widely used machine learning library built on NumPy and SciPy. It 

provides support for a variety of supervised and unsupervised learning algorithms 

and is also useful for data mining, modeling, and analysis.  

With its intuitive design and easy-to-use interface, Scikit-learn is an excellent choice 

for beginners in machine learning. 
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B.4. Pandas 

Pandas is a powerful Python library built on NumPy, designed for handling and 

preparing high-level datasets for machine learning and training. It is based on two 

key data structures: Series (one-dimensional) and DataFrame (two-dimensional), 

making it highly versatile.  

Pandas is widely used across various fields, including finance, engineering, and 

statistics. Despite sharing its name with a slow-moving animal, the Pandas library is 

fast, efficient, and highly flexible. 

B.5. TensorFlow 

TensorFlow is an open-source Python library designed for differentiable 

programming, allowing it to automatically compute function derivatives within a 

high-level language. It provides a flexible architecture and framework, making it 

easy to develop and evaluate both machine learning and deep learning models.  

Additionally, TensorFlow supports model visualization and can be used across 

desktop and mobile platforms. 

B.6. Seaborn 

Seaborn is an open-source Python library built on top of Matplotlib (which focuses 

on plotting and data visualization) and integrates with Pandas data structures. It is 

frequently used in machine learning projects for generating visualizations of 

learning data.  

Known for creating the most aesthetic and visually appealing plots among Python 

libraries, Seaborn is an excellent choice for not only data analysis but also marketing 

and presentation purposes. 

B.7. Theano 

Theano is a Python library designed for numerical computation, with a specific 

focus on machine learning. It specializes in optimizing and evaluating mathematical 

models and matrix operations that involve multi-dimensional arrays, which are 

essential for building machine learning models.  
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Theano is primarily used by machine learning and deep learning developers or 

programmers. 

B.8. Keras 

Keras is a Python library specifically built for developing neural networks in 

machine learning models. It operates on top of Theano and TensorFlow to train 

neural networks.  

Known for its flexibility, portability, and ease of use, Keras can be seamlessly 

integrated with a variety of functions. 

B.9. PyTorch 

PyTorch is an open-source machine learning Python library built on the Torch 

framework, which is based on the C programming language. It is primarily used in 

machine learning applications that involve natural language processing or computer 

vision.  

PyTorch is recognized for its exceptional speed in handling large, dense datasets and 

processing complex graphs. 

B.10. Matplotlib 

Matplotlib is a Python library focused on data visualization and primarily used for 

creating beautiful graphs, plots, histograms, and bar charts. It is compatible with 

plotting data from SciPy, NumPy, and Pandas. If you have experience using other 

types of graphing tools, Matplotlib might be the most intuitive choice for you. 

 



Conclusion 

 

In this course, we have explored the foundational concepts of Machine Learning and its 

practical applications using Python. We began with an introduction to key supervised and 

unsupervised learning algorithms like Linear Regression, Logistic Regression, Decision Trees, 

and K-Means Clustering, which are essential tools for building predictive models. We also 

delved into ensemble methods such as Random Forest and Boosting, which enhance model 

accuracy by combining multiple learners. 

Through hands-on Python labs, we gained valuable experience using libraries like NumPy, 

Pandas, Scikit-learn, and TensorFlow, which provide powerful tools for data manipulation, 

model training, and evaluation. These labs reinforced our understanding of data preprocessing, 

feature selection, and model performance assessment techniques. 

By the end of this course, you should feel confident applying machine learning techniques to 

real-world datasets, improving your ability to solve complex problems in fields such as finance, 

healthcare, and marketing. The next steps involve expanding your knowledge to advanced 

topics like deep learning and reinforcement learning, where Python continues to be a valuable 

tool for building intelligent systems. 

In conclusion, Python's rich ecosystem, combined with the theoretical concepts and practical 

skills we've covered, equips you to begin your journey as a machine learning practitioner. Keep 

experimenting, learning, and applying these techniques to refine your skills further. 
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