
UNIVERSITY OF BEJAIA

PRACTICAL WORK SUPPORT

Computer Architecture
Programming in MIPS R3000 assembly

language

Author:
Louiza BELKHIRI

Educational document intended for
computer science students

Speciality: Computer Science

Level: Second year of undergraduate studies (Licence 2)

in the

Department of Computer Science

Faculty of Exact Sciences

University of Bejaia

2024/2025

http://www.university.com
http://department.university.com
http://faculty.university.com
http://www.university.com

i

Contents

Contents i

List of Figures iv

List of Tables v

List of Abbreviations vi

Introduction 1

1 MIPS R3000 assembly language overview 3
1.1 Introduction . 3
1.2 MIPS computer Architecture . 3

1.2.1 Memory organization . 4
1.2.2 Memory addressing . 6
1.2.3 Instruction set [8, 4, 3, 6] . 6

1.3 MIPS R3000 instruction operands . 10
1.3.1 General purpose registers . 10
1.3.2 Immediate values . 12
1.3.3 Labels . 12

1.4 SYNTAX of a MIPS R3000 assembly program 13
1.4.1 Program structure . 13
1.4.2 Comments . 14
1.4.3 Directives . 14
1.4.4 Macro instructions . 18
1.4.5 Input/Output operations . 19

1.5 Conclusion . 20

2 Presentation of the working environment: SIMIPS emulator 21
2.1 Introduction . 21
2.2 Tools needed to develop and run a program written in assembly language 22

Contents Contents

2.2.1 Text Editor . 22
2.2.2 The Assembler . 22
2.2.3 The linker [2] . 23
2.2.4 The loader . 23
2.2.5 The debugger . 24
2.2.6 Popular IDEs and simulators for MIPS R3000 Programming . . . 24

2.3 Getting started with the SIMIPS emulator and presentation of the main
interfaces . 25
2.3.1 Launching the software . 26
2.3.2 Step 1: Entering the program in the editor (R3000-Editor) 26
2.3.3 Step 2 : Assembly and code generation 27
2.3.4 Step 3: Loading the program into the simulator 29
2.3.5 Step 4: Executing the Program . 31

2.4 Conclusion . 32

3 Series of practical exercises 33
3.1 Introduction . 33
3.2 PW N°1 : Write and execute your first MIPS R3000 assembly program . 34

3.2.1 Step 1: Enter the following program in the editor (R3000-Editor) 34
3.2.2 Step 2: Assembly and code generation 34
3.2.3 Step 3: Loading the program into the simulator 35
3.2.4 Step 4: Executing the Program . 35
3.2.5 Comparison between MIPS and Von Neumann registers 35

3.3 PW N °2: Arithmetic and logical instructions 36
3.3.1 Exercise 1: Discovery of an example of an arithmetic instruction . 36
3.3.2 Exercise 2: Discovery of an example of a logical instruction 37
3.3.3 Exercise 3: Discovery of the instruction "lui" (load Upper Imme-

diate) . 37
3.3.4 Exercise 4 (Comprehension Test and some uses of the instruc-

tions seen previously) . 38
3.4 PW N°3: Input/output instructions . 39

3.4.1 Introduction . 39
3.4.2 Exercise 1 (Writing an integer: System call Number 1) 39
3.4.3 Exercise 2 (Reading an integer from the keyboard: System call

Number 5) . 40
3.4.4 Exercise 3 (Displaying a string: System call number 4) 40
3.4.5 Exercise 4 (Understanding Test) 41

3.5 PW N°4: Memory (Load/store) instructions 42

ii

Contents Contents

3.5.1 Exercise 1: Discovery of load word instruction 43
3.5.2 Exercise 2: Discovery of store word instruction 43
3.5.3 Exercise 3: Example of memory instruction application 44
3.5.4 Exercise 4 (Optional): Memory reading Instructions (Load) 44
3.5.5 Exercise 5 (Optional): Memory Write Instructions (Store) 46

3.6 PW N°5 : Conditional and unconditional branch instructions 48
3.6.1 Exercise 1: The simple alternative instruction "if..then" and the

double alternative "if..then..else" 48
3.6.2 Exercise 2: Example of an iterative instruction "the While loop" . 49
3.6.3 Exercise 3: Example of a program with branching instructions . 50
3.6.4 Exercise 4: Example of exercise on arrays 51
3.6.5 Exercise 5 (optional): Conversion of a decimal number to binary 51

3.7 Conclusion . 52

Conclusion 53

Bibliography 55

iii

iv

List of Figures

1.1 MIPS computer architecture [6] . 4
1.2 Partitions of MIPS R3000 memory [4] . 5
1.3 Overall structure of a MIPS R3000 program 13
1.4 An example of data representation in memory 18

2.1 SIMIPS launching interface . 26
2.2 SIMIPS windows . 26
2.3 SIMIPS editor interface . 27
2.4 Assembly and code generation interface 28
2.5 Error message interface . 28
2.6 Success message interface . 29
2.7 Access interface to the simulator from the editor 30
2.8 Simulator interface . 30
2.9 Loading program interface . 31
2.10 Executing program interface . 31
2.11 Registers initialization interface . 32

3.1 Window for displaying an integer on screen 39
3.2 Dialog box for the reading of an integer from the keyboard 40
3.3 Representation of the main memory in SIMIPS environment 42

v

List of Tables

1.1 MIPS R3000 memory sections description [3] 5
1.2 Table of Branch instructions of MIPS R3000 7
1.3 Table of Arithmetic and Logical Operations of MIPS R3000 (ALU Trans-

fer instructions) . 7
1.4 Table of Arithmetic and Logical Operations of MIPS R3000 8
1.5 Table of memory instructions of MIPS R3000 9
1.6 Table of system instructions of MIPS R3000 9
1.7 Register Conventions in MIPS R3000 . 10
1.8 Table of macro instructions of MIPS R3000 19
1.9 Descriptive table of MIPS R3000 system calls 19

3.1 Comparison between MIPS and a Von Neumann machine registers . . . 35
3.2 System calls in MIPS R3000 . 39

vi

List of Abbreviations

A

ASCII American Standard Code for Information Interchange

ASCIIZ American Standard Code for Information Interchange with Zero

ALU Arithmetic and Logic Unit

C

CPU Central Processing Unit

CR Cause Register

H

Hi High Register

I

I Immediate

IDE Integrated Development Environment

I/O Input/output

L

Lo LOw Register

LSb Least Significant bit

LSB Least Significant Byte

M

Mac OS Macintosh Operating System

MARS MIPS Assembler and Runtime Simulator

MIPS Microprocessor without Interlocked Pipeline Stages

MSb Most Significant bit

MSB Most Significant Byte

P

List of Abbreviations List of Abbreviations

PC Program Counter

PW Particle Work

Q

QTSPIM Qt framework with the SPIM simulator

R

RD Register Destination

RS Register Source

S

sh shift amount

SIMIPS Simulator for Microprocessor without Interlocked Pipeline Stages

SPIM Simulator for Processing Interactive MIPS

SR Status Register

vii

1

Introduction

The study of computer architecture and assembly language programming is an essen-
tial part of a computer science curriculum, as it provides students with a deep un-
derstanding of how software interacts with hardware. This knowledge is critical for
writing efficient programs, understanding system-level operations, and preparing for
advanced areas such as operating systems, compilers, and embedded development.

This document serves as a practical guide for the computer architecture module
aimed at second-year computer science students. Its primary objective is to intro-
duce students to programming in the MIPS R3000 assembly language. By providing
a structured approach to learning, this resource enables students to understand the
fundamental concepts of assembly programming, including instruction sets, memory
management, and processor operations.

Through assembly programming, students will explore a new dimension of coding,
gaining insights into how instructions and data are represented and loaded into mem-
ory, as well as into the various registers of the processor. They will learn how these
elements are processed by the corresponding units, deepening their understanding
of abstract data structures and fundamental high-level programming principles. This
hands-on experience will enhance their ability to think critically about the relationship
between software and hardware.

The discovery-based learning method is an educational approach where students
explore, experiment, and find solutions on their own, rather than passively receiving
information. Popularized by American psychologist Jerome Bruner, this method is
based on the idea that learners actively construct knowledge by interacting with their
environment and solving problems, leading to a deeper and more lasting understand-
ing of concepts. In this context, we have developed a series of pedagogical exercises
grounded in discovery learning. This approach empowers students to explore and
uncover the roles and functions of each instruction studied, enabling them to under-
stand not only how to use these instructions effectively but also where to apply them
in practical scenarios.

The rest of this document is organized as follows:

Introduction Introduction

Part 1 outlines the assembly language of the MIPS R3000 processor, along with
various conventions for writing assembly language programs. We begin by describing
the external architecture of the MIPS R3000 microprocessor. This architecture includes
the organization of the memory, the various registers used by the processor to execute
instructions, and the instruction set, which includes all the operations performed by
the processor. Secondly, we will discuss the general syntax and rules for writing a
program in MIPS R3000 assembly language. This section includes the directives used
to declare sections and variables, comments, supported macro instructions, and finally
the various system calls that allow interaction with the user.

Part 2 describes the working environment and the tool used to create and execute
programs written in MIPS R3000 assembler language. It begins with a presentation of
the steps and tools required to develop an assembler program, from editing to assem-
bly and execution. It then presents the SIMIPS R3000 emulator chosen for the imple-
mentation of assembler programs. This IDE was chosen for its simplicity, its perfect
conformity with the rules of programming in this language and its simulation of the
architecture of the MIPS R3000 machine. We provide a detailed user guide for this en-
vironment, with graphical interfaces that show each step in the process of developing
and testing MIPS R3000 assembler programs.

Part 3 presents a collection of structured, hands-on exercises in MIPS R3000 as-
sembly language programming. Each series focuses on a specific type of instruction
through carefully designed exercises that support student learning. Generally, each
series includes two types of activities: discovery exercises and application exercises.

In the discovery exercises, students are introduced to the fundamental assembly
instructions, running provided programs and analyzing their outputs. These exer-
cises encourage students to explore the function of each instruction by responding to
guiding questions. Once the basics are understood, application exercises and com-
prehension tests enable students to apply their knowledge, develop their own assem-
bly programs, and refine their understanding through practice. This approach allows
students to bridge theory with hands-on programming skills, essential for mastering
MIPS R3000 assembly language.

Finally, we provide a conclusion that summarizes the key points discussed in this
document.

2

3

Part 1

MIPS R3000 assembly language overview

1.1 Introduction
This part provides an overview of MIPS R3000 assembly language. Firstly, the MIPS
R3000 external computer architecture is covered, focusing on the basics of the instruc-
tion set defined by the various operations and instructions supported by the MIPS
R3000 processor, memory organization and addressing. Important instruction operands
such as immediate values, labels and general purpose registers are then described. The
assembly language for the MIPS R3000 is described in the last section. It provides the
program syntax which includes directives, comments, structure and macro instruc-
tions. Finally, input/output operations are shown to demonstrate interaction with ex-
ternal devices. This part provides the fundamental information necessary for writing
and understanding assembly language programs for the MIPS R3000 processor.

1.2 MIPS computer Architecture
Understanding the external architecture of a microprocessor is essential when pro-
gramming in assembly language. The architecture provides critical information about
the processor’s instruction set, CPU (Central Processing Unit) registers, memory or-
ganization and addressing, input/output interfaces and control signals. Without this
knowledge, it is impossible to efficiently manage the flow of data, optimize perfor-
mance or properly utilize the processor’s resources. Structure directly affects how in-
structions are executed and how memory and peripherals are accessed, making it a
fundamental aspect of assembler programming.

MIPS R3000 is a machine based on the Von Neumann architecture. It includes the
following units (see Figure 1.1): a control unit, an Arithmetic and Logic Unit (ALU),
central memory, and input/output units. The CPU is equipped with a variety of reg-
isters that support instruction execution and system control. Among these are general
purpose registers that the processing unit uses to temporarily store data, addresses,

Part 1 MIPS R3000 assembly language overview

and intermediate results during instruction execution, as well as other registers such
as the Program Counter (PC) that contains the address of either the instruction that is
currently being executed or the instruction that will be executed next, and the Status
Register (SR) that indicates the current state of the processor and records key informa-
tion about the outcome of operations (flags for zero, carry, overflow, negative results,
etc.). For more details, readers can refer to [6, 5, 1, 10].

FIGURE 1.1: MIPS computer architecture [6]

1.2.1 Memory organization

• In the MIPS R3000 memory, the usable addressable space is divided into two
segments: the user segment and the kernel segment, which are identified by the
most significant bit of the address. In particular:

– adr[31] = 0 indicates the user segment;

– adr[31] = 1 refers to the kernel segment.

• Each segment is devised in 3 sections: Text, Data and Stack. The description
of the MIPS R3000 memory sections is summarized in Table 1.1. An illustrative
scheme of these partitions is shown in Figure 1.2.

4

Part 1 MIPS R3000 assembly language overview

FIGURE 1.2: Partitions of MIPS R3000 memory [4]

Section Start Address Description

Name

Text 0x00400000 Contains the instructions of the user program

Each instruction is stored as a word (32 bits or 4 bytes)

Data 0x10000000 Contains global data manipulated by the user program

The size of the elements is assigned at program creation

Stack 0x7FFFF000 Dynamic area allocated for subprograms

Contains all subprograms local variables

KText 0x80000000 Contains machine instructions that are exclusive

to the kernel of the operating system

Kdata 0xC0000000 Contains global data managed by the operating system

in kernel mode

Kstack 0xFFFFF000 Contains the execution stack for the kernel

Reserved Remaining Memory reserved for the MIPS platform

memory Addresses in this area are not usable by a program

TABLE 1.1: MIPS R3000 memory sections description [3]

5

Part 1 MIPS R3000 assembly language overview

• A memory address is defined on 32 bits (from address 0x00000000 to 0xFFFFFFFF).

• A memory location is defined as being 8 bits (one byte) wide only. Thus to save
or load a 32 bits-instruction, 4 consecutive locations are needed.

• Data exchanges with memory occur byte-wise, half-word (2 consecutive bytes),
or word-wise (4 consecutive bytes).

• A half-word’s address must be a multiple of 2, whereas the address of a data
word or instruction must be a multiple of 4. If an instruction calculates an address
that deviates from these constraints, the processor will raise an exception.

1.2.2 Memory addressing

• Memory access instructions are included in the type I format and have the syntax
xy Rt, I (Rs) where x={l or s} and y={w, h or b}.

- The source register (Rs) is added to the immediate value to create an effective
address, which is then used to reference memory.

- The second register (Rt) serves either as the destination in a memory load or as
the source in a memory store.

• The MIPS R3000 presents only one addressing mode for reading or writing data
in memory: indexed register addressing with offset: I (Rs).

• For all load and store operations, the address is obtained by adding the offset
I (positive or negative) to the content of the Rs register. For example, for the
instruction lw Rt, I (Rs) the address is:

@ = (Rs) + I (with sign extension of the immediate).

• Examples
Assume that register $10 contains the value 0x10000004 and that ($22) = 0x710FFFFC.

1. lw $12, 20($10) # $12 <– Word[($10) + 20] Load operation
The load address is: @ = ($10) + (20)10 = 0x10000004 + 0x14 = 0x10000018;

2. sw $20, -24($22) # Word[($22) + (-24)] <– $20 Store operation
The store address is: @ = ($22) - (24)10 = 0x710FFFFC + 0xFFFFFFE8 = 0x710FFFE4.

1.2.3 Instruction set [8, 4, 3, 6]

A processor’s instruction set is a set of operations that the CPU can use to perform var-
ious tasks. These instructions cover basic activities such as data transfer (move, load,
store), logic (AND, OR, NOT), arithmetic (add, subtract, multiply) and control flow

6

Part 1 MIPS R3000 assembly language overview

(jump, branch, subprograms call). The processor decodes and executes each instruc-
tion according to a predetermined format, often using registers and memory addresses.
The processor’s capabilities are defined by its instruction set, which affects how well it
can run programs and perform complex calculations.
The different instructions of MIPS R3000 processor are summarized in Tables 1.2, 1.3,
1.4, 1.5 and 1.6. The following notations are used:

≪ shift left Nx..y Bits from position x to y of N

≫ shift right ∥ concatenation

LSB Least Significant Byte MSB Most Significant Byte

LSb Least Significant bit MSb Most Significant bit

Assembly syntax Operation Effect Format

Conditional branches

Beq Rs, Rt, Label Branch if Equal PC ← PC + 4 + 4× I if Rs = Rt I

Bne Rs, Rt, Label Branch if Not Equal PC ← PC + 4 + 4× I if Rs ̸= Rt I

Bgez Rs, Label Branch if Greater or Equal Zero PC ← PC + 4 + 4× I if Rs ≥ 0 I

Bgtz Rs, Label Branch if Greater Than Zero PC ← PC + 4 + 4× I if Rs > 0 I

Blez Rs, Label Branch if Less or Equal Zero PC ← PC + 4 + 4× I if Rs ≤ 0 I

Bltz Rs, Label Branch if Less Than Zero PC ← PC + 4 + 4× I if Rs < 0 I

Bgezal Rs, Label Branch if Greater or Equal Zero and link

 R31← PC + 4

PC ← PC + 4 + 4× I
if Rs ≥ 0 I

Bltzal Rs, Label Branch if Less Than Zero and link

 R31← PC + 4

PC ← PC + 4 + 4× I
if Rs < 0 I

Unconditional branches

J Label Jump PC ← PC31..28 ∥ 4× I J

Jal Label Jump and Link

 R31← PC + 4

PC ← PC31..28 ∥ 4× I
J

Jr Rs Jump Register PC ← Rs R

Jalr Rs Jump and Link Register

 R31← PC + 4

PC ← Rs
R

TABLE 1.2: Table of Branch instructions of MIPS R3000

Assembly syntax Operation Effect Format

ALU transfer operations (move from/to register)

Mfhi Rd Move From HI Rd ← HI R

Mflo Rd Move From LO Rd ← LO R

Mthi Rs Move To HI HI ← Rs R

Mtlo Rs Move To LO LO ← Rs R

Lui Rt, I Load Upper Immediate Rt ← I « 16 I

Immediate is loaded into the 2 MSB of Rt and 0’s are added to its LSB

TABLE 1.3: Table of Arithmetic and Logical Operations of MIPS R3000
(ALU Transfer instructions)

7

Part 1 MIPS R3000 assembly language overview

Assembly syntax Operation Effect Format

Addition

add Rd, Rs, Rt addition (Overflow detection) Rd ← Rs + Rt R

addu Rd, Rs, Rt unsigned addition Rd ← Rs + Rt R

addi Rt, Rs, I addition immediate (Overflow detection) Rt ← Rs + I I

Signe extended immediate

addiu Rt, Rs, I unsigned addition immediate Rt ← Rs + I I

Subtraction

sub Rd, Rs, Rt subtraction (Overflow detection) Rd ← Rs - Rt R

subu Rd, Rs, Rt unsigned subtraction Rd ← Rs - Rt R

Multiplication and division

mult Rs, Rt multiplication Hi← (Rs × Rt)63..32 R

Lo ← (Rs × Rt)31..0

multu Rs, Rt unsigned multiplication Hi← (Rs × Rt)63..32 R

Lo ← (Rs × Rt)31..0

div Rs, Rt division Hi ← Rs mod Rt R

Lo ← Rs / Rt

divu Rs, Rt unsigned division Hi ← Rs mod Rt R

Lo ← Rs / Rt

Logical operations

Or Rd, Rs, Rt Logical OR Rd ← bit-wise Or of Rs and Rt R

And Rd, Rs, Rt Logical AND Rd ← bit-wise And of Rs and Rt R

Xor Rd, Rs, Rt Exclusive OR Rd ← bit-wise Xor of Rs and Rt R

Nor Rd, Rs, Rt NOR Rd ← bit-wise Nor of Rs and Rt R

Ori Rt, Rs, I Immediate OR (Immediate extended with zero) Rt ← bit-wise Or of Rs and I I

Andi Rt, Rs, I Immediate AND (Immediate extended with zero) Rt ← bit-wise And of Rs and I I

Xori Rt, Rs, I Immediate Exclusive OR (Immediate extended with zero) Rt ← bit-wise Xor of Rs and I I

Shift operations

Sllv Rd, Rt, Rs Shift Left Logical Variable Rd ← Rt « Rs R

Rt is left-shifted according to the 5 LSb of Rs

with zeros added in the LSb

Srlv Rd, Rt, Rs Shift Right Logical Variable Rd ← Rt » Rs R

Rt is right-shifted according to the 5 LSb of Rs

with zeros added in the MSb

Srav Rd, Rt, Rs Shift Right Arithmetic Variable Rd ← Rt » Rs R

Rt is right-shifted according to the 5 LSb of Rs

The sign bit of Rt is added in the MSb

Sll Rd, Rt, sh Shift Left Logical Rd ← Rt « sh R

Rt is left-shifted according to the value of sh (sh= shift amount = shamt)

with zeros added in the LSB

Sra Rd, Rt, sh Shift Right Arithmetic Rd ← Rt » Rs R

Rt is right-shifted according to the value of sh

The sign bit of Rt is added in the MSb

Conditional test operations (set if less than)

Slt Rd, Rs, Rt Set if Less Than Rd <- 1 if Rs<Rt else 0 R

Sltu Rd, Rs, Rt Set if Less Than Unsigned Rd <- 1 if Rs < Rt else 0 R

Slti Rt, Rs, I Set if Less Than Immediate (sign extended Immediate) Rt <- 1 if Rs < I else 0 I

Sltiu Rt, Rs, I Set if Less Than immediate (unsigned immediate) Rt <- 1 if Rs < I else 0 I

TABLE 1.4: Table of Arithmetic and Logical Operations of MIPS R3000
8

Part 1 MIPS R3000 assembly language overview

Syntax Operation Effect Format

Load instructions

Lw Rt, I(Rs) Load Word Rt←M(Rs + I) I

Four memory bytes are loaded from address and placed in register Rt

Lh Rt, I(Rs) Load Half Word Rt←M(Rs + I) I

- The 2 memory bytes are loaded into the LSB of Rt

- The sign bit of the loaded bytes is extended to the remaining bits

Lhu Rt, I(Rs) Load Half Word Unsigned Rt←M(Rs + I) I

- The 2 memory bytes are loaded into the LSB of Rt

- The other bits are set to zero

Lb Rt, I(Rs) Load Byte Rt←M(Rs + I) I

- The memory byte is loaded into the LSB of Rt

- The sign bit of loaded byte is extended to the remaining bits

Lbu Rt, I(Rs) Load Byte Unsigned Rt←M(Rs + I) I

- The memory byte is loaded into the LSB of Rt

- The other bits are set to zero

Store instructions

Sw Rt, I(Rs) Store Word M(Rs + I)← Rt I

The value in register RT is stored in memory starting at the address Rs + I

Sh Rt, I(Rs) Store Half Word M(Rs + I)← Rt I

The 2 less significant bytes (16 bits) of Rt are stored in memory

Sb Rt, I(Rs) Store Byte M(Rs + I)← Rt I

The less significant byte (8 bits)of Rt is stored in memory

TABLE 1.5: Table of memory instructions of MIPS R3000

Syntax Operation Effect Format

Rfe Restore From Exception SR← SR31..4 ∥ SR5..2 R

Privileged instruction

Restore the previous IT mask and mode

Break n Breakpoint Trap SR← SR31..6 ∥ SR3..0 ∥ ”00” R

Branch to exception handler PC ← ”80000080”

n defines the breakpoint number CR← cause

Syscall System Call Trap SR← SR31..6 ∥ SR3..0 ∥ ”00” R

Branch to exception handler PC ← ”80000080”

CR← cause

Mfc0 Rt, Rd Move From Control Coprocessor Rt← Rd R

Privileged instruction

The register Rd of the control Coprocessor is moved into

the integer register Rt

Mtco Rt, Rd Move To Control Coprocessor Rd← Rt R

Privileged instruction

The integer register Rt is moved into the register Rd of

the Control Coprocessor

TABLE 1.6: Table of system instructions of MIPS R3000

9

Part 1 MIPS R3000 assembly language overview

1.3 MIPS R3000 instruction operands
MIPS R3000 instructions use three types of operands that are registers, immediates and
labels:

• Registers: used by instructions in formats R and I;

• Immediates: used by instructions in format I ;

• Labels: used by instructions in formats I and J ;

1.3.1 General purpose registers

Registers are a limited amount of memory which exists on the CPU. No data can be
operated on the CPU that is not stored in a register. Data from memory, the user, or
disk drives must first be loaded into a register before the CPU can use it [6].

In the MIPS CPU, there are only 32 registers, each of which can be used to store a
single 32 bit values. Because the number of these registers is so limited, it is vital that
the programmer use them effectively.
The conventions for using these registers are outlined below. Note that in some special
situations, the registers will take on special meaning, such as with exceptions. These
special meanings will be covered when they are needed in the text.

Mnemonic or symbolic name Register Number Name or designation

$zero $0 Zero register

$at $1 Assembler Temporary register

$v0-$v1 $2-$3 Value registers

$a0-$a3 $4-$7 Argument registers

$t0-$t7 $8-$15 Temporary registers

$t8-$t9 $24-$25 Additional Temporary registers

$s0-$s8 $16-$23 Saved registers

$k0-$k1 $26-$27 Kernel registers

$sp $29 Stack Pointer

$gp $28 Global Pointer

$ra $31 Return Address register

TABLE 1.7: Register Conventions in MIPS R3000

• $zero ($0) Zero register : a special purpose register that always contains a con-
stant value of 0. It is a read-only register that cannot be modified.

10

Part 1 MIPS R3000 assembly language overview

• $at ($1) Assembler Temporary : is often used as a temporary register (e.g. for
pseudo instructions) by the assembler. Therefore, this register is not available for
use by the programmer.

• $v0-$v1 ($2-$3) Value Registers : they are normally used for return values for
subprograms. When a function returns a result, it is usually placed in one of
these registers. So, $2 (v0) is commonly used for this purpose.
$v0 is also used to input the requested service to syscall.

• $a0-$a3 ($4-$7) Argument Registers: they are used to pass arguments (or param-
eters) into subprograms. When a function is called, the arguments are placed in
these registers. If more arguments are needed, they are passed on the stack.
Example: $4 contains the integer to be read in a keyboard read operation.

• $t0-$t9 ($8-$15, $24-$25) Temporary Registers : they are used to store temporary
variables. These registers are not preserved across function calls. They are used
to hold values during computations or for temporary storage.

• $s0-$s8 ($16-$23) Saved Registers : are used to store saved values. These regis-
ters are typically saved by the called function at the beginning of a function and
restored before returning, ensuring that their values remain intact across function
calls.

• $k0-$k1 ($26-$27) Kernel Registers : that registers are reserved by the operating
system and are not available to the programmer.

• $gp ($28) Global Pointer: Points to the middle of the data segment in memory. It
is used to access global and static data variables efficiently.

• $sp ($29) Stack Pointer: Used to keep track of the beginning of the data for this
method in the stack and to manage stack operations such as pushing and pop-
ping values.

• $fp ($30) Frame Pointer: used with the $sp for maintaining information about
the stack. It points to the base of the current stack frame.

• $ra ($31) Return Address: A pointer to the address to use when returning from
a subprogram. Used to store the address to return to after a function call. The jal
instruction sets this register, and the jr $ra instruction uses it to return.

NB: In addition to the 32 general-purpose registers, there are the HI and LO registers,
which are used for multiplication and division operations. These two 32-bit registers
store the result of a multiplication or division, which produces a 64-bit result.

11

Part 1 MIPS R3000 assembly language overview

1.3.2 Immediate values

An immediate is a constant value that is encoded directly in a format "I" MIPS instruc-
tion. Instructions using immediate allow to perform operations with a fixed value
without having to load it from memory. Immediate values are generally integers, and
are directly included in the machine code.
Characteristics of MIPS immediates

• Immediate values are 16-bit integers (2 bytes).

• Its value can be positive, negative or null.

• MIPS instructions that use immediates often end with the letter "i" to indicate a
version with an immediate constant (e.g. addi, andi, ori, etc.).

• An immediate expressed in decimal is written as is.

• An immediate expressed in hexadecimal must be prefixed with "0x".

• For arithmetic and logic instructions with immediates (such as addi), an exten-
sion of the immediate must be applied in order to perform the operation with the
second operand, which is often a 32-bit register. So 16 bits are added to the upper
part of the immediate, depending on the type of operation applied and the sign
of the immediate (see Section 1.2.3).

1.3.3 Labels

A label is an identifier followed by a colon (:). It marks either a data section or an
instruction in the program. When the assembler runs the code, it replaces the label
with the actual memory address or instruction address.
Labels are typically used for two general purposes:
- Instruction labels: used to indicate the position of an instruction so that it can be
used as an operand of a branching or jumping instruction.
- Data labels: used to identify memory regions in the data segment, providing for
quick access to variables and constants. In this case, the label value will be accessed
using the macro "la (load address)".

Specific writing rules : A correct identifier must conform to the following rules :

• Starts with a letter

• No reserved words

• No special symbols (except underscore _)

12

Part 1 MIPS R3000 assembly language overview

• Must end with a :

• Is case sensitive

• Must have reasonable length.

Example:

.data

X: .word 20 # X is a label declared in data section

1.4 SYNTAX of a MIPS R3000 assembly program

1.4.1 Program structure

A MIPS R3000 program consists of two main parts (see Figure 1.3):

• The declarative part: Declared by the data directive.

• The instruction part: Declared by the text directive.

NB: A program may not contain a data section.

FIGURE 1.3: Overall structure of a MIPS R3000 program

The code resides in the .text section, and the main program typically starts with
the main label or after _start. The label main indicates the place to begin execution. It
does not need to be included as the program begins at the first line in the assembled
program.

13

Part 1 MIPS R3000 assembly language overview

Example 1:

.text

main:

addi $10, $0, 0x1234 # Load immediate value 0x1234 into $10

addi $2, $0, 10 # Load immediate value 10 into $2

syscall # Exit

Example 2:

.text

_start:

addi $10, $0, 0x1234 # Load immediate value 0x1234 into $10

addi $2, $0, 10 # Load immediate value 10 into $2

syscall # Exit

NB: in MIPS, instructions are simply separated by new lines, and no special punc-
tuation is needed between them.

1.4.2 Comments

Comments in MIPS assembly start with the # symbol or ; and continue to the end of
the line.
Examples:

.text

_start:

add $10, $11, $12 # This is an example of an addition with registers

add $10, $11, $12 ; This is an example of an addition with registers

addi $2, $0, 10 # Load immediate value 10 into $2

syscall # Exit

1.4.3 Directives

A directive in MIPS R3000 is an instruction that is not executed by the processor but
is used by the assembler to configure various aspects of the program or the assembly
process. These directives are also called pseudo-instructions or assembly directives,
and they do not generate machine code. Instead, they provide instructions to the as-
sembler about how to organize, store, or process the code [5].

14

Part 1 MIPS R3000 assembly language overview

In MIPS and most assembly languages in general, a "." before a text string indicates
that the token (string) following it is an assembler directive.
The common directives used in MIPS R3000 are the following:

• .text directive: indicates that the instructions that follow are part of a program
text (i.e. the program) and will be stored in the text section of memory. This is
where the assembler places machine instructions.

• .data directive: implies that the following is program data (such as global vari-
ables, tables, etc.), which will be placed in memory’s static data section.

• .word directive: Reserves one or more words (one word = 4 bytes in MIPS) in
memory for storing data, typically used for defining variables or initializing val-
ues.
NB: Be careful as it is incorrect to think of a the .word directive as a declaration
for an integer, as this directive simply allocates and initializes 4 bytes of memory,
it is not a data type. What is stored in this memory can by any type of data [6].
Examples:

.data

x : .word 20 # Reserves 4 bytes of memory at the label x and

initializes them with the value 20

Tab: .word 10, 5, -3, 0x45A # Reserves 16 bytes at the label Tab and initializes

them with values 10, 5, -3, 0x45A in order

• .byte directive: reserves 1 byte (8 bits) of memory and allows to initialize it with
a value.
Examples:

.data

x : .byte 20 # Reserves 1 byte at label x and initializes it with the value 20

y : .byte 5, 10, 15 # Reserves 3 bytes in memory from address y and stores

the values 5, 10 and 15 respectively.

• .half directive reserves 2 bytes (16 bits) of memory and allows to initialize it with
a value.
Example:

15

Part 1 MIPS R3000 assembly language overview

.data

y: .half 100 # Reserves 2 bytes at label y and initializes them with the value 100

• .space n directive: allocates n bytes of memory in the data region of the program
without initializing them. It is typically used in the .data section to reserve mem-
ory for variables, arrays, or buffers where the initial content does not matter or
will be set later.
Example :

.data

Tab: .space 40 # Reserves 40 bytes from address Tab

• .ASCII and .ASCIIZ directive: In MIPS assembly, a string is a sequence of ASCII
characters which are terminated with a null value (a null value is a byte contain-
ing 0x00). Thus when handling strings, an extra byte must always be added to
include the null terminator [6]. This is also the reason for the assembler directives
.ascii and .asciiz:

– The .ascii directive only allocates the ASCII characters but does not add a
null terminator. If the user wants to end the string with a null byte, he would
have to manually add \0 to the declaration.

– The .asciiz directive allocates the characters terminated by a null. So the
.asciiz allocates a string.

Example :

.data

msg1: .ascii "Hello world!" # The declared string does not end with a zero

msg2: .asciiz "Hello world!" # The declared string ends with a zero

• .float directive: Used to define single-precision (32-bit) floating-point constants
in memory. It is used to reserve space for one or more floating-point numbers
and assign them an initial value.

16

Part 1 MIPS R3000 assembly language overview

.data

x : .float 20.5 # Reserves 4 bytes at label x and initializes them with

the value 20.5

y : .float 5.6, -2.4 # The floating-point values 5.6, -2.4 are stored in memory

from the label y , each occupying 32 bits.

• .double directive: Used to define double-precision (64-bit) floating-point con-
stants in memory.

.data

x : .double 20.5 # Reserves 8 bytes at label x and initializes them with

the value 20.5

y : .double 5.6, -2.4 # The floating-point values 5.6, -2.4 are stored in memory

from the y label, each occupying 64 bits.

Summary example: x, y and z are integer variables. They can be declared as
follows:

.data

x : .word 0x12345678

y : .half 0xA345

z : .byte 5

tab : .byte -1,5,20,11

NB: The last declaration allows values (-1, 5, 20, 11) to be arranged in consecutive
bytes in memory, starting at address tab, and can be used to declare an array of
integers.
-The memory schema (hexadecimal representation) obtained after these declara-
tions is shown in Figure 1.4:

17

Part 1 MIPS R3000 assembly language overview

FIGURE 1.4: An example of data representation in memory

• .align directive: Used to ensure that data is aligned to a specific boundary in
memory. This can improve access efficiency, especially when dealing with larger
data types or when the hardware requires data to be aligned to certain bound-
aries.

• .globl or .global directive: is generally used to define the entry point of a pro-
gram, or to share variables or functions between several files in a project.

1.4.4 Macro instructions

A macro-instruction is a single command that expands into a set of instructions, simpli-
fying repetitive tasks and reducing code complexity. During assembly or compilation,
the macro is expanded to generate the code corresponding to the instructions it encap-
sulates. MIPS R3000 implements the following macro instructions:

• Li : The li (load immediate) macro is used to load a constant value into a register.
Since the MIPS architecture does not support loading large immediate values in
a single instruction, li is a macro that can expand into multiple instructions, to
handle larger immediate (32 bits).

• La : The la (load address) macro loads the memory address of a label into a regis-
ter. Since MIPS lacks a direct load address instruction, this is a pseudo-instruction
that combines two basic instructions (lui and ori) to load a 32-bit address into a
register.

A detailed description of these macros is provided in Table 1.8.

18

Part 1 MIPS R3000 assembly language overview

Assembly syntax Operation Effect Corresponding code

la Rd, Label31..0 Load Address Rd ← Label31..0 luiRd, Label31..16

oriRd, Rd, Label15..0

li Rd, Imm31..0 Load Immediate Rd ← Imm31..0 luiRd, Imm31..16

oriRd, Rd, Imm15..0

TABLE 1.8: Table of macro instructions of MIPS R3000

1.4.5 Input/Output operations

There is a second way to read/write data to/from a register. If the data to be accessed
is on an external device, such as a user terminal or disk drive, the syscall instruction is
used. The syscall operator allows the CPU to talk to an I/O controller to retrieve/write
information to the user, disk drive, etc [6].

The ’syscall’ instruction is used by a user program to make a "system call" in order
to perform certain actions that require operating system control, such as input/output
tasks like reading or writing a string or number to the console. It is common to pass
any arguments through registers $4 and $5, and to store the system call number in
register $2. There are five primary system calls available that are detailed in Table 1.9.

Service Code Arguments Return Value

Display integer 1 $4: stores the desired integer

Display string 4 $4: address of the desired string

Read integer 5 $2: the read integer

Read character 8 $4: address of the buffer

$5: max number of characters to read

Exit 10

TABLE 1.9: Descriptive table of MIPS R3000 system calls

Methodology

To execute a system call, the following steps must be followed:

1. Write the instruction to load the desired service into register $2.

2. Write the instructions to load arguments into registers $4 and/or $5 (case of dis-
playing operation).

3. Write the instruction syscall.

19

Part 1 MIPS R3000 assembly language overview

4. Write the instructions to retrieve a return value from the syscall (case of reading
operation).

1.5 Conclusion
This part provided details of the external architecture of the MIPS R3000 processor,
covering visible registers, memory addressing rules and various available instructions.
Here we have sequentially presented the memory organization and the addressing
mechanism, the main syntax rules of the language, assembler supported instructions,
macro instructions, and the available system calls.

20

21

Part 2

Presentation of the working environment:
SIMIPS emulator

2.1 Introduction
This second part provides an overview of the tools and procedures essential for writ-
ing, assembling, and running programs in MIPS assembly language within the ’SIMIPS
emulator’ environment. It begins with a presentation of the tools required to de-
velop assembly language programs, detailing each component: a text editor, assem-
bler, linker, loader, and debugger. This section concludes by citing some of the most
commonly used IDEs for MIPS R3000 assembly programming, which are predomi-
nantly used for educational purposes.

The SIMIPS software is an emulator designed to simulate the R3000 MIPS processor,
a 32-bit architecture often used for educational purposes. Developed at the University
of Pierre and Marie Curie, SIMIPS allows users to explore the internal workings of the
MIPS architecture, focusing on instruction execution and system calls. This emulator
is particularly valuable for students and researchers exploring computer architecture,
as it facilitates hands-on learning of processor operations at a low level.

The last section of this part introduces the ’SIMIPS emulator’, guiding readers
through its main interfaces and key functionalities. Practical instructions on initial-
izing the emulator, entering code in the editor, assembling and loading the program,
and executing the final code are provided through a step-by-step approach. This struc-
tured introduction equips users with the foundational knowledge to effectively utilize
the SIMIPS environment for MIPS assembly programming.

Part 2 Presentation of the working environment: SIMIPS emulator

2.2 Tools needed to develop and run a program written

in assembly language
Program development, from initial problem analysis to final debugging and imple-
mentation, involves a wide range of software tools that facilitate different stages of
the process. These tools form what is known as a programming environment, which
supports tasks such as coding, testing, and debugging.

2.2.1 Text Editor

A text editor is an interactive software that allows users to input text from a keyboard
and store it in a file. The information stored in the file is plain text in ASCII code.
The main functions of a text editor include displaying part of the text on the screen,
moving and positioning the cursor, editing the text by inserting, deleting, or replacing
characters, and searching for specific strings of text.
The source code for an assembly program is entered using a text editor and typically
has the file extension .s or .asm.

2.2.2 The Assembler

An assembler is a translation program that converts assembly source code into ma-
chine language. The resulting object program is saved in a file with the .obj exten-
sion (object file). During the assembly process, each instruction in the source code is
translated into its corresponding machine instruction (binary code) [9]. The assembler
performs the following key functions:

• Translation: Converts assembly language instructions into corresponding ma-
chine code.

• Address assignment: Generates relative addresses for instructions and data in
the object file.

• Symbol table creation: Builds a symbol table that maps labels to their respective
addresses.

• Object file generation: Produces an object file (e.g., .obj) containing the machine
code and unresolved references.

• Error detection: Identifies syntax errors and issues in the assembly code during
the translation process.

22

Part 2 Presentation of the working environment: SIMIPS emulator

2.2.3 The linker [2]

The .obj file contains the binary output of the assembly process, but it is not usable in
its current form; the system cannot load or execute it. The linker is a crucial component
in the software development process that combines one or more object files generated
by an assembler or compiler into a single executable file. It serves to ensure that all
the program’s code and data can be correctly referenced and executed. It performs the
following key functions:

• Combining object files: Merges multiple object files into one executable.

• Resolving references: Links external symbols and functions from different files.

• Address assignment: Assigns absolute memory addresses to instructions and
data.

• Creating executable: Generates the final executable file (e.g., .exe).

• Optimization: May eliminate unused code and optimize memory layout.

2.2.4 The loader

A program can only be executed if it is loaded into main memory. The component
responsible for this task is called the loader. A special utility of the operating system
is responsible for reading the executable file, loading it into main memory, and then
launching the program. The main functions of the loader are the following:

• Reading executable files: Reads the executable file (.exe or .bin formats).

• Memory allocation: Allocates memory space in the main memory for the pro-
gram’s code, data, and stack.

• Loading into memory: Copies the program’s machine code and data from the
executable file into the allocated memory space.

• Relocation: Adjusts memory addresses in the program as necessary, especially if
the program is not loaded at its preferred memory address.

• Launching execution: Transfers control to the program, initiating its execution
from the entry point defined in the executable file.

23

Part 2 Presentation of the working environment: SIMIPS emulator

2.2.5 The debugger

The debugger is a software tool that facilitates the debugging of programs. It allows
users to examine the contents of registers and perform memory dumps. This enables
step-by-step execution of a program, that is, instruction by instruction, which helps
in understanding what happens during execution.The main functions of the debugger
are the following:

• Step-by-Step Execution: Allows the user to execute a program one instruction at
a time to observe its behavior and state at each step.

• Breakpoints: Enables users to set breakpoints, which pause the execution of the
program at specified lines of code, allowing for detailed inspection.

• Variable Inspection: Allows examination and modification of variable and reg-
ister values during execution, aiding in the detection of logical errors.

• Memory Dumping: Allows for the dumping and inspection of memory contents,
which helps to analyze how data is stored and manipulated.

• Call Stack Navigation: Displays the call stack, enabling users to see the function
call hierarchy and trace the flow of execution through the program.

• Error Detection: Assists in identifying and diagnosing runtime errors, such as
segmentation faults, infinite loops, and unhandled exceptions.

2.2.6 Popular IDEs and simulators for MIPS R3000 Programming

There are a number of MIPS simulators available, some for educational use, and some
for commercial use. Those simulators allows students and researchers to run MIPS
assembly code on platforms where a physical MIPS processor is unavailable, making
it an essential learning tool for those studying computer architecture and assembly
programming. Below, we list some of the most commonly used simulators for MIPS
R3000 assembly programming:

• SIMIPS fo SImple MIPS is an emulator designed specifically for the MIPS R3000
processor. Known for its accurate representation of the MIPS R3000 instruc-
tion set and architecture, SIMIPS allows students to explore the mechanics of
low-level assembly programming. Its straightforward setup and realistic emula-
tion make it suitable for learning assembly language fundamentals in a way that
closely resembles real-world applications.

24

Part 2 Presentation of the working environment: SIMIPS emulator

• MARS for MIPS Assembler and Runtime Simulator [11] is a lightweight inter-
active development environment for programming in MIPS assembly language,
intended for educational-level use with Patterson and Hennessy’s Computer Or-
ganization and Design.

• SPIM [7] for Simulator for Processing Interactive MIPS is a widely-used open-
source simulator developed by Dr. James R. Larus in the late 1980s to emulate
the MIPS R2000/R3000 processors for educational purposes. is a self-contained
simulator that runs MIPS-32 assembly language programs. SPIM also provides
a simple debugger and minimal set of operating system services. It provides a
clear view of how MIPS instructions function on a simplified processor model.

• QtSPIM [7] for Qt framework with the SPIM simulator is the newest version of
Spim, and unlike all of the other version, it runs on Microsoft Windows, Mac OS
X, and Linux. It maintains compatibility with the original SPIM but adds a graph-
ical display for memory and registers, as well as a streamlined user experience.
It’s a popular choice for students, as it provides the same accurate simulation
while being easier to navigate.

This document uses the SIMIPS emulator. Based on our experience, we chose the
SIMIPS tool because it most closely matches the MIPS R3000 version studied in our
courses. Unlike other environments that implement instruction sets from more ad-
vanced versions of MIPS, SIMIPS accurately represents the instruction set, memory
layout, processor registers, and immediate value formats of the MIPS R3000 processor.

2.3 Getting started with the SIMIPS emulator and pre-

sentation of the main interfaces
The various steps that are required in order to write and run an assembly language
program are the following :

1. Install a simulator (SIMIPS or MARS).

2. Create a new file and write the code above.

3. Assemble the code.

4. Load the program in main memory.

5. Run the program.

25

Part 2 Presentation of the working environment: SIMIPS emulator

2.3.1 Launching the software

On the desktop, click on the icon corresponding to the MIPS R3000 microprocessor.
The following window will appear:

FIGURE 2.1: SIMIPS launching interface

Click on ’Sesame ouvre-toi,’ which will allow you to open the emulator and access
all its separated windows (see Figure 2.2).

FIGURE 2.2: SIMIPS windows

2.3.2 Step 1: Entering the program in the editor (R3000-Editor)

1- Click on the window named (R3000-Editor) shown in Figure 2.3.

26

Part 2 Presentation of the working environment: SIMIPS emulator

FIGURE 2.3: SIMIPS editor interface

2- Enter the following program in the source of the editor (R3000-Editor).

.text

_start:

addi $17, $0, 5 # First assembly instruction

addi $18, $0, 10 # Second assembly instruction

add $18, $18, $17 # Third assembly instruction

addi $2, $0, 10 # Fourth assembly instruction

syscall # Last assembly instruction

2.3.3 Step 2 : Assembly and code generation

Still in the window corresponding to the editor:

• First click on the ’Assemble’ menu,

• Then on ’Generate Code + Assembler’ as shown in Figure 2.4

27

Part 2 Presentation of the working environment: SIMIPS emulator

FIGURE 2.4: Assembly and code generation interface

Note: Two scenarios may arise
- Case 1: Your program contains errors
Example: Remove the $ symbol preceding the value 17 on the third line of the previous
code. The assembler will then display the following message:

You’re unlucky! Revise the Source Text

Below the erroneous line, an error message is shown with arrows indicating the
mistake. For example:

One operand is missing: 17. A register is necessary

This error message means that you need to change the operand 17 to a register by
adding the $ symbol before it, resulting in: add $18, $18, $17.

FIGURE 2.5: Error message interface

- To correct the errors, proceed as follows:

28

Part 2 Presentation of the working environment: SIMIPS emulator

1. Click on Source in the editor window ;

2. Make the necessary changes to correct errors ;

3. Click Assemble, then Generate code + Assembler ;

4. Repeat 1, 2 and 3 until the success message is displayed.

Case 2: Your program contains no errors
The message "Second Pass — Success — Bravo!" will be displayed, as shown in Figure
2.6.

FIGURE 2.6: Success message interface

During this phase, the assembler associates two pieces of binary information with
each instruction, expressed in hexadecimal (prefixed with 0x) and separated by a colon
(:). This information corresponds to the instruction’s load address in main memory
and the machine code of the assembler instruction, respectively.
Example:
For the instruction addi $17, $0, 5, the assembler generates 0x00400000 : 0x20110005.
0x00400000 : Loading address of the instruction addi $17, $0, 5 in main memory;
0x20110005: Machine code (hexadecimal format) of the instruction addi $17, $0, 5.

2.3.4 Step 3: Loading the program into the simulator

- In the editor:

• First click on ’To’

• Then ’Simulator’ as shown in Figure 2.7.

29

Part 2 Presentation of the working environment: SIMIPS emulator

FIGURE 2.7: Access interface to the simulator from the editor

The simulator allows to visualize the components of the physical R3000 machine. It
displays the main memory, the registers of the processing unit, and those of the control
unit, as shown in Figure 2.8.

FIGURE 2.8: Simulator interface

- In the simulator window (R3000 Simulator):

• Click on Load Program ;

• Select Generated Code in the Editor window (see Figure 2.9).

30

Part 2 Presentation of the working environment: SIMIPS emulator

FIGURE 2.9: Loading program interface

2.3.5 Step 4: Executing the Program

The execution of the assembly program occurs step by step (i.e., instruction by instruc-
tion) by clicking the Exécution button.

Note: When you click on Exécution, the instruction being executed is shown in Pre-
vious Instruction (here, addi $17, $0, 0x0005), and the instruction displayed in the
Current Instruction register will be the next to execute (here, addi $18, $0, 0x000A)
(see Figure 2.10).
In this example, after executing addi $17, $0, 0x0005, the value of $17 is set to 5.

FIGURE 2.10: Executing program interface

31

Part 2 Presentation of the working environment: SIMIPS emulator

Very Important Note: For each new execution of a program, you must first reload
it and then reset the user registers. To do this:

• Click on Initialization ;

• Select User Registers, as shown in Figure 2.11.

FIGURE 2.11: Registers initialization interface

Thus, all general registers will be reset to zero, and the other registers will be reinitial-
ized. The program counter will point to the first address of the program to be executed.
- If the program uses the memory stack, it must also be reinitialized by clicking on Ini-
tialization, then Clear Pile.

2.4 Conclusion
In this part, we presented a comprehensive user guide to help students get started
with the SIMIPS emulator, serving as a practical manual for writing, assembling, and
running their first R3000 assembly program. Covering the essential tools and compo-
nents such as the editor, assembler, linker, loader, and debugger alongside a detailed
step-by-step guide to using SIMIPS, this manual equips students with the knowledge
needed to develop and test MIPS R3000 programs.

32

33

Part 3

Series of practical exercises

3.1 Introduction
Rather than just studying theory, students and researchers can gain real experience by
practicing and observing how the processor functions through direct application. This
part offers practical exercises to reinforce MIPS R3000 assembly language concepts. It
presents a series of structured, practical exercises to enhance comprehension of funda-
mental MIPS assembly language instructions and techniques.

With particle work (PW) N°1, students will begin by entering, assembling, and
executing their first MIPS program using the R3000-Editor and simulator, establishing
the essential workflow of writing and running assembly code.

In PW N°2, the focus shifts to arithmetic and logical instructions, where students
will practice key operations, including an example of an arithmetic operation, an ex-
ample of a logical operation, the "lui" (load upper immediate) instruction, with some
comprehension exercises to apply these instructions, such as loading an immediate
into a register.

PW N°3 introduces input/output instructions, enabling students to work with sys-
tem calls for basic I/O tasks like writing integers and displaying strings, while PW N°4
guides students through memory operations, such as load and store, building famil-
iarity with memory access and management.

Finally, PW N°5 covers conditional and unconditional branching, allowing students
to explore decision-making constructs, such as "if..then" statements and "while" loops.

This progression of exercises builds foundational skills in MIPS assembly language,
providing essential tools and techniques for low-level programming and algorithm
implementation.

Part 3 Series of practical exercises

3.2 PW N°1 : Write and execute your first MIPS R3000

assembly program

3.2.1 Step 1: Enter the following program in the editor (R3000-Editor)

.text

_start:

addi $17, $0, 5 # First assembly instruction

addi $18, $0, 10 # Second assembly instruction

add $18, $18, $17 # Third assembly instruction

addi $2, $0, 10 # Fourth assembly instruction

syscall # Fifth assembly instruction

3.2.2 Step 2: Assembly and code generation

- Still in the window corresponding to the editor, first click on the ’Assemble’ menu,
then on ’Generate Code + Assembler’.
- Make sure the message "Second Pass — Success — Bravo!" is displayed, indicating
that the assembly was successfully completed and the machine code for your program
has been generated.
- Otherwise, the message "You’re unlucky! Revise the Source Text" will be displayed
to indicate that your program contains errors, which will be highlighted with arrows.
Review and correct your code, then reassemble and generate the code again until the
success message is displayed.
- During this phase, the assembler associates two pieces of binary information with
each instruction, expressed in hexadecimal (prefixed with 0x) and separated by a colon
(:). This information corresponds to the instruction’s load address in main memory
and the machine code of the assembler instruction, respectively.
Example:
For the instruction addi $17, $0, 5, the assembler generates 0x00400000 : 0x20110005.
0x00400000 : Loading address of the instruction addi $17, $0, 5 in main memory ;
0x20110005: Machine code (hexadecimal format) of the instruction addi $17, $0, 5.
Questions: Carefully observe the results of the assembly and code generation, then
answer the following questions:

1. What does the information 0x00400004 correspond to?

2. At what address is the instruction addi $2, $0, 10 loaded?

34

Part 3 Series of practical exercises

3. What is the machine code (in hexadecimal form) for the instruction syscall?

4. How many bits is a memory address defined on?

5. How many bits is a machine instruction defined on?

6. By which value does the address increment from one instruction to the next?

3.2.3 Step 3: Loading the program into the simulator

In the editor window: Click on ’To’ and then ’Simulator’.
The simulator provides a view of the components of the physical R3000 machine, in-
cluding the main memory and the registers of the CPU.

- In the simulator window (R3000 Simulator): Click on ’Load Program’ and then
select ’Generated Code in the Editor window’.

7. What are the contents of registers $2, $17, $18, and PC before executing this pro-
gram?

3.2.4 Step 4: Executing the Program

The execution of the assembly program occurs step by step (i.e., instruction by instruc-
tion) by clicking the Exécution button.
Questions:

8. Execute the instructions of the program step by step and provide the contents of
the registers $2, $17, $18 and PC at the end of the execution.

9. What does this program do?

10. Remove the last two instructions and re-execute the program by going through
steps 2, 3, and 4. What do you notice?

11. Infer the role of the instructions addi $2, $0, 10 and syscall combined.

3.2.5 Comparison between MIPS and Von Neumann registers

Compare the MIPS R3000 simulator with the Von Neumann machine and complete the
following table:

Von Neumann
Machine

Program
Counter

Instruction
Register

Indicator
Register

General
Registers

Accumulator

MIPS R3000
Simulator

TABLE 3.1: Comparison between MIPS and a Von Neumann machine reg-
isters

35

Part 3 Series of practical exercises

3.3 PW N °2: Arithmetic and logical instructions

3.3.1 Exercise 1: Discovery of an example of an arithmetic instruction

Enter the following program, then assemble.

.text

_start:

addi $8, $0, 5 # 5 is a positive immediate value expressed in decimal

addi $9, $0, - 4 # - 4 is a negative immediate value expressed in decimal

addi $10, $0, 0x 2259 # 0x2259 is a positive immediate value expressed in hexa

addi $11, $0, 0x 9234 # 0x9234 is a negative immediate value expressed in hexa

add $9, $9, $8

addi $2, $0, 10

syscall

1. Run the program step by step and complete the following table:

Instruction $8 $9 $10 $11

Before execution

addi $8, $0, 5

addi $9, $0, - 4

addi $10, $0, 0x2259

addi $11, $0, 0x9234

add $9, $9, $8

Analyze the results in this table and answer the following questions:

2. What does the instruction Addi $8, $0, 5 do ?

3. How is the value 0xFFFFFFFC obtained from the value -4 ?

4. Given that the immediate value used in the instruction addi $RD, $RS, imm is
defined over 16 bits, deduce the extension applied to this immediate value in the
general case.

5. What does the instruction Add $9, $9, $8 do ?

36

Part 3 Series of practical exercises

3.3.2 Exercise 2: Discovery of an example of a logical instruction

Enter the following program, then assemble.

.text

_start:

ori $8, $0, 5 # 5 is a positive immediate value expressed in decimal

ori $9, $0, - 4 # - 4 is a negative immediate value expressed in decimal

ori $10, $0, 0x 2259 # 0x2259 is a positive immediate value expressed in hexa

ori $11, $0, 0x 9234 # 0x9234 is a negative immediate value expressed in hexa

or $9, $9, $8

addi $2, $0, 10

syscall

1. Run the program step by step and complete the following table:

Instruction $8 $9 $10 $11

Before execution

ori $8, $0, 5

ori $9, $0, - 4

ori $10, $0, 0x2259

ori $11, $0, 0x9234

or $9, $9, $8

Analyze the results in this table and answer the following questions:

2. What does the instruction ori $8, $0, 5 do ?

3. Given that the immediate value used in the instruction ori $RD, $RS, imm is
defined over 16 bits, deduce the extension applied to this immediate value in the
general case.

4. What is the difference between instructions or and ori ?

3.3.3 Exercise 3: Discovery of the instruction "lui" (load Upper Im-

mediate)

Enter the following program, then assemble.

37

Part 3 Series of practical exercises

.text

_start:

lui $8, 5 # 5 is a positive immediate value expressed in decimal

lui $9, - 4 # - 4 is a negative immediate value expressed in decimal

lui $10, 0x2259 # 0x2259 is a positive immediate value expressed in hexa

lui $11, 0x9234 # 0x9234 is a negative immediate value expressed in hexa

addi $2, $0, 10

syscall

1. Run the program step by step and complete the following table:

Instruction $8 $9 $10 $11

Before execution

lui $8, 5

lui $9, -4

lui $10, 0x2259

lui $11, 0x9234

Analyze the results in this table and answer the following questions:

2. What does the instruction lui $10, 0x2259 do ?

3. Given that the immediate value used in the instruction lui $RD, imm is defined
over 16 bits, deduce how the content of register $RD is obtained.

3.3.4 Exercise 4 (Comprehension Test and some uses of the instruc-

tions seen previously)

1. Write the assembly code to load the value 0x1234 into register $8.

2. Write the assembly code to load the value 0x9456 into register $9.

3. Write the assembly code to load the value -1 into register $10.

4. Write the assembly code to load the value 0x1234F678 into register $11.

5. The macro instruction Li $RD, imm allows a 32-bit immediate to be loaded into
register $RD. Knowing that this macro is not part of the MIPS R3000 instruction
set, write the corresponding MIPS instructions.

38

Part 3 Series of practical exercises

3.4 PW N°3: Input/output instructions

3.4.1 Introduction

To perform input/output operations involving reading or writing a number or a string
to the console, the user program must use a system call with the syscall instruction.

By convention, the system call number is contained in register $2, and its arguments
are in registers $4 or $5. The various system calls are illustrated in the Table 3.2 :

System Call Corresponding Operation

Number

1 Displaying the integer in register $4 on the console

4 Displaying the string whose address is in register $4

5 Reading an integer from the keyboard and placing it in register $2

8 Reading a string from the keyboard

10 Exiting the program properly

TABLE 3.2: System calls in MIPS R3000

3.4.2 Exercise 1 (Writing an integer: System call Number 1)

Follow the steps below:

1. Write the instruction that places the value of the integer to be displayed (e.g.,
0x4567) in register $4.

2. Write the instruction that places the immediate 1 in register $2.

3. Write the system call instruction (syscall).

4. Write the instructions to properly terminate the program.

5. Assemble and execute your program.

NB: The result will be displayed in the TTY window. To display it click on ’To’ in
the simulator and then on ’TTY’ (see Figure 3.1).

FIGURE 3.1: Window for displaying an integer on screen

39

Part 3 Series of practical exercises

3.4.3 Exercise 2 (Reading an integer from the keyboard: System call

Number 5)

Follow the steps below:

1. Write the instruction to place the value 5 in register $2.

2. Write the system call instruction (syscall).

3. Write the instruction to transfer the read value (currently in register $2) to another
register (e.g. $8).

4. Write the instructions to properly terminate the program.

5. Assemble and execute your program. After executing the syscall instruction, the
following dialog box will appear, allowing you to enter the value from the key-
board (see Figure 3.1).
NB: The value entered via the keyboard must be expressed in hexadecimal.

FIGURE 3.2: Dialog box for the reading of an integer from the keyboard

3.4.4 Exercise 3 (Displaying a string: System call number 4)

Follow the steps below:

1. In the data section (.data), declare the string to be displayed (e.g. ’Hello World!’)
using the following syntax:

40

Part 3 Series of practical exercises

.data

string_id : .asciiz "String to display"

2. In the text section: Write the instructions to place the address of the string (your
string_id) in register $4.

3. Write the instruction to place the immediate 4 in register $2.

4. Write the system call instruction (syscall).

5. Write the instructions to properly terminate the program.

6. Assemble and execute your program.

NB: The results will be displayed in the TTY window.

3.4.5 Exercise 4 (Understanding Test)

Write an assembly program that reads two integers from the keyboard, then calculates
and displays their sum (ADD), difference (SUB), product (MUL), quotient (DIV), and
remainder (MOD). The output should be displayed as follows:

The sum is:

The difference is:

The product is:

The quotient is:

The remainder is:

41

Part 3 Series of practical exercises

3.5 PW N°4: Memory (Load/store) instructions
Enter the following program, then assemble.

.data

A: .word 0x12345678

.text

_start:

la $10, A

lw $11, 0($10)

addi $2, $0, 10

syscall

Part I: Exploring the main memory of MIPS R3000:
After loading the program and before starting its execution, observe the memory

representation in the simulator (shown in Figure 3.3) and then answer the following
questions:

FIGURE 3.3: Representation of the main memory in SIMIPS environment

Questions:

1. What are the different sections of the MIPS R3000 memory?
Example: Text, ...

2. What are the different segments of the MIPS R3000 memory?

3. What does the Text section of the MIPS R3000 memory contain?

4. What is the starting address of the Text section (Click on the Text tab)?

5. What does the Data section of the MIPS R3000 memory contain?

6. What is the starting address of the Data section (Click on the Data-Word tab)?

7. What does the Stack section of the MIPS R3000 memory contain?

42

Part 3 Series of practical exercises

8. What is the starting address of this section (See the contents of $29)?

9. How many bits are used to represent a memory address, a memory cell, and a
word in MIPS R3000 ?

Part II: Exploring Load/Store Instructions

3.5.1 Exercise 1: Discovery of load word instruction

We are continuing with the program from Part I.

1. Run the program and complete the following table (Click on Data-word in the
memory section):

Instruction Value of A Word [A] $10 $11

(Address) (Data− word)

A : .word 0x12345678

la $10, A

lw $11, 0($10)

2. What does the macro "la $10, A" do?

3. How is the load address calculated in the instruction lw $11, 0($10)?

4. What does the register $11 contain at the end of the program’s execution?

5. Deduce the role of the program.

3.5.2 Exercise 2: Discovery of store word instruction

Enter the following program, then assemble.

.data

A: .word 0x12345678

.text

_start:

addi $11, $0, 0x3579

la $10, A

sw $11, 0($10)

addi $2, $0, 10

syscall

43

Part 3 Series of practical exercises

1. Run the program and complete the following table (Click on Data-word in the
memory section):

Instruction Value of A Word [A] $10 $11

(Address) (Dataword)

A : .word 0x12345678

addi $11, $0, 0x3579

la $10, A

sw $11, 0($10)

2. What does the instruction sw $11, 0($10) modify?

3. Deduce the role of the program.

3.5.3 Exercise 3: Example of memory instruction application

Write an assembly program that performs the following tasks:

• Reserve two 32-bit words in memory at addresses adr1 and adr2 and initializing
them to the values 0x65 and 0x34 respectively.

• Add their values and store the result in memory at address adr3.

3.5.4 Exercise 4 (Optional): Memory reading Instructions (Load)

1. Enter the following program, then assemble.

44

Part 3 Series of practical exercises

.data

A: .word 0x1234F698

B : .word 0xA3C8

.text

_start:

la $10, A

lw $11,0($10)

lh $11,0($10)

lhu $11,0($10)

lh $11,4($10)

lb $11,5($10)

la $10, B

lb $11,0($10)

lbu $11,0($10)

addi $2, $0,10

syscall

2. Run the program step by step and complete the following table:

Instruction $10 $11

la $10, A

lw $11, 0($10)

lh $11, 0($10)

lhu $11, 0($10)

lh $11, 4($10)

lb $11, 5($10)

la $10, B

lb $11, 0($10)

lbu $11, 0($10)

3. Analyze the results obtained previously and complete the following table:

45

Part 3 Series of practical exercises

Mnemonic Meaning Number and location of Extension applied to

loaded bytes into RD remaining bits of RD

Lw RD,I(RS) Load Word None

Lh RD,I(RS) 2 bytes from memory will be

loaded into the low part

of register RD

Lhu RD,I(RS)

Lb RD,I(RS)

Lbu RD,I(RS)

3.5.5 Exercise 5 (Optional): Memory Write Instructions (Store)

1. Enter the following program, then assemble.

.data

A: .word 6

.text

_start:

la $10, A

li $11, 0x12345678

sw $11,0($10)

li $11, 0x09ABCDEF

sh $11,0($10)

li $11, 0x567890AB

sb $11, 0($10)

sb $11, 2($10)

addi $2, $0,10

syscall

46

Part 3 Series of practical exercises

2. Run the program step by step and complete the following table:

Instruction $11 Word[A]

A: .word 6

li $11, 0x12345678

sw $11,0($10)

li $11, 0x09ABCDEF

sh $11,0($10)

li $11, 0x567890AB

sb $11, 0($10)

sb $11, 2($10)

3. Analyze the results obtained previously and complete the following table:

Mnemonic Meaning Number and location of Extension

stored bytes applied

sw RD,I(RS) Save Word None

sh RD,I(RS) The two less significant bytes of

register RD are stored in memory

sb RD,I(RS)

47

Part 3 Series of practical exercises

3.6 PW N°5 : Conditional and unconditional branch in-

structions

3.6.1 Exercise 1: The simple alternative instruction "if..then" and the

double alternative "if..then..else"

The two following programs (written in Pascal) allow reading two integers, then cal-
culating and displaying their maximum.

1. Write the corresponding MIPS R3000 assembly program for the program Max1.

Program Max1; # Example of a double alternative instruction

Var x, y, max : integer ;

Begin

Read(x,y) ; # Read the two integers

if (x > y) then # Comparing x and y values

max := x # Set the maximum value to x

else

max := y ; # Set the maximum value to y

Writeln(max); # Display maximum value

End.

2. Is it possible to write the corresponding MIPS R3000 assembly program for the
program Max1 without using jump instructions ?

3. Write the corresponding MIPS R3000 assembly program for the following pro-
gram Max2.

Program Max2; # Example of a simple alternative instruction

Var x, y, max : integer ;

Begin

Read(x,y) ; # Read the two integers

max := x ; # Initialize the maximum value to x

if (y > x) then # Comparing x and y values

max := y ; # Set the maximum value to y

Writeln(max); # Display maximum value

End.

48

Part 3 Series of practical exercises

4. Rewrite the corresponding MIPS R3000 assembly program for the program Max2
without using a jump instruction.

NB: To test your programs, please consider the 3 possible cases:

1. x < y: for example, x = 3 and y = 8.

2. x = y : for example, x = 3 and y = 3.

3. x > y : for example, x = 8 and y = 3.

3.6.2 Exercise 2: Example of an iterative instruction "the While loop"

The following program (written in Pascal) allows for calculating and displaying the
integer P = xy (x raised to the power of y):

Program Power;

Var x, y, p, i : integer ;

Begin

Read(x,y) ; # Read x and y values

p := 1 ; # Initialize p (power) to 1

i := 1 ; # Initialize i (loop counter) to 1

While (i <= y) do

begin

p := p ∗ x; # Multiply p by x

i := i + 1 ; # Increment i by 1

end;

Write(p); # Display the value of p

End.

Answer the following questions:

1. Write the corresponding program in MIPS R3000 Assembly.

2. Rewrite the same program to store the following intermediate results x0, x1, . . . ,
xy in memory.

Indication: Store the values of variables x, y, p, and i in registers $9, $10, $4, and $11,
respectively.

49

Part 3 Series of practical exercises

3.6.3 Exercise 3: Example of a program with branching instructions

Enter the following program, then assemble.

.data

Tab: .word 0x12, 10 , -15, 7, 14

.text

_start:

addi $4,$0,0

la $9,Tab

addi $10,$0,5

boucle: beq $10, $0, Affichage

lw $11,0($9)

add $4, $4, $11

addi $9, $9, 4

addi $10, $10, -1

j boucle

Affichage : addi $2, $0, 1

syscall

addi $2, $0,10

syscall
Answer the following questions:

1. What is the value of the label “Tab”?

2. What is the value of the label “boucle”?

3. What is the value of the label “Affichage”?

4. What is contained in register 9 ?

5. What is contained in register 10 ?

6. What is contained in register 11 ?

7. What is contained in register 4 ?

8. What are the contents of registers $4, $9, $10, and $11 at the end of the program
execution ?

9. Deduce the role of the program.

50

Part 3 Series of practical exercises

3.6.4 Exercise 4: Example of exercise on arrays

Write an assembly program that allows for the following:

• Read the number of elements of an array of integers T and store it in $8;

• Read all the elements of the array and store them in memory starting from the
address T;

• Calculate and display the number of strictly positive elements in the array T.

3.6.5 Exercise 5 (optional): Conversion of a decimal number to binary

Write an assembly program that converts a decimal number to base 2.

51

Part 3 Series of practical exercises

3.7 Conclusion
In this part, students were progressively introduced to essential instructions in MIPS
R3000 assembly language programming.

PW N°1 introduced students to SIMIPS emulator, emphasizing the process of writ-
ing and running code. The rest of series began with an exploration of basic arithmetic
and logical instructions, followed by an examination of input/output operations used
to exchange data with the user. Then, memory management instructions were de-
tailed in series 4. The last series aimed to introduce students about both conditional
and unconditional branching, which are crucial for controlling the flow of execution in
programs. Thus,the student will be able to translate any algorithm into a MIPS R3000
assembly language program using the basic instructions provided by this language.

Through these exercises, students have developed the foundational skills needed
to translate algorithms into MIPS R3000 assembly language, preparing them to imple-
ment a wide range of basic to intermediate level programs using this language’s core
instruction set.

52

53

Conclusion

This document was designed to provide a comprehensive and structured learning ex-
perience for second year computer science students delving into the MIPS R3000 as-
sembly language. It was designed to facilitate a deep understanding of both theoreti-
cal concepts and practical applications. Through a discovery-based learning approach
and hands-on exercises, students will gain proficiency in working with instruction sets,
memory management, and CPU operations.

Part 1 established the foundation by describing the MIPS R3000 processor’s assem-
bly language, including its external architecture, memory structure, CPU registers, and
instruction set. This foundational understanding enables students to grasp the syntax
and rules necessary for effectively creating assembly language programs.

Part 2 introduced the working environment and tools, including a thorough guide
to using the SIMIPS R3000 emulator. This section explained the steps required for
developing, assembling, and executing programs, ensuring students are well-prepared
to navigate the programming environment.

Part 3 provided a series of practical exercises in MIPS R3000 assembly language
programming, each focused on a particular type of instruction. Each exercise series
offered two types of activities: discovery exercises, where students explored basic as-
sembly instructions by running provided programs and observing results, and appli-
cation exercises. Through discovery exercises, students gained insight into the role
of each instruction by answering targeted questions. After building a foundational
understanding, students were then able to apply their knowledge in application exer-
cises and comprehension tests, allowing them to practice, develop, and test their own
assembly programs. This structured progression helped to build foundational skills
in MIPS assembly language, equipping students with essential tools for low-level pro-
gramming and algorithm implementation. With practical exercises, students not only
gained a deeper understanding of how to manipulate data at the hardware level but
also developed the confidence to tackle more complex programming challenges.

This pedagogical approach ensures that learners actively construct their knowl-
edge, fostering a sense of autonomy and confidence in their programming abilities.

Conclusion Conclusion

Ultimately, the structured content of this guide aims to prepare students for more ad-
vanced studies in computer architecture and low-level programming, laying a solid
foundation for their academic and professional journeys.

54

55

Bibliography

[1] Robert Britton. MIPS Assembly Language Programming. Prentice Hall, 2002.

[2] Randal E. Bryant and David R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Prentice Hall, 2001.

[3] Jean-Lou Desbarbieux, François Dromard, Alain Greiner, Frédéric Pétrot, and
Franck Wajsburt. Processeur MIPS R3000. Architecture externe. https://fr.scribd.
com/document/608840496/mips-externe-modifie. Accessed: 05 , 2025. 2003.

[4] Jean-Lou Desbarbieux, François Dromard, Alain Greiner, Frédéric Pétrot, and
Franck Wajsburt. Processeur MIPS32 Langage d’assemblage. https://largo.lip6.
fr/trac/sesi-ose/chrome/site/mips32assembleur_li312.pdf. Accessed: 05 ,
2025. 2009.

[5] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall PTR, Inc.,
1988.

[6] Charles W. Kann. Introduction to MIPS Assembly Language Programming. 2. Open
Textbooks, 2015. URL: https://cupola.gettysburg.edu/oer/2.

[7] James Larus. SPIM: A MIPS32 Simulator. https://spimsimulator.sourceforge.
net. Accessed: 05 , 2025.

[8] Olivier Marchetti. Architecture des ordinateurs – Mémento MIPS. https://www.
academia.edu/35603222/CM2_Larchitecture_MIPS32. Accessed: 05 , 2025.

[9] David A Patterson and John L Hennessy. Computer organization and Design. Mor-
gan Kaufmann, 1994.

[10] Dominic Sweetman. See MIPS run. Elsevier, 2010.

[11] Kenneth Vollmar and Pete Sanderson. MARS MIPS Assembler and Runtime Simu-
lator. https://computerscience.missouristate.edu/mars-mips-simulator.
htm. Missouri State University, Accessed: 05 , 2025.

https://fr.scribd.com/document/608840496/mips-externe-modifie
https://fr.scribd.com/document/608840496/mips-externe-modifie
https://largo.lip6.fr/trac/sesi-ose/chrome/site/mips32assembleur_li312.pdf
https://largo.lip6.fr/trac/sesi-ose/chrome/site/mips32assembleur_li312.pdf
https://cupola.gettysburg.edu/oer/2
https://spimsimulator.sourceforge.net
https://spimsimulator.sourceforge.net
https://www.academia.edu/35603222/CM2_Larchitecture_MIPS32
https://www.academia.edu/35603222/CM2_Larchitecture_MIPS32
https://computerscience.missouristate.edu/mars-mips-simulator.htm
https://computerscience.missouristate.edu/mars-mips-simulator.htm

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	MIPS R3000 assembly language overview
	Introduction
	MIPS computer Architecture
	MIPS R3000 instruction operands
	SYNTAX of a MIPS R3000 assembly program
	Conclusion

	 Presentation of the working environment: SIMIPS emulator
	Introduction
	Tools needed to develop and run a program written in assembly language
	Getting started with the SIMIPS emulator and presentation of the main interfaces
	Conclusion

	Series of practical exercises
	Introduction
	PW N°1 : Write and execute your first MIPS R3000 assembly program
	PW N °2: Arithmetic and logical instructions
	PW N°3: Input/output instructions
	PW N°4: Memory (Load/store) instructions
	PW N°5 : Conditional and unconditional branch instructions
	Conclusion

	Conclusion
	Bibliography

