Ministère de l'enseignement supérieur et de la recherche scientifique

Université Abderrahmane MIRA de Bejaia

Présentation

Université de Béjaïa

✓ Dr. DJAFRI Ghani

√ ghani.djafri@univ-bejaia.dz

A propos du cours

Crédits: 02

Faculté de Technologie

Université de Béjaïa

Coefficients: 02

Les systèmes de codage des informations

© Comment l'information est représentée en informatique ?

Les systèmes de codage des informations

Comment l'information est représentée en informatique ?

En informatique, toute information — qu'elle soit **numérique**, **textuelle**, **visuelle** (image ou vidéo), **sonore**....est représentée à l'aide de séquences binaires, c'est-à-dire composées uniquement de deux chiffres : **0** et **1**. Ces chiffres sont appelés des **bits**, abréviation de "**binary digit**" (chiffre binaire).

Un bit est donc l'unité de base de l'information en informatique.

Chaque bit peut prendre deux états possibles :

0 : absence de courant électrique;

1 : présence de courant électrique.

La mémoire centrale se mesure actuellement par milliers de mégaoctets.

- ✓ 1 octet = 8 bits;
- ✓ 1 Kilooctets (Ko) = 2^{10} octets = 1024 octets;
- ✓ 1 Mégaoctets (Mo) = 2^{20} octets;
- ✓ 1 Gigaoctets (Go) = 2^{30} octets;

Les systèmes de numération

Définition : C'est la représentation d'un entier naturel N en une base **b**. Ainsi, un système de numération se définit par deux éléments :

- 1. La base du système (b);
- 2. Les symboles du système (l'ensemble des chiffres et des lettres qui représentent la base).

Exemple

- En base 2 (binaire), on utilise seulement 0 et 1(ex:0, 1, 10, 11, 100 ...)
- En Base 8 (octale): On utilise les chiffres de 0 à 7(ex:0, 1, 7, 10, 17, 20 ...)
- En base 10 (décimal), on utilise les chiffres de 0 à 9(0, 5, 9, 10, 11, 25 ...)
- En base 16 (hexadécimal), on utilise 0 à 9, puis A à F (A = 10, B = 11, ..., F = 15) (ex:0, 9, A, F, 10, 1A, FF ...).

Notation

Un nombre quelconque Nb exprimé dans une base b sera noté comme suit:

$$NB = (a_{n-1}a_{n-2}....a_1a_0)_b$$

b : la base du système de numérotation

 a_i : symbole du système de numérotation. i=0...n-1; et $a_i < b$

Exemples

NB1= $(1995)_{10}$ avec $a_3 = 1$; $a_2 = 9$; $a_1 = 9$; $a_0 = 5$

NB1=(248)₈ Cette notation est erronée, car le nombre contient 8 un symbole supérieur ou

égale à la base.

Remarques :

- Quand la base n'est pas mentionnée, on considère qu'on est en base 10.
- Dans une base b, nous avons b chiffres: 0, 1, 2,, (b-1).

Conversion d'un nombre d'un système à un autre

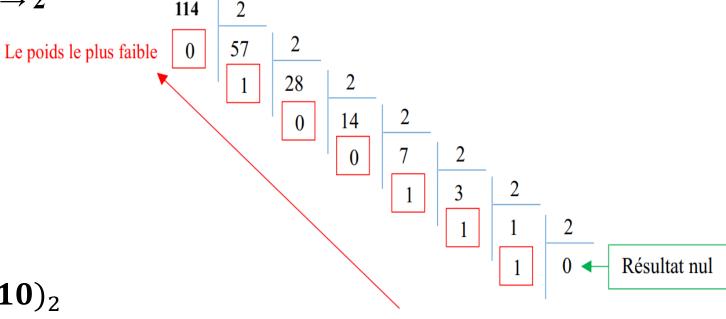
 \square Conversion de la base 2, 8, 16 \rightarrow base 10

Pour convertir un nombre $NB = (a_{n-1}a_{n-2}.....a_1a_0)_b$ de base b (binaire, octal, hexadécimal,) en **décimal** on effectue le calcul suivant:

$$(NB)_b = (a_{n-1} * b^{n-1} + a_{n-2} * b^{n-2} + ... + a_1 * b^1 + a_0 * b^0)_{10}$$

$$(NB)_b = \sum_{i=0}^{n-1} a_i * b^i$$

Le poids des symboles

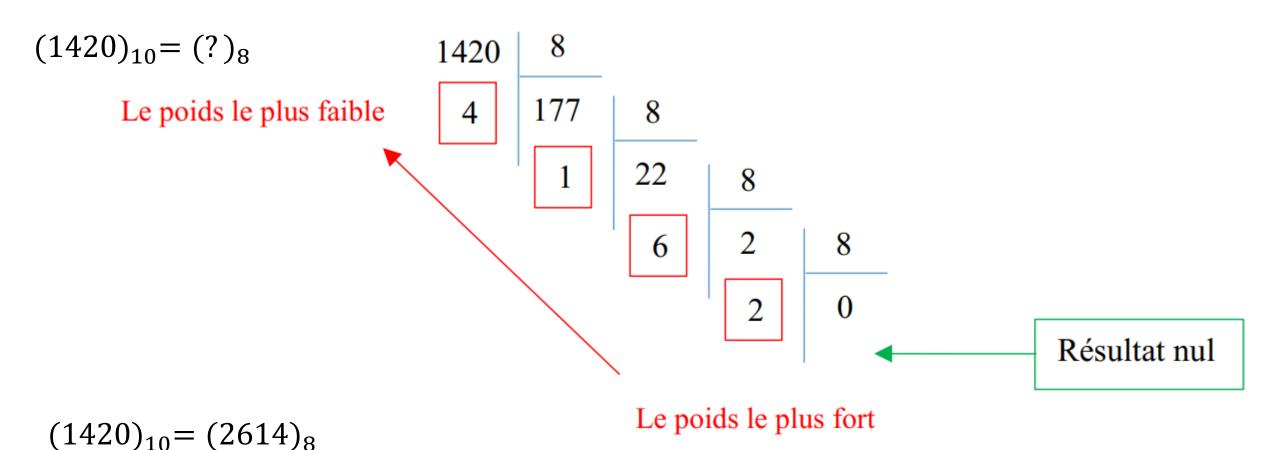

 \square Conversion de la base $10 \rightarrow b$ (base 2, 8, 16,...etc)

Soit Nb un nombre exprimé dans la base 10, pour trouver son équivalent en base b, on applique **la méthode des divisions successives** sur b, jusqu'à l'obtention d'un résultat nul. Puis, on récupère les restes des divisions dans le sens invers. le dernier reste trouvé représentera le poids le plus fort et le premier reste trouvé sera le poids le plus faible.

Exemple 1

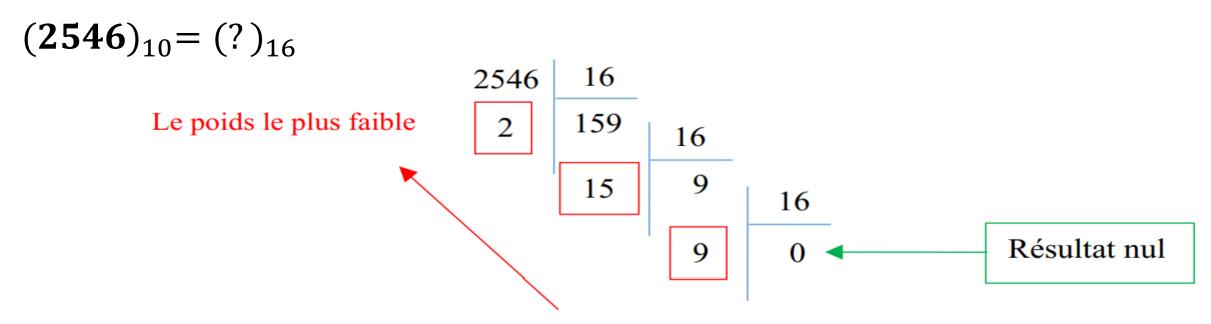
Conversion de la base $10 \rightarrow 2$

$$(114)_{10} = (?)_2$$



$$(114)_{10} = (1110010)_2$$

Le poids le plus fort


Conversion de la base $10 \rightarrow 8$

Exemple 2

Conversion de la base $10 \rightarrow 16$

Exemple 3 :

Le poids le plus fort

$$(2546)_{10} = (9F2)_{16}$$

 \square Conversion de la base 8 \rightarrow base 2

Pour convertir un nombre Nb exprimé en base 8 vers la base 2, nous procédons comme suit: $8 = 2^3$.

Il faut donc utiliser 3 bits pour exprimer un seul chiffre octal en binaire.

La représentation des chiffres de la base 8 vers le binaire est comme suit :

$$(7)_8 = (1 * 2^2 + 1 * 2^1 + 1 * 2^0)_2 = (111)_2$$

$$(4)_8 = (1 * 2^2 + 0 * 2^1 + 0 * 2^0)_2 = (100)_2$$

$$(3)_8 = (0 * 2^2 + 1 * 2^1 + 1 * 2^0)_2 = (011)_2$$

Chiffre en octal	Chiffre équivalent en binaire			
	$(2^2 \ 2^1 \ 2^0)$			
0	0 0 0			
1	0 0 1			
2	0 1 0			
3	0 1 1			
4	1 0 0			
5	1 0 1			
6	1 1 0			
7	1 1 1			

\Box Conversion de la base 16 \rightarrow base 2

Pour convertir un nombre Nb exprimé en base 16 vers la base 2, nous procédons comme suit: $16 = 2^4$

Il faut donc utiliser 4 bits pour exprimer un seul chiffre hexadécimal en binaire.

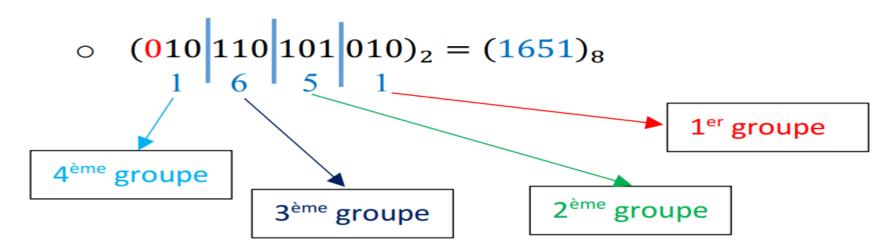
La représentation des chiffres de la base 16 vers le binaire est comme suit :

Chiffre en	Chiffre équivalent en binaire
hexadécimal	$(2^3 \ 2^2 \ 2^1 \ 2^0)$
0	0 0 0 0
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4	0 1 0 0
5	0 1 0 1
6	0 1 1 0
7	0 1 1 1

Chiffre en	Chiffre équivalent en binaire
hexadécimal	$(2^3 \ 2^2 \ 2^1 \ 2^0)$
8	1 0 0 0
9	1 0 0 1
A	1 0 1 0
В	1 0 1 1
С	1 1 0 0
D	1 1 0 1
Е	1 1 1 0
F	1 1 1 1

Exemple

$$(7B3A)_{16} = (0111\ 1011\ 0011\ 1010)_2$$

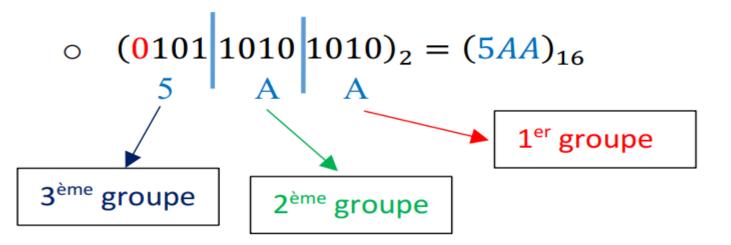

 \square Conversion de la base 2 \rightarrow base 8

Pour trouver l'équivalent d'un nombre binaire en octal, il suffit de former des **groupes de 3** bits chacun (Puisque $8 = 2^3$), en commençant du poids le plus faible (à partir de la droite).

Si le dernier groupe formé possède moins de 3 bits, il suffit de rajouter des 0, puis calculer l'équivalent en octal de chaque groupe

Exemple:

 \circ $(10110101010)_2 = (?)_8$



 \Box Conversion de la base 2 \rightarrow base 16

Pour trouver l'équivalent d'un nombre binaire en Hexadécimal, il suffit de former des **groupes de 4 bits** chacun (Puisque $16 = 2^4$), en commençant du poids le plus faible (à partir de la droite), si le dernier groupe formé possède moins de 4 bits, il suffit de rajouter des 0, puis calculer l'équivalent en Hexadécimal de chaque groupe.

Exemple:

$$\circ$$
 $(10110101010)_2 = (?)_{16}$

\square Conversion de la base 16 \rightarrow base 8

Pour convertir un nombre Nb exprimé en base 16 vers la base 8 ou vice versa, nous devons passer par une base intermédiaire tel que le décimal ou le binaire, mais le passage par le binaire est beaucoup plus simple.

Exemple:

$$\circ$$
 $(C9F)_{16} = (1100 \ 1001 \ 1111)_2$

Chiffre en	Chiffre équivalent en binaire				
hexadécimal	(2 ³	2 ²	2 ¹	2 ⁰)	
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
A	1	0	1	0	
В	1	0	1	1	
С	1	1	0	0	
D	1	1	0	1	
Е	1	1	1	0	
F	1	1	1	1	

<u>I.6.3. Le code D.C.B. (Decimal Coded Binary – Décimal codé binaire)</u>

Le code DCB consiste à convertir chaque chiffre décimal en un nombre binaire sur 4 positions.

Exemple:

Le nombre décimal 378 est codé en DCB comme suit : 0011 0111 1000 Dans ce code, chaque chiffre décimal est remplacé par 4 chiffre binaires (comme dans le cas de hexadécimal).

La codification Alphanumériques

Les chiffres, lettres, signes de ponctuation, les symboles mathématiques, etc., sont représentées généralement en utilisant le code normalisé à 8 positions binaires. On utilise pour cela le code EBDIC (Extended Binary Coded Decimal International Code) ou le code ASCII (American Standard Code Information Interchange).

Exemples:

Tableau I.2: Exemples de codification Alphanumériques

Lettre / Signe / Symbole	En EDCDIC	En ASCII
A (Majuscule)	11000001	10100001
D (miniscule)	10000010	11100100
=	01111110	01011101