Ministère de l'enseignement supérieur et de la recherche scientifique

Université Abderrahmane MIRA de Bejaia

Présentation

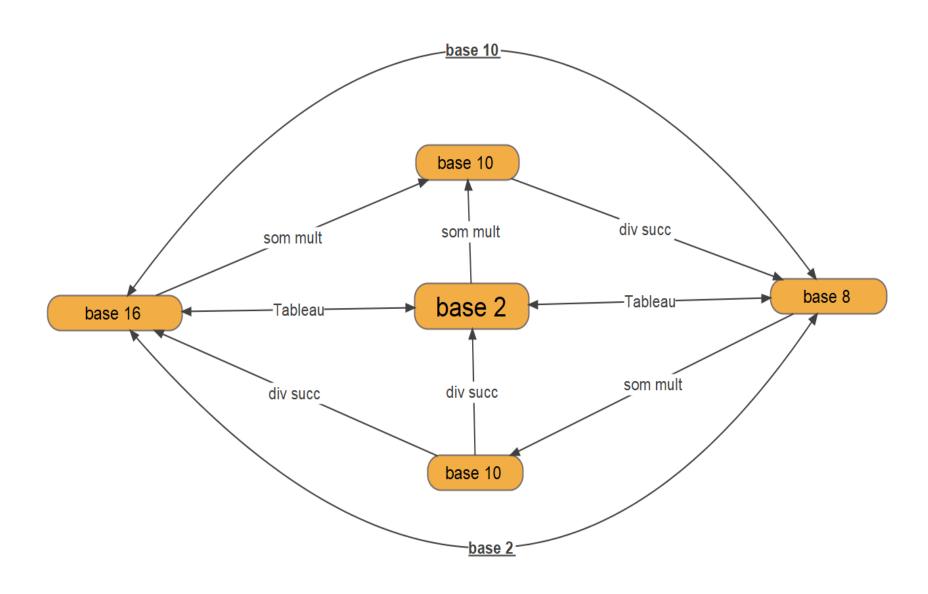
Université de Béjaïa

✓ Dr. DJAFRI Ghani

√ ghani.djafri@univ-bejaia.dz

A propos du cours

Crédits: 02


Faculté de Technologie

Université de Béjaïa

Coefficients: 02

Les systèmes de codage des informations

o Les systèmes de numérotation

Les systèmes de codage des informations

○ Le code D.C.B. (Decimal Coded Binary – Décimal codé binaire)

Le code DCB consiste à convertir chaque chiffre décimal en un nombre binaire sur 4 positions.

Exemple:

Le nombre décimal 378 est codé en **DCB** comme suit :0011 0111 1000 Dans ce code, chaque chiffre décimal est remplacé par 4 chiffre binaires (comme dans le cas de hexadécimal).

Les systèmes de codage des informations

La codification Alphanumériques

Les chiffres, lettres, signes de ponctuation, les symboles mathématiques, etc., sont représentées généralement en utilisant le code normalisé à 8 positions binaires. On utilise pour cela le code EBDIC (Extended Binary Coded Decimal International Code) ou le code ASCII (American Standard Code Information Interchange).

Exemples

Lettre / Signe / Symbole	En EDCDIC	En ASCII
A (Majuscule)	11000001	10100001
D (miniscule)	10000010	11100100
=	01111110	01011101

Expressions arithmétiques

C'est une combinaison d'opérande(s) (les éléments sur lesquels portent les calculs: valeur, constante, variable) et d'opération(s) arithmétiques. Exemple : b := (a * 2) - 4;

Les opérations arithmétiques

Opération	Symbole
Addition	+
Soustraction	_
Multiplication	*
Division réelle	/
Division entière	Div
Modulo (reste de la division entière)	Mod

Power(base, exposant)

Applicables sur des entiers

Our Expressions arithmétiques

Remarque: La division entière donne comme résultat un quotient entier tandis que la division réelle donne un quotient réel. Le Mod, quant à lui, est le modulo, c.à.d. le reste de la division entière.

Exemple

10 Div
$$4 = 2$$
 tandis que $10 / 4 = 2.5 \rightarrow 10 \text{ Mod } 4 = 2$

20 Div
$$6 = 3$$
 tandis que $20 / 6 = 3.33 \rightarrow 20 \text{ Mod } 6 = 2$

6 Div
$$8 = 0$$
 tandis que $6 / 8 = 0.75 \rightarrow 6 \text{ Mod } 8 = 6$

Output Expressions relationnelles

Une expression relationnelle compare deux valeurs (ou expressions) à l'aide d'un opérateur relationnel et retourne un booléen (True ou False). Exemple: a <= b. True si a est inférieur ou égal à b.

Les opérateurs relationnels

Relation	Symbole
Egalité	=
Inférieur	<
Inférieur ou égal	<=
Supérieur	>
Supérieur ou égal	>=
Différent	<>

Expressions logiques (booléennes)

C'est une combinaison de variables de type booléen (True : Vrai ou False : Faux) et d'opérateurs booléens (Not : Non, And : Et, Or : Ou). Exemple: (a > 0) and (b < 10) True si les 2 sont vrais.

☐ L'opérateur booléens <u>AND</u>

L'opérateur AND est utilisé pour vérifier si deux conditions sont vraies en même temps. . Il donne :

- ✓ True seulement si les deux expressions sont vraies.
- ✓ False dans tous les autres cas.

Opérande 1	Opérande 2	Opérande 1 AND Opérande 2
True	True	True
True	False	False
False	True	False
False	False	False

Expressions logiques (booléennes)

☐ L'opérateur booléens <u>OR</u>

L'opérateur OR est utilisé pour vérifier si au moins une des deux conditions est vraie. Il donne :

- ✓ True si au moins une des deux conditions est vraie.
- ✓ False seulement si les deux sont fausses.

Opérande 1	Opérande 2	Opérande 1 OR Opérande 2
True	True	True
True	False	True
False	True	True
False	False	False

Expressions logiques (booléennes)

☐ L'opérateur booléens <u>NOT</u>

L'opérateur NOT sert à inverser une valeur logique (booléenne).

- ✓ Si la condition est True, alors not la rend False;
- ✓ Si la condition est False, alors not la rend True.

Opérande	NOT Opérande
True	False
False	True

***** Les fonctions

Liste de fonctions standards (ou prédéfinies) applicables sur des entiers ou des réels.

Fonction	Appel	Résultat retourné
Abs	Abs(x)	La valeur absolue d'un nombre x
Exp	Exp(x)	L'exponentiel d'un nombre x
Ln	Ln(x)	Le logarithme népérien d'un nombre x
Log10	Log10(x)	Le logarithme à base 10 d'un nombre x
Sqrt	Sqrt(x)	La racine carrée d'un nombre x
Sqr	Sqr(x)	Le carré d'un nombre x
Arctan	Arctan(x)	L'arc tangente d'un nombre x
Cos	Cos(x)	Le cosinus d'un nombre x
Sin	Sin(x)	Le sinus d'un nombre x
Round	Round(x)	La valeur arrondie d'un nombre x
Trunc	Trunc(x)	La partie entière d'un nombre x
Etc.		

La priorité dans les expressions

La priorité des opérateurs dans les expressions arithmétiques, logiques et relationnelles est comme suit :

- 1. Les parenthèses;
- 2. Les fonctions;
- 3. Le moins unaire, le Not;
- 4. *, /, Div, Mod, And
- 5. +, -, Or
- 6. =, <>, <, >, <=, >=

Évaluation des expressions

L'évaluation d'une expression consiste à calculer, au fur et à mesure, les résultats des calculs jusqu'à obtenir un résultat finale. Cela se fait en plusieurs étapes :

- Écrire l'expression sous forme linéaire (Il faut noter qu'en algorithmique, les expressions s'écrivent sous forme linéaire: $\frac{(x+z)}{(y*2)} \rightarrow (x+z)/(y*2)$
- Remplacer les identifiants (c'est à dire les noms) des variables et des constantes par leurs valeurs;
- Évaluer (Calculer) étape par étape chacune des sous-expressions en commençant par les sous-expressions qui sont dans les parenthèses les plus internes ;
- Indiquer à chaque calcul, le rang d'évaluation.

Remarque: Si les opérateurs ont le même rang de priorité, l'évaluation se fait de gauche à droite.

Évaluation des expressions

Exemple:

✓ Évaluer l'expression suivante en indiquant l'ordre d'évaluation :

Expression 1: $50 + 3 \mod 2 - 4 \dim 3 + 40$

Expression 2: (a < b)**OR** NOT(c <= d)AND(b > a)avec a = 1; b = 2; c = 4; d = 6.

Expression 3: $(sqr(b)mod \ a > c)or \ (d/(a+3) <> b)avec \ a = 2; b = 3; c = 1; d = 10.$

Évaluation des expressions

Exemple:

✓ Réécrire les expressions mathématiques en Algorithme/Pascal

Expressions mathématiques	PASCAL
$b^2 - 4ac$	
$\frac{-b-\sqrt{d}}{2a}$	
$e^{3a} + b $	
$4a < \frac{b}{c} ET (5c \le 7) OU (a \ne b)$	

Expression	PASCAL
2 <i>a</i>	2*a
$\frac{a}{b}$	a/b
a^2	sqr(a)
\sqrt{a}	sqrt(a)
a	abs(a)
ln(a)	ln(a)
$\log(a)$	$\ln(a)/\ln(10)$
e ^a	$\exp(a)$
x^n	$\exp(n * \ln(x))$