
1

Rappel :

Structures de contrôle répétitives : nous permettent de répéter un traitement un nombre fini de fois.

Nous avons trois types de structures itératives (boucles) :

 Boucle Pour (For)

La structure de contrôle répétitive Pour (For en langage PASCAL) utilise un indice entier qui varie (avec

un incrément = 1) d’une valeur initiale jusqu’à une valeur finale. À la fin de chaque itération, l’indice est

incrémenté de 1 d’une manière automatique (implicite).

La syntaxe de la boucle pour est comme suit :

 Boucle Tant-que (While)

La structure de contrôle répétitive Tant-que (While en langage PASCAL) utilise une expression logique

ou booléenne comme condition d’accès à la boucle : si la condition est vérifiée (elle donne un résultat vrai :

TRUE) donc on entre à la boucle, sinon on la quitte.

La syntaxe de la boucle tant-que est comme suit :

On exécute le bloc d'instructions tant-que la condition est vraie. Une fois la condition est fausse, on

arrête la boucle, et on continue l'exécution de l'instruction qui vient après fin Tant-que (après end).

3. Boucle Répéter (Repeat)

La structure de contrôle répétitive Répéter (Repeat en langage PASCAL) utilise une expression logique

ou booléenne comme condition de sortie de la boucle : si la condition est vérifiée (elle donne un résultat vrai :

TRUE) on sort de la boucle, sinon on y accède (on répète l’exécution du bloc).

La syntaxe de la boucle répéter est comme suit :

Université A. Mira de Bejaia Année universitaire 2025/2026

Faculté de Technologie 1èreAnnée Technologie

Département de Technologie Semestre 1

TP Structure des Ordinateurs et Applications

Corrigé de la Série de TP N°5 – Les instructions itératives Pour, Tant-que et Répéter

2

Solution de l’exercice N°01 :

1- Traduction de l’algorithme en programme PASCAL :

Algorithme Pascal

Algorithme TP5_Exo_01 ;

Variables

 i, N,S : entier ;

Début

{-*-*-*- Entrées -*-*-*-}

Écrire (‘Donner la valeur de N ’) ;

Lire (N) ;

 {-*-*-*- Traitements -*-*-*}

 S←0 ;

 Pour i←1 à N faire

 S ← S + 2*i ;

 Fin-Pour;

 {-*-*-*- Sorties -*-*-*}

 Écrire (‘Le résultat S= ’, S) ;

Fin.

program TP5_Exo_01;

var

i,N,S : integer;

begin

 {-*-*-*- Entrées -*-*-*-}

write (‘Donner la valeur de N ’) ;

read (N) ;

 {-*-*-*- Traitements -*-*-*}

 S:=0 ;

 for i:=1 to N do

 begin

 S := S + 2*i ;

 end;

 {-*-*-*- Sorties -*-*-*}

 write (‘Le résultat S= ’, S) ;

end.

On exécute le bloc d’instructions jusqu’à avoir la condition correcte. Une fois la condition est vérifiée,

on arrête la boucle, et on continue l’exécution de l’instruction qui vient après jusqu’à (après until).

Dans la boucle repeat on n’utilise pas begin et end pour délimiter le bloc d’instructions (le bloc est déjà

délimité par repeat et until).

3

 Compilation et exécution du programme pour N = 4

2- Déroulement de l’algorithme pour N=4 :

Instructions
Variables

Affichages
i N S

Écrire (‘Donner la valeur de N ’) ; / / / Donner la valeur de N

Lire (N) ; / 4 / /

S←0 ; / 4 0 /

Pour i←1 1 4
/

S ← S + 2*i ; S ← 0 + 2*1; S ← 2 ; 2

Pour i←2 2 4
/

S ← S + 2*i ; S ← 2 + 2*2 ; S ← 2 + 4 ; S ← 6 ; 6

Pour i←3 3 4
/

S ← S + 2*i ; S ← 6 + 2*3 ; S ← 6 + 6 ; S ← 12 ; 12

Pour i←4 4
/

S ← S + 2*i ; S ← 12 + 2*4 ; S ← 12 + 8 ; S ← 20 ; 20

Écrire (‘Le résultat S= ’, S) ; 4 4 20 Le résultat S= 20

3- Déduction de l’expression finale :

Selon le déroulement ci-dessus, nous avons :

𝒑𝒐𝒖𝒓 𝒊 = 𝟏 → 𝑺 = 𝟎 + 𝟐 = 𝟐

𝒑𝒐𝒖𝒓 𝒊 = 𝟐 → 𝑺 = 𝟐 + 𝟒 = 𝟔

𝒑𝒐𝒖𝒓 𝒊 = 𝟑 → 𝑺 = 𝟔 + 𝟔 = 𝟏𝟐

 𝒑𝒐𝒖𝒓 𝒊 = 𝟒 → 𝑺 = 𝟏𝟐 + 𝟖 = 𝟐𝟎

.

.

𝒑𝒐𝒖𝒓 𝒊 = 𝑵 → 𝑺 = 𝟐 + 𝟒 + 𝟔 + 𝟖 + ⋯ + 𝟐𝑵

La formule générale est ∶ 𝑺 = ∑ 𝟐𝒊

𝑵

𝒊=𝟏

4

4) Réécriture de l’algorithme/PASCAL en remplaçant la boucle Pour par la boucle Tant-que.

Algorithme Pascal

Algorithme TP5_Exo_01 ;

Variables

 i, N,S : entier ;

Début

{-*-*-*- Entrées -*-*-*-}

Écrire (‘Donner la valeur de N ’) ;

Lire (N) ;

 {-*-*-*- Traitements -*-*-*}

 S←0 ; i := 1 ;

 Tant-que (i <= N) faire

 S ← S + 2*i ;

 i := i + 1 ;

 Fin-Tant-que;

 {-*-*-*- Sorties -*-*-*}

 Écrire (‘Le résultat S= ’, S) ;

Fin.

program TP5_Exo_01;

var

i,N,S : integer;

begin

 {-*-*-*- Entrées -*-*-*-}

write (‘Donner la valeur de N ’) ;

read (N) ;

 {-*-*-*- Traitements -*-*-*}

 S:=0 ; i:=1;

 while (i<=N) do

 begin

 S := S + 2*i ;

 i := i + 1;

 end;

 {-*-*-*- Sorties -*-*-*}

 write (‘Le résultat S= ’, S) ;

end.

5) Réécriture de l’algorithme/PASCAL en remplaçant la boucle Pour par la boucle Répéter.

Algorithme Pascal

Algorithme TP5_Exo_01 ;

Variables

 i, N,S : entier ;

Début

{-*-*-*- Entrées -*-*-*-}

Écrire (‘Donner la valeur de N ’) ;

Lire (N) ;

 {-*-*-*- Traitements -*-*-*}

 S←0 ; i := 1 ;

 Répéter

 S ← S + 2*i ;

 i := i + 1 ;

 jusqu’à (i > N);

 {-*-*-*- Sorties -*-*-*}

 Écrire (‘Le résultat S= ’, S) ;

Fin.

program TP5_Exo_01;

var

i,N,S : integer;

begin

 {-*-*-*- Entrées -*-*-*-}

write (‘Donner la valeur de N ’) ;

read (N) ;

 {-*-*-*- Traitements -*-*-*}

 S:=0 ; i:=1;

 repeat

 S := S + 2*i ;

 i := i + 1;

 until (i > N);

 {-*-*-*- Sorties -*-*-*}

 write (‘Le résultat S= ’, S) ;

end.

5

6- Donner l’organigramme de cet algorithme :

7-Modifier le programme afin qu’il additionne les nombres jusqu’à ce que la somme dépasse 100 et afficher le

nombre d’itérations i effectuées pour obtenir cette somme :

Algorithme Pascal

Algorithme TP5_Exo_01 ;

Variables

 i, S : entier ;

Début

{-*-*-*- Traitements -*-*-*}

 S←0 ; i := 1 ;

 Tant-que (S <= 100) faire

 S ← S + 2*i ;

 i := i + 1 ;

 Fin-Tant-que;

 {-*-*-*- Sorties -*-*-*}

 Écrire (‘Le résultat S= ’, S) ;

 Écrire (‘Le nombre d’itérations nécessaire pour

obtenir une somme supérieure à 100 est : i = ’, i) ;

Fin.

program TP5_Exo_01;

var

i,S : integer;

begin

{-*-*-*- Traitements -*-*-*}

 S:=0 ; i:=1;

 while (S <= 100) do

 begin

 S := S + 2*i ;

 i := i + 1;

 end;

 {-*-*-*- Sorties -*-*-*}

 writeln (‘Le résultat s= ‘, S) ;

 writeln (‘Le nombre d’’itérations

nécessaire pour obtenir une somme

supérieure à 100 est : i = ’, i) ;

end.

Non

Début

Ecrire (‘Donner la valeur de N ’) ;

Lire (N) ;

S← 0 ;

i ← 1 ;

Fin.

S ← S + 2*i ;

Ecrire (‘Le résultat S= ’, S) ;

i ← i + 1 ;

i <= N

Oui

6

Compilation et exécution du programme :

 Objectif de l’exercice : 

Cet exercice permet de comprendre l’utilisation de la boucle FOR en Pascal. On utilise cette boucle

lorsqu’on connaît à l’avance le nombre de répétitions.

La boucle FOR avance automatiquement avec un pas de 1, ce qui convient parfaitement dans cet

exercice puisque l’utilisateur saisit un nombre N et que le programme doit afficher tous les nombres de

1 jusqu’à N.

 Etapes de résolution du problème 

1. Demander à l’utilisateur de saisir un entier positif N.

2. Utiliser une boucle FOR pour parcourir tous les nombres de 1 à N.

3. À chaque passage dans la boucle :

 Tester si le nombre est pair ou impair en utilisant l’opérateur modulo (i mod 2).

 Afficher le nombre ainsi que son type (pair ou impair).

Solution de l’exercice N°02 :

7

 Algorithme/Programme en PASCAL

Algorithme Programme Pascal

Algorithme Exercice02;

Variables

 N, i : Entiers;

Début

 {-*-*-*- Entrées -*-*-*-}

 // Demande à l'utilisateur de saisir un entier positif

 Ecrire ('Saisir un entier positif N : ');

 Lire (N);

{-*-*-*- Traitements -*-*-*-}

 // Boucle FOR : i varie de 1 jusqu'à N

 Pour i := 1 à N faire

 // Vérifier si le nombre est pair ou impair

 Si (i mod 2 = 0) alors

 Ecrire (i, ' est un nombre pair')

 Sinon

 Ecrire (i, ' est un nombre impair');

 Fin-Si;

Fin.

Program Exercice02;

Var

 N, i : Integer;

Begin

 {-*-*-*- Entrées -*-*-*-}

 // Demande à l'utilisateur de saisir un entier positif

 Write ('Saisir un entier positif N : ');

 Read (N);

{-*-*-*- Traitements -*-*-*-}

 // Boucle FOR : i varie de 1 jusqu'à N

 For i := 1 To N Do

 Begin

 // Vérifier si le nombre est pair ou impair

 If (i mod 2 = 0) Then

 Writeln (i, ' est un nombre pair')

 Else

 Writeln (i, ' est un nombre impair');

 End;

End.



 Compilation et exécution du programme pour N = 7 :

8

 Objectif de l’exercice : 

Cet exercice permet de comprendre l’utilisation de la boucle WHILE en Pascal. Dans ce programme,

la vitesse ne s’incrémente pas de 1 comme dans les exemples habituels, mais de 4 à chaque étape. Cela

montre que, lorsque l’on doit contrôler nous-même l’évolution d’une variable, la boucle WHILE est

plus adaptée. Elle permet de répéter le calcul tant que la vitesse ne dépasse pas la valeur maximale

choisie par l’utilisateur.

NB : La boucle FOR est pratique lorsque l’incrément est simple et régulier (+1). Dès qu’on a besoin d’un

pas différent de 1, les boucles WHILE ou REPEAT...UNTIL deviennent plus appropriées.

 Etapes de résolution du problème 

1- Demander à l’utilisateur de saisir la valeur maximale de la vitesse N. Cette valeur doit être un entier

supérieur ou égal à 2.

2- Initialiser la vitesse v à 1 m/s.

3- Calculer l’énergie cinétique Ec, avec la formule donnée, pour chaque vitesse v de 1m/s jusqu’à N,

avec un pas de 4m/s à chaque itération.

4- Pour chaque vitesse v, afficher l’énergie cinétique correspondante, avec deux chiffres après la

virgule.

 Programme en PASCAL



Solution de l’exercice 03 :

9

Solution de l’exercice N°04 :

 Compilation et exécution du programme pour N=18 :

 Objectif de l’exercice : 

Cet exercice permet de comprendre l’utilisation de la boucle REPEAT…UNTIL en Pascal. Cette

boucle est utilisée lorsque l’on ne connaît pas à l’avance combien de fois une action doit être répétée.

Dans ce programme, on ne sait pas combien de tentatives l’utilisateur fera avant de taper le bon mot de

passe. La boucle REPEAT permet donc de répéter la saisie tant que la condition n’est pas remplie.

 Etapes de résolution du problème 

1. Demander à l’utilisateur de saisir un mot de passe.

2. Lire la valeur entrée.

3. Vérifier si le mot de passe est correct (4951) en utilisant une condition SI.

4. Tant que le mot de passe est incorrect :

• afficher « Mot de passe incorrect, veuillez réessayer. »

• redemander une nouvelle saisie.

5. Quand le mot de passe correct est saisi, afficher « Accès autorisé ! ».









10

 Programme en PASCAL

 Compilation et exécution du programme pour : MP = 1234 ; MP = 4586 ; MP = 4951

