Université A. Mira de Bejaia vl Seaal Année universitaire 2025/2026
Faculté de Technologie \4) Tasdawit n Bgayet 1°*"*Année Technologie
Département de Technologie SR SR Semestre 1

TP Structure des Ordinateurs et Applications

Corrigé de la Série de TP N°5 — Les instructions itératives Pour, Tant-que et Répéter

Rappel :

Structures de contréle répétitives : nous permettent de répéter un traitement un nombre fini de fois.
Nous avons trois types de structures itératives (boucles) :

1. Boucle Pour (For)

La structure de contréle répétitive Pour (For en langage PASCAL) utilise un indice entier qui varie (avec
un incrément = 1) d’une valeur initiale jusqu’a une valeur finale. A la fin de chaque itération, ’indice est
incrémenté de 1 d’une maniére automatique (implicite).

La syntaxe de la boucle pour est comme suit :

pour <indice>«<vi> a <vf> faire for <indice>:=<vi> to <vf> do
| <instruction(s)> begin _
finPour; <instruction(s)>;
end;

<indice> : variable entiere

<vi> : valeur initiale <vf> : valeur finale

2. Boucle Tant-que (While)

La structure de contréle répétitive Tant-que (While en langage PASCAL) utilise une expression logique
ou booléenne comme condition d’acces a la boucle : si la condition est vérifiée (elle donne un résultat vrai :
TRUE) donc on entre a la boucle, sinon on la quitte.

La syntaxe de la boucle tant-que est comme suit :

tant-que <condition> faire while <condition> do ‘

<instruction(s)> begin \
finTant-que; <instruction(s)>;
end;

<condition> : expression logique qui peut étre vraie ou fausse.

On exécute le bloc d'instructions tant-que la condition est vraie. Une fois la condition est fausse, on
arréte la boucle, et on continue I'exécution de l'instruction qui vient apres fin Tant-que (aprés end).

3. Boucle Répéter (Repeat)

La structure de contrdle répétitive Répéter (Repeat en langage PASCAL) utilise une expression logique
ou booléenne comme condition de sortie de la boucle : si la condition est vérifiee (elle donne un résultat vrai :
TRUE) on sort de la boucle, sinon on y acceéde (on répéte 1’exécution du bloc).

La syntaxe de la boucle répéter est comme suit :

repéter repeat
<instruction(s)> <instruction(s)>;
jusqu'a <condition>; until <condition>;

<condition> : expression logique qui peut étre vraie ou fausse.

1

On exeécute le bloc d’instructions jusqu’a avoir la condition correcte. Une fois la condition est vérifiée,
on arréte la boucle, et on continue 1I’exécution de I’instruction qui vient aprés jusqu’a (aprés until).

Dans la boucle repeat on n’utilise pas begin et end pour délimiter le bloc d’instructions (le bloc est déja

délimité par repeat et until).

| Boucle Répéter | £F

cpt « vi;

Répéter
<Bloc_Inst_Répéter>;
cpt & cpt+1;

Jusqu'a (cpt > vf);

| Boucle Tant-que |
cpt « vi;
Tantque (cpt <= vf) do
<Bloc_Inst_Tantque>;
cpte cpt+1;

Fin-Tantque;

| Boucle Pour |
Pour cpt « vi a vf Faire

<Bloc_Inst_Pour>;
Fin-Pour;

Telque :
ctp : compteur(varible entiére)
vi : valeur initiale
vf : valeur finale

Modéle de conversion de la boucle Pour a Tant-que et a Répéter

Solution de I’exercice N°01 :

1- Traduction de I’algorithme en programme PASCAL :

Algorithme Pascal
Algorithme TP5 Exo 01 ;
Variables program TP5 Exo 01
I, N,S :entier; var
i,N,S integer
Début
{-*-*-%_ Entrées -*-*-*- begin
Ecrire (‘Donner la valeur de N °) ; .
Lire (N); write (‘Donner la valeur de N '/
{-*-*-*-Traitements -*-*-*} read (N
S—0:
Pour i<1 a N faire : ,
S(_S+2*| for 1 to N do
Fin-Pour; 9SG ,
{-*-*-*_ Sorties -*-*-*} S S *
Ecrire (‘Le résultat S=°, S) ; end
Fin. write (‘Le résultat S= ', S
end

@ Compilation et exécution du programme pour N = 4

-

program TP5 Exo 01;

var

i,N,S integer; B Sélection MyPascal V1.20.5 (Exécutio.. — O X

Donner les waleurs de N 4 ~
[—] begin Le résultat S= 28

~*-** Entrees -*-*-*-
write (‘Donner les valeurs de N 7) 3
read (N) ;
~%-%-*- Traitements -*-*-%
8:=0;
for =1 to N do
—] ébegin
. Si=5+2%;
— éend;
== Sorties -F-F-F
write ("Le résultat 5=", 8) ;
— end.

2
3
4
5
6
=
3
9

2- Déroulement de I’algorithme pour N=4 :

Instructions : Varlasles S Affichages
Ecrire (‘Donner la valeur de N °) ; / / / Donner la valeur de N
Lire (N) ; / 4 / /
S—0; / 4 0 /
Pour i1 i 4 /
S—S+2%;S—0+2%1; S« 2; 2
Pour i<2 2 4 /
S—S+2%;S—2+2*2;S—2+4;S—6; 6
Pour i3 3 4 /
S—S+2%;S—6+2*3;S«—6+6;S—12; 12
Pour i—4 4 /
S—S+2%;S«—12+2*4;S—12+8;S—20; 20
Ecrire (‘Le résultat S=°, S) ; 4 4 20 Le résultat S= 20

3- Déduction de I’expression finale :
Selon le déroulement ci-dessus, nous avons :
pouri=1-8S=0+2=2
pouri=2- $S=2+4=6
pouri=3 - S=6+6=12
pouri=4 - §=12+8 =20

pouri=N - S=2+4+6+8+--+2N
N

La formule générale est : S = Z 2i

4) Réécriture de I’algorithme/PASCAL en remplagant la boucle Pour par la boucle Tant-gue.

Algorithme Pascal
Algorithme TP5_Exo_01; program TP5 Exo 01
Variables -
) : .] var
I, N,S :entier; i N,S integer
Début

{-*-*-*- Entrées -*-*-*-}
Ecrire (‘Donner lavaleur de N) ;
Lire (N) ;
{-*-*-*- Traitements -*-*-*
S—0;i:=1;
Tant-que (i <=N)faire
S« S+ 2%
i=i+1;
Fin-Tant-que;
{-*-*-*- Sorties -*-*-*
Ecrire (‘Le résultat S=°, S) ;
Fin.

begin

write ‘Donner la valeur de N '/
read (N

S i
while (i<=N) do
begin
S S 1
i i
end

write ‘Le résultat S= ' S
end

5) Reéécriture de I’algorithme/PASCAL en remplacant la boucle Pour par la boucle Répéter.

Algorithme Pascal
Algorithme TP5_Exo 01;
Variables program TP5 Exo 01
i, N,S :entier; var
i,N,S integer
Début

{-*-*-*- Entrées -*-*-*-}
Ecrire (‘Donner lavaleurde N) ;
Lire (N) ;
{-*-*-*- Traitements -*-*-*
S«0:i:=1;
Répéter

S« S+2%;

i=i+1;
jusqu’a (i > N);
{-*-*-*- Sorties -*-*-*
Ecrire (‘Le résultat S=", S) ;

Fin.

begin

write ‘Donner la valeur de N '/
read (N

S i
repeat
S S i
i i

until (i > N);

write ‘Le résultat S= ' S
end

6- Donner I’organigramme de cet algorithme :

Ecrire (‘Donner la valeur de N ’) ;

/ Lire gN) ; /

+ 2% ;

i—i+1:;

Oui

I<=N

Non

Ecrire (‘Le résultat S=", S) ;

7-Modifier le programme afin qu’il additionne les nombres jusqu’a ce que la somme dépasse 100 et afficher le
nombre d’itérations i effectuées pour obtenir cette somme

Algorithme Pascal
Algc_)rlthme TP5_Exo_01; program TP5 Exo 01;
Variables var -
i, S :entier; i,S integer;
Début begin
{-*-*-*- Traitements -*-*-*} (—*—*—%*- Traitements -*-*-*}
S—0;i=1; S:=0 ; i:=1;
Tant-que (S <=100)faire while (S <= 100) do
S« S+2%; begin
i=i+1; S := S + 2%i ;
Fin-Tant-que; i =i+ 1;
{-*-*-*- Sorties -*-*-*} end;
Ecrire (‘Le résultat S=", S) ; [—*—%_%_ Sorties —*-*-—%x}
Ecrire (‘Le nombre d’itérations nécessaire pour writeln (‘Le résultat s= ', S) ;
obtenir une somme supéricure a 100 est : i1 =", 1) ; writeln (‘Le nombre d’’itérations
Fin.

nécessaire pour obtenir une somme
supérieure a 100 est : i =", 1) ;
end.

Compilation et exécution du programme :

program TP5 Exo 01;
var

iy> § integer;

[begin

{~#-*-*- Traitements -*-*-*}
S:=0 3 =13

while (S <= 100) do

[begin

S:=8+2%;

i=i+1;

— iend;

{~#-%-% Sorties -*-#-%]

writeln ('Le résultats S="', 5);

—end.

B Administrateur : MyPascal V1.20.5 (Exécution) Di\tp_pa.. — O =

Le résultats 5= 118
Le nombre d'itérations nécessaire pour obtenir une somme
supérieure & 186 est : i = 11

writeln ('Le nombre d”itérations nécessaire pour obtenir une somme supérieure 3 100 est: i=",i) ;

Solution de I’exercice N°02 :

& Objectif de I’exercice :

Cet exercice permet de comprendre 1’utilisation de la boucle FOR en Pascal. On utilise cette boucle

lorsqu’on connait a I’avance le nombre de répétitions.

La boucle FOR avance automatiquement avec un pas de 1, ce qui convient parfaitement dans cet
exercice puisque I’utilisateur saisit un nombre N et que le programme doit afficher tous les nombres de

1 jusqu’a N.

< Etapes de résolution du probléme

1. Demander a I’utilisateur de saisir un entier positif N.

2. Utiliser une boucle FOR pour parcourir tous les nombres de 1 a N.

3. A chaque passage dans la boucle :

e Tester si le nombre est pair ou impair en utilisant 1’opérateur modulo (i mod 2).

e Afficher le nombre ainsi que son type (pair ou impair).

& Algorithme/Programme en PASCAL

Algorithme Exercice02;

Variables
N, i : Entiers;

Début
{-*-*-*- Entrées
/I Demande a I'utilisateur de saisir un entier positif
Ecrire (‘'Saisir un entier positif N : ;
Lire (N);

*_*k_*

*_*_*

{***

Traitements
/I Boucle FOR : i varie de 1 jusqu'a N
Pouri:=1aN faire

/I Vérifier si le nombre est pair ou impair
Si (imod 2 =0) alors
Ecrire (i, ' est un nombre pair’)
Sinon
Ecrire (i, ' est un nombre impair’);
Fin-Si;

Fin.

Program Exercice02;

Var
N, i : Integer;

Begin
{-*-*-*- Entrées
/I Demande a I'utilisateur de saisir un entier positif
Write (‘Saisir un entier positif N :);
Read (N);

*_*_*

*_*k_*

Traitements
// Boucle FOR : i varie de 1 jusqu'a N
Fori:=1ToN Do
Begin
/1 Vérifier si le nombre est pair ou impair
If (imod 2 =0) Then
Writeln (i, ' est un nombre pair’)
Else
Writeln (i, ' est un nombre impair’);
End;

{***

End.

@ Compilation et exécution du programme pour N =7 :

Program Exercice(2;

Read (N);

{~*-*-* Traitements -*-*-*-}
Boucle FOR : i varie de 1 jusqu'a N
Forii=1ToN Do
Begin
4 Verifier si le nombre est pair ou impair
If (i mod 2 = 0) Then

Var B Administrateur: MyPascal V1.20.5 (Exécution) Di\tp_pascalitp3_exol.... — | x
N, i Integer; Saisir un entier positif N : 7 ~
1 est un nombre impair
2 est un nombre pair
Begin 3 est un nombre impair
{-%-%% Entrées - %%} 4 est un nombre Pair.
5 est un nombre impair
A Demande d 'utilisateur de saisir un entier positif 6 est un nombre pair
Write('Saisir un entier positif N : "); 7 est un nombre impair

Writeln(i, ' est un nombre pair')

Else

Writeln(i, ' est un nombre impair');
End;

End.

Solution de I’exercice 03 :

& Objectif de I’exercice :

Cet exercice permet de comprendre 1’utilisation de la boucle WHILE en Pascal. Dans ce programme,
la vitesse ne s’incrémente pas de 1 comme dans les exemples habituels, mais de 4 a chaque étape. Cela
montre que, lorsque I’on doit contréler nous-méme I’évolution d’une variable, la boucle WHILE est
plus adaptée. Elle permet de répéter le calcul tant que la vitesse ne dépasse pas la valeur maximale
choisie par I’utilisateur.

NB : La boucle FOR est pratique lorsque I’incrément est simple et régulier (+1). Dés qu’on a besoin d’un
pas different de 1, les boucles WHILE ou REPEAT...UNTIL deviennent plus appropriées.

@ Etapes de résolution du probleme

1-

Demander a ’utilisateur de saisir la valeur maximale de la vitesse N. Cette valeur doit étre un entier
supérieur ou égal a 2.

Initialiser la vitesse va 1 m/s.

Calculer I’énergie cinétique Ec, avec la formule donnée, pour chaque vitesse vde 1m/s jusqu’a N,
avec un pas de 4m/s achaque itération.

Pour chaque vitesse v, afficher I’énergie cinétique correspondante, avec deux chiffres apres la
virgule.

< Programme en PASCAL

=B - T L S

=0 -

=]

p
21
p.

I
[P

(%]
s

Program Exercice03;

const
m =3 {masse constante de l'objet }

Var
v, N : Integer; {v:vitesse, N : limite maximale }
Ec : Real; [energie cinéfigue }
—] Begin

- Enfrées -*-%-%-}
Write("Donner la valeur maximale de la vitesse N : ");

Read (N);

{~*=*-F- Traitements -*-*-*-1
v = 1; {premiére vifesse }
While (v <=N) do
—] Begin
Ec:=1/2%*m™* sqr(v) : f calcul de 'énergie cinéfigue }
| Writeln("Pour v =", v, ' m/s —= Ec =", Ec:0:2,' J"); { afficher le résultat }
vi=v+ 4; [incrémentfation par pas de 4 }
— End;

— End.

@ Compilation et exécution du programme pour N=18 :

1 Program Exercice(3;
P BN Administrateur: MyPascal V1.20.5 (Exécution) D:\tp_pascalitp... — d
. const Donner la valeur maximale de la vitesse N : 18
4 m=3; [masse constante de l'objet } Pour v = 1 mfs --> Ec = 1.58 3]
5 Pour v = 5 m/s --> Ec = 37.58]
6 Var Pour v = 9 m/s --» Ec = 121.58]
7 v, N : Integer; {v: vitesse, N : Iimite maximale } Pour v = 13 m/s --> Ec = 253.5@ J
8 Ec : Real; { énergie cinétique } Pour v = 17 m/s --> Ec = 433.58
]
[—]|Begin
[-F=FaFa Entrées == =tal
Write("Donner la valeur maximale de la vitesse N : ");

Read (N);

--%-%- Traitements -*-%-%-}
v i=1; {premiére vitesse }
While (v <=1N) do
[Begin
‘Ec:=12*m*sqr(v) ; {calcul de énergie cinétique }

=

2 Writeln("Pour v=",v, ' m/s —= Ec =", Ec:0:2, ' J); {afficher le résultar }
21 iv:i=v+4; {incrémentation par pas de 4}

>3 — End;

23

24 —End.

Solution de I’exercice N°04 :

= Objectif de ’exercice :

Cet exercice permet de comprendre I’utilisation de la boucle REPEAT...UNTIL en Pascal. Cette
boucle est utilisée lorsque 1’on ne connait pas a 1’avance combien de fois une action doit étre répétée.

Dans ce programme, on ne sait pas combien de tentatives I’utilisateur fera avant de taper le bon mot de
passe. La boucle REPEAT permet donc de répéter la saisie tant que la condition n’est pas remplie.

< Etapes de résolution du probleme

Demander a I’utilisateur de saisir un mot de passe.
Lire la valeur entrée.

Vérifier si le mot de passe est correct (4951) en utilisant une condition SI.

M w0

Tant que le mot de passe est incorrect :
« afficher « Mot de passe incorrect, veuillez réessayer. »
« redemander une nouvelle saisie.

5. Quand le mot de passe correct est saisi, afficher « Acces autorisé ! ».

& Programme en PASCAL

1 Program Exercice(4;
2
3 Var
4 MP : Integer;
5
‘3l —| Begin
Repeat

8
9

Write('Saisir le mot de passe composé de 4 chiffres :); { demander la saisie du mot de passe }
Readin(MP); {lire la valeur saisie }

If (MP <> 4951) Then { vérifier si le mot de passe est incorrect }
Writeln('Mot de passe incorrect, veuillez réessayer."); { afficher un message d'erreur }

Until (MP = 4951); { répéter tant que le mot de passe n'est pas correct }

Writeln('Accés autorisé ! '); { afficher un message lorsque le mot de passe est correct }

—End.

= Compilation et exécution du programme pour : MP = 1234 ; MP = 4586 ; MP = 4951

Program Exercice()4;
. B Admiristrberr: MyPaccal V1205 Brécuion] Mfp pascafipSe. — O X
ar
p— Saisir le mot de passe composé de 4 chiffres : 1234 A
MP Tuteger; Mot de passe incorrect, veuillez réesseyer.
Saisir le mot de passe composé de 4 chiffres @ 4386
:l Begin Mot de passe incorrect, veuiller réessayer.
i Saisir le mot de passe composé de 4 chiffres : 4051
Acces autorisé !
Repeat
Write('Saisir le mot de passe composé de 4 chiffres = '); { demander la saisie du mot de passe }
Readla(MP); {lire la solewr saisie |
v

If (MP <> 4951) Then {vérifier si le mot de passe est incorvect }
Writels{ Mot de passe iscarrect, veniflez réessayer.); {afficher un message d'erreur |

Tatil (MP=4851); { répéter tant que le mot de passe n'est pas correct |

Writeln('Acces astonisé)y { afficher un message lorsque le mot de passe est corect |

~Fnd,

10

