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Avant-propos

Ce polycopié de cours est destiné aux étudiants de deuxieme année du semestre 3 des
sciences techniques du systtme LMD et aux étudiants de deuxieme année du parcours
ingénieur. Il respecte le contenu du descriptif de la mécanique Rationnelle pour la filiere
Genie civil. Ce polycopié contient des chapitres de cours et des exercices résolus a la fin de
chaque chapitre. Les solutions sont souvent détaillées et permette a 1’étudiant de compléter sa
compréhension du cours et faire soit méme son évaluation. L’étudiant sera en mesure de saisir
et comprendre un probleme (statique, cinématique et dynamique) de mécanique du solide, il
possedera les outils lui permettant de résoudre un probléme dans le cadre de la mécanique
classique. Ce cours est un pré requis pour la RDM et la mécanique analytique. La mécanique
rationnelle, en tant que discipline fondamentale de la physique appliquée, repose sur un
ensemble de concepts et de méthodes indispensables pour comprendre le mouvement des
corps dans l'espace. Ce domaine combine des outils mathématiques tels que le calcul vectoriel
avec des principes physiques pour analyser les solides en équilibre, décrire la cinématique des
corps solides, étudier la géométrie des masses et prédire le comportement dynamique des

systemes.



Introduction générale

La mécanique rationnelle, en tant que discipline fondamentale de la physique appliquée,
repose sur un ensemble de concepts et de méthodes indispensables pour comprendre le
mouvement des corps dans I'espace. Ce domaine combine des outils mathématiques tels que le
calcul vectoriel avec des principes physiques pour analyser les solides en équilibre, décrire la
cinématique des corps solides, étudier la géométrie des masses et prédire le comportement
dynamique des systémes.

Dans ce contexte, le calcul vectoriel constitue le langage de base de la mécanique rationnelle,
permettant de décrire de maniere précise les quantités physiques telles que la force, la vitesse et
I'accélération. 1l fournit également un cadre mathématique pour résoudre les problemes de
statique et de dynamique en trois dimensions.

Le premier volet de notre exploration se concentrera donc sur le calcul vectoriel, ou nous
examinerons les opérations de base, telles que I'addition et la multiplication vectorielle, ainsi que
des concepts avancés tels que le produit scalaire et le produit vectoriel, qui seront ensuite
appliqueés a la résolution de problémes en statique et en dynamique.

Dans la deuxieme partie, nous aborderons la statique des solides, explorant les conditions
d'équilibre des corps rigides soumis a des forces externes. Nous étudierons les principes
fondamentaux de la résolution de systéemes de forces, ainsi que les concepts de moments et de
couples, essentiels pour I'analyse des structures et des mécanismes.

Ensuite, nous plongerons dans la cinématique du corps solide, ou nous examinerons les
mouvements de rotation et de translation, ainsi que les trajectoires et les vitesses relatives des
points a l'intérieur d'un solide. Ce volet nous permettra de comprendre les mouvements
complexes des objets dans I'espace et leur évolution au fil du temps.

Dans la quatrieme partie, nous aborderons la géométrie des masses, qui nous permettra de
déterminer les propriétés geométriques des objets tels que le centre de masse et les moments
d'inertie. Ces concepts sont essentiels pour prédire le comportement dynamique des systéemes en
mouvement.

Enfin, dans le dernier volet de notre exploration, nous nous pencherons sur la dynamique, ou
nous appliquerons les lois de Newton pour étudier le mouvement des corps sous l'influence des
forces. Nous aborderons les concepts de forces de frottement, de traction et de mouvement de
rotation, en mettant I'accent sur la résolution de problémes pratiques en mécanique rationnelle.



Chapitre 1 Le calcul vectoriel

1.

Un scalaire

Un scalaire est une quantité qui est définie par une seule valeur numérique, sans direction ni
sens. Exemples de scalaires:

La température: 20°C

La masse: 10 kg

Le temps: 5 secondes

La vitesse d'un objet en mouvement: 10 m/s (scalaire car ne précise pas la direction).

Un vecteur

En mathématiques et en physique, un vecteur est une quantité qui possede a la fois une

origine, une magnitude (ou une longueur), une direction dans I'espace et un sens. Les vecteurs

sont souvent représentés graphiquement par des fleches, ou la longueur de la fleche représente

la magnitude du vecteur et la direction de la fleche indique la direction du vecteur.

VeV e

(V4. V,, V) € R (des réelles). z

<!

Figure 1.1 Représentation d’un vecteur dans un plan

Le vecteur s’exprime dans la base orthonormée R (0,7, 7, k) sous la forme :

t V, sont les composantes du vecteur Vv

ot
/

Figure 1.2 Représentation d’un vecteur dans I'espace

2



Chapitre 1 Le calcul vectoriel

2.1. Types des vecteurs:
Les vecteurs peuvent étre classés en plusieurs types en fonction de différentes

caractéristiques. Voici quelques types de vecteurs courants :

- Vecteurs geométriques : Ce sont des vecteurs utilisés pour décrire des grandeurs
physiques dans I'espace, comme la position, le déplacement, la vitesse, etc. Ils sont
souvent représentés graphiquement par des fleches dans un systeme de coordonnées.

- Vecteurs unitaires : Ce sont des vecteurs ayant une magnitude de 1 et qui servent
souvent de base pour décrire la direction dans un espace donné. Les vecteurs unitaires
sont souvent utilisés pour définir des systemes de coordonnées et des bases
orthogonales.

- Vecteurs colinéaires : Deux vecteurs sont colinéaires s'ils sont alignes sur la méme
droite ou s'ils sont paralléles. Cela signifie que I'un peut étre obtenu en multipliant
l'autre par un scalaire. Les vecteurs colinéaires ont la méme direction ou des directions
opposées.

- Vecteurs opposés : Deux vecteurs sont opposés s'ils ont la méme norme mais des
directions opposées. Lorsqu'ils sont ajoutés, ils se neutralisent mutuellement.

- Vecteurs orthogonaux : Deux vecteurs sont orthogonaux s'ils sont perpendiculaires
I'un a l'autre. Le produit scalaire de vecteurs orthogonaux est nul.

- Vecteurs libres : Ce sont des vecteurs qui peuvent étre déplacés dans I'espace sans
changer leur effet. lls sont définis uniquement par leur magnitude et leur direction.

- Vecteurs liés : Ce sont des vecteurs qui ont un point d'application spécifique dans
I'espace et sont définis par leur origine et leur extrémite.

2.2. Operations algébriques sur les vecteurs

2.2.1. Module d’un vecteur

- g Ve s e = N , . , - > 7
Soit un vecteur V = <Vy> défini dans un repere cartésien orthonormé R(0,1,7], k).
Vz

Son module est un scalaire égal a : ||V||=V = VZ + V2 + V2

2.2.2. Vecteur unitaire 4
On peut exprimer le vecteur V: V=V.14 dou 7
Uu=—= = |u|l=
|74 Figure 1.3 Vecteur unitaire



Chapitre 1 Le calcul vectoriel

On peut écrire aussi :

<!

= c0s0,1 + cosb,] + cos6,k

L1 (v _[ coséy X
u= v\ = cosBy
Vz cos6,

Figure 1.4 Composantes d’un vecteur unitaire

&l

4

a '\'B

V<

2.2.3. Egalité entre deux vecteurs

Soient deux vecteurs V, et V, dans une base orthonormée R(0,7,7, E), tel que :

X1 X2
V1 = (3’1> et VZ = (3’2>
Z Zy

— —
o Vi=V, & xy =X3,Y1 = Y2, 21 = 2.
o V==V, & x1=—X3,Y1 = Y2, 21 = —Z3.

2.2.4. Somme des vecteurs

Soient deux vecteurs V, et V, dans une base orthonormée R(0,7,7, E), tel que :

X1 X2
171 = (}/1) et 172 = <y2>, la somme des vecteurs est :
Zq Z3

Xq X5 X, + Xy
V,+V, = ()’1) + ()’2) = <)’1 + }’2>
Z Z2 z1 + 2,

2.2.5. Soustraction de deux vecteurs

Figure 1.5 Somme de deux vecteurs

Soient deux vecteurs V, et V, dans une base orthonormée R(0,7,7, ?), tel que :

X1 X2
171 = <y1) et 172 = (h), la différence des vecteurs est :

Z1 Zy



Chapitre 1 Le calcul vectoriel

X1 X2 X1 — X3
V=V, = (3’1) - <3’2> = <J’1 - 3’2>
Zy Zy Z1 — Zy

2.2.6. Propriétés des vecteurs

o I_/)1+(]72+I_/)3):(‘7)1+I72)+I73
® a(171+172)=al71+al72;a€R

o (a+b)]71=al_/)1+b‘71;a,bER

— I ax x
W = a(x1,yj, zk) = (ay) =a <y>
az z

a > 0,meme sens
a < 0,sens opposé

— —

e aV =W :;a€eR

W a la méme direction que V si {

(W = |aV|=|allV|

3. Produit scalaire -

Le produit scalaire de deux vecteurs V; et V, tel que :

N A T 6 —>
Vl = <y1 et V2 =Yz R
Z1 Zy Vs

Est une opération qui donne un scalaire : Figure 1.6 Produit scalaire de deux vecteurs

l71. 172 = ||I71|| ||I72||C050

0=(l71,l72) telque 0<6<m

Analytiquement on écrit :
X1 X5
V.V, = <y1> . <y2> = X1Xp T V1Yo t+ 212
Z1 Zy

Le produit scalaire est un scalaire.

3.1. Propriétés du produit scalaire

e Commutativité : 171.172 = 172.171

[ ] DIStl’IbutIVIté . 171. (‘72 + ‘73) == ‘71. I_/)Z + ‘71. ‘73

e Multiplication par un réel : a(V,.V,) = (aV,).V, = V,.(aV,) ; a € R
e Vecteurs orthogonaux : V, LV, < V,.V, =0

5



Chapitre 1 Le calcul vectoriel

4.

Vecteurs paralléles : : V, | V, < Vy.V, = ||V, ||||V2]|

e . . ARV = d(V. = d(V.
Dérivée d’un produit scalaire : % =V % +V, %

Calcul sur les vecteurs de la base orthonormée : 7.7 = .k = k.i=0;et .i=].j=k.k=1

Produit vectoriel

Le produit vectoriel de deux vecteurs 171 et 172 donne un autre vecteur W qui est

perpendiculaire aux deux vecteurs d’origine :

w
WZ 171/\[72 - ||I71||||172||Sln61_iw V1
U
YA
Ty  Vect itai t6 par W o vz
Uy, - VECLeur unitalre supporte par vv. >
0= (1—71;\‘72) Figure 1.7 Produit vectoriel de deux vecteurs

W est perpendiculaire au plan formé par 171 et 172.

Sa direction est perpendiculaire a V, et V.

Son sens est celui de la rotation de 171 et 172 (sens de rotation d’une vis)
Sanormeest: ||[W|| = ||V,||||V||sin6. It

N

||W]| : aire du parallélogramme formé par

%
- TN
VletVZ. ﬁW V2
N s
2NN

Figure 1.8 Norme du produit vectoriel

~

Expression analytique du produit vectoriel
X1 X2
V1 = <y1> et Vz = <y2>
Z1 Z7

N *1 X2 ViZy — Z1Y»
V]_/\VZ = yl A 3’2 = XZZl—xlzz

Z 22 X1Y2 — V1X2

4.1. Propriétés du produit vectoriel

‘71/\‘72:_]72/\171

‘71/\(]72'{"73):‘71/\[72"'[71/\‘73,(‘71/\[72)/\]73:I71AI73+I72/\I73



Chapitre 1 Le calcul vectoriel

—

o I_/)l N VZ = 6 (=4 ou
ViV, (V;etV,sont colinéaires)

4.2. Dérivée d’un produit vectoriel

d(V,)
dt

dV,AV,) dV) -
= AV, + VA
dt dt 2t %

4.3. Calcul sur les vecteurs d’une base orthonormée directe

7=0, kAk=0 ‘\
N

e IANJ=Kk J

&
©)

~
~y

Figure 1.9 Convention de signe dans une base orthonormée
5. Produit mixte

Soient trois vecteurs 171, 172 et 173 dans une base orthonormée R(0,7,7, l?), le produit
mixte est calculé comme suit :
Vl' (VZ TAN V3) = V3. (V1 A Vz) = Vz. (V3 A Vl)
Le produit mixte est un scalaire égal au volume du parallélépipéde formé par les trois

vecteurs. e

|I71. (172 A 17)3)| = Volume du parallélépipede

\
yommmmmmmmm
4

-
N PSRN

171. (17)2 7AN ‘73) =0

Si:

- Les trois vecteurs sont coplanaires.
- Deux vecteurs sont colinéaires. Figure 1.10 Norme du produit mixte

- Un vecteur est nul.
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6. Double produit vectoriel

Soient trois vecteurs V,, V, et V; dans une base orthonormée R(0,%,7,k), le double

produit vectoriel est un vecteur W calculé comme suit
W=V, A(VoAVs) = (V. V5)V, — (V1. V) Vs

La regle est comme suit :

o

An(Baé)=(AE)B - (AB)

7. Projection des vecteurs

7.1. Projection d’un vecteur sur un axe
La projection du vecteur V sur I’axe (A) ayant
un vecteur unitaire u est un vecteur V,, :

V, = (V.2 = (Vcosa)u

<!

u = |Vu|ﬁ)

V, = (V.5)u

Figure 1.11 Projection d’un vecteur sur un axe.

7.2. Projection d’un vecteur sur un plan n

<!
I
U
+
=
I
<!
|
U
=
1l <

7.3. Projection d’un vecteur dans un repére oblique

Soit un vecteur V dans un repere oblique (Ox,0y),

pour determiner les composantes du vecteur dans cette base :

- On trace une droite parall¢le a (Oy) jusqu’a couper

I’axe (Ox).

Figure 1.13 Projection dans un repére oblique.



Chapitre 1 Le calcul vectoriel

- On trace une droite parallele a (Ox) jusqu’a couper
I’axe (Oy).
- On obtient le parallélogramme (OABC).
- Sur le triangle (OAB) ou celui (OBC), on applique la regle des sinus, donc :
Sur (OBC) :
sina _ sinf _ siny
Yy 4 Ve

Nous obtenons les composantes du vecteur IV dans le repére oblique :

_ siny
¥ singB’
_ sina
Y sinB’
B
% vy,
£
o) ¢ /
- C
Vy

Figure 1.14 Regle du triangle (Sinus).

8. Moment d’un vecteur
8.1. Moment d’un vecteur par rapport a un point
a) Meéthode vectorielle
Le moment d’un vecteur V de point d’application B par rapport a un point quelconque

A est donné par I’expression vectorielle :
M,(V)=AB AV

Ms(V) = [|4B||[|V]sin6

Figure 1.15 Moment vectoriel d’un vecteur/un point.



Chapitre 1 Le calcul vectoriel

b) Par méthode du bras de levier :

v

|Ma (V)] = |V].

Ligne d’action

Figure 1.16 Moment d’un vecteur par bras de levier.

8.2. Moment d’un vecteur par rapport a un axe

Le moment M, (V) par rapport & un axe (A) défini par un point A et un vecteur unitaire i,

est :
My(V) = (My(V).10,)4, ; projection du M, (V) sur (A).

9. Les torseurs
9.1. Définition

Un torseur 7 est défini comme étant un ensemble de deux champs de vecteurs définis

ﬁ:Zz

7= '
km=25mz
i

dans I’espace géométrique :

A : point quelconque
Bi : point d’application de I7i.
10. Formule de transport
Soit un vecteur V de point d’application O et deux quelconque A et B, on peut écrire :
#,(V) = 40 AV = (4B + BO) AV
=ABAV +BOAV
= AB AV + My(V)

Donc

W,(V) = 4B AV + Wiy (V)

10
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11. APPLICATIONS

Exercice 1:
Deux points A et B, ont pour coordonnées cartésiennes dans I’espace : A(2,3,-3),
B(5,7,2).
- Déterminer les composantes du vecteur AB ainsi que son module, sa direction et son

Sens.

Exercice 2 :
Soient les vecteurs suivants : Uy = A47 + A,] + Azk et U, = B4l + Byj + B3k
1) Calculer les produits scalaires : Uy. U, ; Uy.U; et U,.U,
Ondonne: V, = 21—+ 5k, V, = =30+ 1.5] — 7.5k et V, = —5{+4j +k
2) Calculer 171. 172 ; 171 A 172.
3) Sans faire de représentation graphique que peut-on dire du sens et de la direction du
vecteur V, par rapporta V.
4) Calculer les produits suivants : Vy. (V, AV3) et Vi A (Vy A V).

5) Déterminer la surface du triangle formé par les vecteurs 172 et 173.

Exercice 3 :

Soient les vecteurs :

— —

U=2i+6k, V=8l+yj+zk , P=30—4j+2ket Q = —2i + yj + 12k.

1) Déterminery et z pour que les vecteurs U et V soient colinéaires.

2) Déterminer la valeur de y pour que les vecteurs Pet Q soient perpendiculaires.

Exercice 4 :

= -

Trouver le volume d’un parallélépipéde dont les cotés sont les vecteurs : U, Pet Q tel que :

—

U=2i+6k, P=3]+5k et Q=10+4j—2k.

11
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Solution de I’exercice 1 :

- Le vecteur AB peut s’écrire comme suit :

—_— —— —

AB = OB — 04 = 37+ 4] + 5k

- Son module (norme) est : ||AB|| = V3% + 42 + 52 = 5v2

- Sadirection est determinée par les angles

(a, B,v) qu’il fait avec chacun des axes du repére R, ces angles se deduisent par le

produit scalaire de AB par le vecteur unitaire du repere orthonormé, donc :

= a=(4B,7) tel que AB.T = 4B.1.cosa = cosa = Abi
AB
D’oll cosa = —= = 0.424 = a = 64°,89
5v2
= B =(4B,)) tel que AB.] = 4B.1.cosf = cosf = 'ZiB'j
D’ou cosf = 5% =0.565 = B = 55° 54
= y=(4B, %) tel que AB.k = AB.1.cosy = cosy = %
D’oll cosy = —- = 0.707 = a = 45°, 00
5v2

- Son sens : comme le produit scalaire selon les trois directions est positif donc on peut

dire que le sens du vecteur AB est positif dans les trois directions Ox, Oy et Oz.

Solution de ’exercice 2 :
Soient les vecteurs suivants : Uy = A4i + A,] + Ask et U, = Byl + ByJ + B3k

1- Produit scalaire de ﬁl.ﬁz; L_fl.l_fl et ﬁz.ﬁz

l—jl. L—iz = (j;) . <g;) = AlBl + Asz + AgB3

A3 B3

A1) (A

U1.U1 = A2 . AZ =A1A1 +A2A2 +A3A3
A3/ \4s3

oo B\ (B1

U2. Uz = BZ . B2 = BlBl + BZBZ + B3B3
B3/ \B3

12
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2- V,=20—]+5k, V,=—3T+15]—75k et Vs =—57+4]+k
Calcul de :

V,.V, = (i).(;é): —6—1.5—37.5=—45

5 -7.5

—

L Tk 0\ .
VinV,={ 2 -1 5 |[=|0]=0
-3 15 -75 0

3- Comme le produit vectoriel est un vecteur nul donc les deux vecteurs sont paralléles :
VoAV,=0 = V, IV,
De plus 171. 172 = —45 < 0 = les deux vecteurs sont de sens opposes.

4- Calcul du produit mixte :

171. (172 AN 173) =7

o 315
On calcule d’abord : V, A V3 = _3 1 5 _7 5) 40 5
-5 4

2 31.5

e /) \—45
7 ]-> E —198
WA AV)=( 2 21 5 |= %ggg
31.5 405 —4.5 '

5- La surface formée par les deux vecteurs V, et V5 est donnée par la moitié du module

du produit vectoriel

— — 2 2 2
|V2 A V3| _ V(315 +420.5 +4.5 ):24.75
Surface du parallélogramme
Solution de ’exercice 3 :
U=20+6k,V=8l+yj+zk , B=31—47+2ket Q = -2+ y] + 12k
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1- Si U et V sont colinéaires alors :

UIlV=>UAV=0< 1|2 0 6|=0=41-22+48=0
8 vy z 2y =0
{2
z =24
2- SiPet( sont perpendiculaires :
PLQ>P.Q=
3 -2
AV |=-6—4y+24=0
2 12

Solution de ’exercice 4 :
Soient U =20+6k, P=3]+5k et Q=1+4j—2k.

Le volume d’un parallélépipede est un scalaire positif, c’est le module du produit mixte des

-

=4 - 15N

vecteurs qui le forment, U, Pet Q:

1
1
1
|
1
1
1
1
N | -
1
Ae

14
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2.1. Introduction

La statique des solides est une branche de la mécanique qui étudie les corps solides
en équilibre, c’est-a-dire des objets qui ne sont pas en mouvement. Elle s'intéresse a l'analyse
des forces et des moments appliqués a un corps solide afin de déterminer les conditions
nécessaires pour que ce corps reste immobile ou en équilibre.

Dans ce contexte, un solide est considére comme rigide, ce qui signifie qu'il ne se déforme pas
sous l'effet des forces appliquées (méme si dans la réalité, les matériaux peuvent subir des

déformations, cela est négligé dans la statique).

Les principes de base incluent :

1. Somme des forces égale a zéro : Pour qu'un corps reste immobile, la somme
vectorielle des forces agissant sur lui doit étre nulle.

2. Somme des moments égale a zéro : La somme des moments (ou des couples)
agissant sur un corps autour d’un point doit également étre nulle pour qu'il ne tourne

pas.

Sinon on peut dire qu’un systéme matériel est en équilibre statique par rapport a un repére
donné, si au cours du temps, chaque point de ce systeme garde une position fixe par rapport

au repere.

Ces deux conditions sont nécessaires pour assurer I'équilibre statique d'un solide. La statique
des solides est souvent utilisée en génie civil, en architecture et en ingénierie mécanique pour

concevoir des structures stables et sires.

2.2. Les systémes de forces dans I’espace.

Les systemes de forces dans I'espace sont des configurations de forces appliquées a un
objet qui peuvent étre classées en plusieurs types, selon leur direction, leur point dapplication
et leurs interactions mutuelles. Voici les principaux types de systemes de forces que l'on

rencontre en statique des solides dans l'espace (c'est-a-dire en trois dimensions) :

15
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2.2.1. Systeme de forces concourantes :

o Les lignes d'action de toutes les forces se rejoignent en un seul point. Cela signifie que
ces forces peuvent étre représentées par un vecteur unique qui passe par ce point de

convergence.

Figure 2.1 Forces concourantes.

o Exemple : Les forces agissant sur une structure suspendue par des cables a partir d'un
point.

2.2.2. Systeme de forces paralléles :

e Toutes les forces sont paralleles entre elles, mais elles n‘ont pas nécessairement le
méme point d'application.

Figure 2.2 Systéme de forces paralléles.

o Ce type de systeme de forces est souvent rencontré dans des situations ou plusieurs
forces agissent verticalement sur une structure, comme dans les poutres ou les
colonnes.

o Exemple : Le poids des différentes parties d'un pont soutenu par des piliers.

2.2.3. Systéme de forces coplanaires :

e Toutes les forces agissent dans un seul plan. Cela signifie qu'elles peuvent étre
représentees dans deux dimensions.

o Exemple : Les forces agissant sur une structure plate, comme un cadre ou une plaque.

16
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2.2.4. Systeme de forces non concourantes et non paralléles :

C’est un systéme dans lequel les forces ont des lignes d’action différentes, ne se
rencontrent pas en un point et ne sont pas paralléles.
Un tel systéme nécessite souvent une analyse des moments (ou des couples) ainsi que
des forces pour déterminer les conditions d'équilibre.
Exemple : Plusieurs forces appliquées sur une structure tridimensionnelle comme un

batiment.

Figure 2.3 Systéme de forces non concourantes et
non paralléles.
2.2.5. Systeme de forces en couple :
Deux forces égales en grandeur, opposées en direction, mais avec des lignes d'action
différentes. Cela crée un couple ou un moment pur qui tend a faire tourner I'objet sans
provoquer de translation.

Exemple : Une clé a molette lorsqu'elle est utilisée pour tourner un écrou.

2.2.6. Systeme de forces générales dans |'espace :

Un systeme de forces quelconques appliquées sur un solide en trois dimensions. Ce
type de systéme est plus complexe a analyser, car il nécessite la considération des
forces dans les trois directions (X, y, z) ainsi que des moments autour des axes
correspondants.

Exemple : Une grue supportant une charge avec des forces et des moments agissant

dans toutes les directions.

2.3. Composantes d’une force

Dans un repére orthonormé a trois dimensions (noté R(0,7,j,k), une force F est

représentée par un vecteur qui peut étre décomposé en trois composantes selon les axes
x,y et z. Ces axes sont perpendiculaires entre eux et forment un systeme orthonorme.

17
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¢

z/
-
TS F
g :
!
,' -
0 ! E,
i S
| ‘/"
I e
Q v
| '~/‘
......................... FH = Fsind

Figure 2.4 Composantes d’une force dans
I’espace.

2.3.1. Décomposition de la force F
Soit une force F appliquée a un point. On peut la décomposer comme suit :
F=Fi+Fj+FEk ou:

« F, E, et F, sontles composantes scalaires de la force dans les directions des axes
X,y et z respectivement,
4

-

, ] et k sont les vecteurs unitaires dans les directions des axes x, y et z.

Les composantes F,, F, et F, peuvent étre déterminées si on connait la direction et la norme
de la force, ou si I'on connait les projections de cette force sur les différents axes du repére.

2.3.2. Calcul de la norme de la force

La norme (ou Le module) de la force F est calculée a partir de ses composantes a l'aide de la

relation :
F=|F|= /sz + F? + F?

Cette norme représente la longueur du vecteur F, c'est-a-dire I'intensité de la force.
2.3.3. Direction de la force

La direction de la force dans I'espace est définie par les angles directeursé,, 0, et 0,,
qui sont les angles que fait la force avec les axes x, y et z, respectivement. Ils sont liés aux

composantes par les relations suivantes :

18
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E,
F
o
F F

cos0, il cos0, = =, c0sO, = =, R

Tl IFl 0% =T o, | % Jo, F,
F, = FcosOy, F, =Fcos0,, F,= Fcos0,
F = F(cos0,i + cos@,J + cos0,k) E
= - cos0y Figure 2.5 Directions d’une force.
F = Fuﬁ Up = (cosoy> g

cos0,

Ces angles permettent de connaitre I'orientation de la force dans le repére orthonormé.

Une force définie par son module et deux points sur sa ligne d’action

G g AB_ 1 (xB—xA> 4z )
AB = Up = 7 —="——| Yp-Y .

1451 laB] \ 274 M
F est supportée par I’axe A, d’ou : B
F=F.1, /'&/
Si un vecteur moment supporté par A, on écrit :
ﬁA = MA'ﬁA 7Y

Figure 2.6 Vecteur force passant par deux points.
2.4. Axiomes de la statique
2.4.1. 1°" Axiome : Un solide est soumis a deux forces, ce solide ne peut se trouver en
equilibre que dans le cas ou :

F, =—F,, F,etF,sontalignées
|F1| = |F2| et sont opposées,

Figure 2.7 Equilibre d’un solide sous deux forces opposées

2.4.2. 2°™ Axiome (Principe de glissement) : I’action d’un systéme de forces donné sur un
solide ne changera pas si on ajoute a ce systéme ou si on lui retranche un systéme de forces
équilibré.

19
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(S)

-

Ey

SlFA =FB

Figure 2.8 Principe de glissement.

e Principe de glissement
On peut glisser le point d’application d’une force appliquée sur un solide le long de sa
ligne d’action appartenant au solide.

2.4.3. 3*™ Axiome : (Principe du parallélogramme)
Deux forces agissant sur un solide en un méme point, admettent une résultante
représentée par la diagonale du parallélogramme ayant ces forces comme cotés.

R=F +F

(S)

Fy

Figure 2.9 Résultante de deux forces (Principe du parallélogramme.

2.4.4. 4°™ Axiome (Principe d’Action — Réaction)

51 (S)

Figure 2.10 Action-réaction entre deux solides.

Soient deux solides (S;) et (S;) en contact entre eux. Si (S;) agit sur (S,) avec une
force 17"12 , alors (Sy) agira sur (S;) avec une force 1321 tel que :

- >
Fi; = —Fp

20
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2.5. Equilibre du solide

Soit un solide (S) soumis a des forces (ﬁ‘l,ﬁ‘z,ﬁ3,....,ﬁn) appliquées aux points

(M4, My, M5, ..., M,,). Pour que le solide soit en = (équilibre) statique, il faut et il suffit
que :

= Laresultante de toutes les forces extérieures appliquées soit nulle.

= Le moment résultant de toutes ces forces en un point quelconque O
soit nul.

ﬁ:Zﬁ 0
MO—ZMO(F)—ZOM F

Le systéme est completement determlne si le nombre d’inconnues
est égal aux nombre d’équations indépendantes.

2.5.1. Equilibre d’un solide dans un plan.

Dans le cas des forces coplanaires dans le plan x-y, le systéme d’équations se réduit a trois
(03) équations (colinéaires) scalaires.

z=0,F,=0 = M, =M, =0 Y s)

=) S >
Mz:MozzMi(Fi)ZO F F;

i
Ry =XiF, =0
La résultante est : '
E,
F
o) ? X

Figure 2.11 Equilibre d’un solide dans le plan.

2.5.2. Réactions aux appuis et aux liaisons :
A. Appui simple d’un solide sur une surface parfaitement lisse :

La réaction d’une surface lisse sur un solide est normale a cette surface au point de

contact. o
R
R . /
R R
R,
/777777 A

Figure 2.12 Appui simple sur une surface lisse.
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B. Articulation d’un solide
% Articulation cylindrique : (Appui double).

Y\ 4

(S1)

(S2)

La réaction d’appui double ou cylindrique a

deux (02) composantes.

Figure 2.13 Appui double ou articulation cylindrique.

% Articulation sphérique (Rotule) y4

W

Figure 2.14 Appui triple ou Articulation sphérique.

La réaction d’une rotule a (03) composantes.
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Statique des solides

«» Encastrement d’un solide
A deux dimensions (2D) :

Ru= () v = (3)

A trois dimensions (3D) :
(MAX>
May
Maz

«+ Conditions de liaisons

Rax
Ray
Raz

ﬁA =

M

e Combinaisons de liaisons

- Appui simple 02 fois

- Appui simple et appui double

- Encastrement et appui simpe

Systéme dit hyperstatique

y
Ray
Y, S
B Myz
AE R RAX X
| i’ ] >
Figure 2.15 Encastrement.
R, Rp
Rpx
AY S
A _ Rp
| Yy N
4 ) A ,
= >
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2.6. Types de force
2.6.1. Force ponctuelle

Une force ponctuelle est une force qui agit sur un point précis d'un corps solide ou
d'une structure. ,

Figure 2.16 Force ponctuelle.
2.6.2. Force linéique
Une force linéique est une force répartie le long d'une ligne, exprimée en termes

d'intensité par unité de longueur.

q[N/m]

) Figure 2.17 Charge répartie.
2.6.3. Force surfacique

Une force surfacique est une force répartie sur une surface, exprimée par unité de
surface.
q[N/m?]

A AR A

Figure 2.18 Charge surfacique.

2.6.4. Force volumique
Une charge volumique est une force ou une charge répartie dans un volume, exprimée

par unité de volume.

i q[N/m?

L
v ooV l

Figure 2.19 Charge volumique.
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2.7. Applications

Exercice 1 : soient quatre forces agissant sur une plaque représentée sur la figure ci-dessous.
- Calculer la résultante R des forces ainsi que le moment résultant agissant sur
la plague.
- Déduisez et tracez la ligne d’action réelle de R en déterminant le point
d’intersection X de cette ligne avec (CX).

\Y

F; = 500N F, = 340y

375mm
\L a B |E X
-4 1) H, = 760N

F,=600N  500mm 200mm
Exercice 2 :
Soit le systeme ci-contre composé d’un support encastré
Et d’une poulie de rayon r=200mm.
On tire sur un fil avec une tension
de 1200N, inclinée d’un angle «a.

i 500mm

2 i
: B

On demande de :

- Calculer le moment de la force T de module 1200N

Par rapport au point A.
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- Pour un calcul simple, réduisez la force a un
Systeme force-couple appliqué en C.

- Donner le moment de la méme force par rapport au point B.

Exercice 3 :

Les forces représentées sur la figure R., Ry et Q sont concourantes.

Un cylindre de rayon r et de poids Q repose sur un mur vertical et une barre (AB) de
longueur 3r et de poids P. Cette derniére tourne autour d’un axe horizontal en (A) et s’appuie
simplement sur I’arrete en (D) avec un angle 8 = 45° et AD=2r.

- Determiner enfonction de P et Q.

a) L’action du mur sur le cylindre (I_i’)E)
b) L’action de I’articulation (A) et la réaction de 1’arrete (D) sur la barre (AB).

B Rp

Exercice 4 :

Soit la barre (AB) de poids négligeable chargée par P=30Kn au point D, en équilibre par deux
(02) cébles (BC, EF) et une articulation sphérique A.

- Représenter tous les efforts agissant sur la barre et Irs expressions véctorielles.
- Donner les expressions d’équilibre de la barre et calculer T, et T ainsi que
RAX, RAy et RAz-

C X
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Solution de I’exercice 1 :

Le calcul consiste & déterminer le torseur 7 = [R, M, ] tel que :
_ { R=3%F,
T = — - e -
Mc(F;) =CB,AF;
B; : point d’application de la force ﬁi.

tga = o2 2075 = a = 36°,87
9% =500~ * =20

375
tgﬁ = m =1.875 = ﬁ = 61°93

1- Calcul de la résultante R = ¥, F;
R =F, + F, + F3 + F, = —F,T + (FycosPi + F,sinB]) + (—Fscosai + Fysinaj) + F,J

= (—F, + FycosB + —F;cosa)l + (Fysinf + Fssina + F,) J

R = /10002 + 12002 = 1562N
R
6=t -1(—y> = 50°,2
9\,

—

R = R, i+ R,j = —10007 + 1200] =

2- Le moment résultant IWC

e par la méthode du bras de levier A
M, = Z M (F;) = (340sinB) * 0.5 + (500sina) * 0.5 ‘ ‘
= 300N.m (sens aiti — horaire)

o Par la méthode vectorielle
Mc(F)) = CB,AF, = CE ANFy + CB AF, + CANF; + CC AF,
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Solution de ’exercice 2 :

AB = 0.5m; AC = 0.6m

1
tga = 5 = 0.5; a = 26°,56

Le moment de T par rapporta AetB :

Statique des solides

(. A AN
Mc(F)=CEAFi=| 07 0 0]=|]
=760 0 O
o 7 j ok 0
Mc(F,) =CBAF, = 07 0375 0= 120
) 160 300 O
— > — > i) k-)
We(R)=TinE=( o 0475 o 1%
—400 300 O
I A A AN
MC(F4)=CC/\F4= 0 0 0= 8
\ 600 0 O
Donc :
Mc(F,) = 300k Ny
Le systéme devient : R
{ﬁ = —10007 + 12007
T= — - -
M:(F;) = 300k
L. C( l) ) s L. , 6 =50°.2 ‘\MC
Déduire et tracer la ligne d’action de la résultante \
R en determinant la position du point d’intersection
(Xg) de cette ligne avec I’axe (CX). )
y

Nous avons : M¢(F;) = 300k

De plus nous avons :

|
y

. G
e T j k 0 0
Mc(R)=0GAR={ X, 0 0 =(120%XR)=(380)
—~1000 1200 0
Dol : 1200X,=300 = Xp = —= = 0.25m

1200

rayonr = 0.2m

c) Parrapporta A.
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MA(T) = My (Tx) + M, (Tx)
=Tx*d1+Ty*d2

Avec : {Tx =T.cosa {d1 = rcosa = 0.18m

T, =T.sina d, = rsina = 0.09m

M, (T) = [(0.6 + rsina)sina + rcos?a] = 562 N.m (Sens anti-horaire)

Par déplacement du point (P) au centre (C) de la poulie = apparition d’un couple M = r.T
dans le sens anti-horaire.

My(T) = My(Ty) + My (T )+M

=AC.T, +r.T

= AC.T.sina +r.T

= 0.6 * 1200.5in26.56 + 0.2 * 1200
M,(T) =562 N.m

d) Par rapport a B.

Mg(T) = Mp(T,) + Mp(T,) + M

= AB.T.cosa + AC.T.sina
Mg(T) = 1096 N.m (Sens anti-horaire).
Solution de I’exercice 3 :
Les données : AB = 3r; AD = 2r
Le calcul consiste a trouver : Ry, Rp, et ﬁA = A, T+ A,J (le tout 04 inconnues)

Etant donné qu’il n y a que 03 équations d’équilibre pour 04 inconnues, donc le probleme est
impossible. Donc on doit décomposer le systéme en deux sous-systémes :

(La barre (AB) + le cylindre).

1- L’équilibre du cylindre : 03 forces concourantes.

On peut procéder de résoudre le probléme de deux méthodes :

a) Méthode graphique : Triangle des forces (régle des sinus)

Rp
S =T SRy =Q et Ry =—2-=V20

sin45  sin45  sin90 sin4s
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b) Meéthode analytique (équilibre du cylindre)

Zﬁ:ﬁE+§+§B/C=6

13

Z o = RB/CCOS45 —Rg=0......(1)
Zﬁy = Ra sin45—Q =0.......(2)
De (2) on obtient : RB/c = Si:is =+/20Q

Etde (1) : Ry =0

2- Equilibre de la barre (AB) : (Analytigue)

Zﬁ=§A+§E+§+§C/B=6

Avec : ﬁc/B = —ﬁB/C

5 Y F, = Rp.cos45 — Rej sin45 = A =0 .. (1) ;
onc: 5
X E, = Rp.sin45 — Rc/Bsin45 +A4,—P=0......(2)

L’équilibre des moments nous donne :
— 1 -
Z M, = AC. RC/B + (E.AB.cos45> P—AD.Rp =0..............(3)

Avec: AC =r.tgd5 =71

)
3
ZMA=T'RC/B+(E'T'COS45>P_2T-RD=O
1 3 V2
= Rp=-.(2Q) +5.5-.P
, . 1 3
Doia:  Rp==.(Q+3).p

De(3) = Ay =;CP—Q) et A,=2(Q+-P)

Solution de I’exercice 4 :
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)
)

|( 4 = Rax + Ryy + Ry,
. . P =—Pj
1- Les expressions vectorielles des efforts : { = S
| Tz == _Tzl
= BC
k Tl —_ Tl.B:C

—

BC = 47+ 37— 9k et BC = /(42 + 32+ 92 = 10.29
T, = T,(0.397 + 0.29] — 0.87k)

2- Les moments autour des 03 axes
e Axe (OX): P et T, développent un moment
o Axe(Qy):T,etT,
e Axe (0Oz) : aucune force.
3- Calcul des moments
- M,(P) = AF AP = 4k A (—P)) = 4P7
- Mj(T,) = AE AT, = 6k A (=Ty0) = —6T,]
- My(T)) = AB AT, = 9k A T,(0.39% + 0.29f — 0.87k)
=T,(3.51] — 2.61k)
4- Conditions d’équilibre

YF,=P+T,+T,+R, 0

> Wy = My(B) + Ma(T,) + Wiy (T5) + Mpffi,) = 0

Donc :
F, =R, +039T, — T, =0
ZP;X =< FE, =R, +029T,—P =0
F,=R,—0.87T, =0
z M, = (4P — 2.61T,)7 + (3.51T, — 6T,)] = 0
M, = 4P — 2.61T; =0 et

M, =3.51T; — 6T, =0
D’ou:

(T, = 45.97 N
| T, = 26.89 N
R, = 400N
R, =896 N
R, =16.67N
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3.1. Introduction

La cinématique du solide est une branche de la mécanique qui étudie les mouvements
des objets rigides sans tenir compte des forces qui les provoquent. Elle se concentre
uniquement sur la description géométrique des déplacements, des vitesses et des accélérations
d’un corps solide ou de ses différentes parties, sans s’intéresser aux causes de ces

mouvements (c’est-a-dire les forces).

Concepts clés de la cinématique du solide :
1. Solide indéformable :

o En cinématique du solide, on considere les objets comme indéformables,
c'est-a-dire que la distance entre deux points quelconques du corps reste
constante au cours du mouvement. Cela signifie que les objets ne subissent ni
déformation ni changement de forme.

2. Types de mouvements :
o Les mouvements d’un solide peuvent étre décrits par trois types principaux :
= Translation : Tous les points du solide se déplacent dans la méme
direction et & la méme vitesse.
= Rotation : Le solide tourne autour d’un axe fixe, et chaque point du
solide décrit un cercle ou une trajectoire circulaire autour de cet axe.
= Mouvement plan : Il s'agit d'une combinaison de translation et de
rotation dans un plan bidimensionnel.
3. Parametres de mouvement :

o Position : La position d’un point ou d’un objet dans I’espace est définie a un
instant donné.

o Vitesse : La vitesse d’un point est le taux de variation de sa position par
rapport au temps.

o Accélération : C’est la variation de la vitesse d’un point au cours du temps.

4. Référentiel :

o Le mouvement d’un solide est toujours étudi¢ par rapport a un systéme de
référence, appelé référentiel. Le choix du référentiel peut influencer la
maniére dont le mouvement est percu et décrit (référentiel fixe ou mobile,

inertiel ou non inertiel).
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Objectifs de la cinématique du solide :

L’objectif principal de la cinématique du solide est de décrire avec précision comment un

solide se déplace dans I’espace au cours du temps, en déterminant :

o Les trajectoires des différents points du solide.
o La vitesse de chaque point, qui peut étre calculée a partir de la dérivée de la position
par rapport au temps.

e L’accélération, obtenue en dérivant la vitesse.
Importance de la cinématique du solide :

La cinématique du solide est une étape préalable a 1’é¢tude des forces (statique et dynamique)
dans la mécanique. Elle est essentielle pour comprendre le mouvement d’objets dans de
nombreux domaines scientifiques et techniques, notamment en robotique, en ingénierie
mécanique, dans la conception de machines et dans les simulations numériques de systemes

physiques.

En résumé, la cinématique du solide fournit un cadre rigoureux pour analyser et comprendre
les mouvements sans se soucier des causes, et elle constitue une base indispensable avant de
passer a la dynamique ou les forces sont considérées.

3.2. Les quantités cinématiques d’un point matériel

Notion de référentiel

Un référentiel en mécanique est un systeme de coordonnées utilisé pour décrire la
position et le mouvement d'un objet dans 1’espace et dans le temps. Il sert de point de
référence par rapport auquel les positions, les vitesses et les accélérations des objets sont

mesurées. Il est composé d’un repére d’espace et d’un repére de temps.
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Repére d’espace Repére de temps
Ry(0,1,7,Kk) @ ®

Trouver la position du solide au cours du temps.

A’
©) REFRENGEFAME  REFERENCEFAME
B 8

(0] ~ y ’ B

j’ - ‘Galileian Inoeretial Refertcial Non-Inerial Refeence Fame
7

Ro M e (5)
(S) est en mouvement par rapport a
X R,

Figure 3.1 Référentiel d'un point matériel.

La vitesse du point M par rapport au repére R, peut s’écrire comme suit :

dOM
B(M e S/Ry) = 9t R, =i+ ¥+ zk

L ’accélération du point M par rapport au repére R, peut s’écrire comme suit :

d?oM dv
¥(M € S/Rp) = 4 /RO = dt/Ro = XU+ yJ + 2k

3.3. Cinématique d’un corps solide AZ )
3.3.1. Champs des vitesses : A
Soit (S) un solide indéformable.

Si AB = Cte au cours du temps = AB? = Cte R

Donc on peut écrire : 0

v

~
~

X

Figure 3.2 Champ des vitesses d'un solide en mouvement.

D’ou
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donc :

Zﬁldﬁ
dt

Remarque :

(S) est indéformable, c’est-a-dire que la distance entre A et B ne change pas mais le vecteur
AB peut changer de direction.

Champs des vitesses

Soit un référentiel R,(0,,1,7, k) fixe

Rs est lié au solide (S) @ﬂ s

Rs(0s, s, Js, ks) X5 Rg
Le repere R ou (S) étant en mouvement par rapport a R,.

0oB = 0,A + AB 0, Y
Onadans R, : {_0, 0 > >
AB = 04B — 0,A A
RO
OsB = O4A + AB
Onadans R¢:3_°, . "
< {AB _ —)OSB _ —)OSA X Figure 3.3 Composition de mouvements
On utilise la notion du vecteur rotation (dérivation)
ﬁ d0oA
Va/ _ dt
R, R,
, d0oA
VA/ — dt / 0 A
R, Ry T QRS/RO A 0oA 1)
De méme :
VB/ — dt / 0 nn
R, Ry + QRS/RO A OoB (2)

Donc pour un vecteur position i :
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ﬁRs /n : vecteur instantané de rotation de Rs / R,
o

@-O

173/ _ﬁA/ _
R, R,

d(4B)

4(05F - 0A)
_ dt

d(4B)

RS + QRS/RO /\ (OoB - OoA)

— dt/ 0 AR dt/ —
RS+QR5/RO/\AB Avec Rs 0

=5RS/R /\E
o

1_7)3/ _ ‘EA — = =
Ro Ro QRS/RO /\ AB

Formule fondamentale de la cinématique du solide

(Relation de VARIGNON)

Si ﬁRS/R =0
0

U/ _ Vs
Alors /Ro = Ro

Le mouvement est de
Translation.
(Torseur couple)

Rotation.

Le mouvement est de

(Torseur glisseur)

AAB
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3.3.2. Equiprojectivité du champ de vitesses.

L'équiprojectivité du champ des vitesses est un concept utilisé en dynamique des milieux
continus. Cela signifie que les vectrices vitesses d'un ensemble de particules d'un milieu en
mouvement restent dans des directions qui conservent des propriétés géométriques particulieres
lorsqu'elles sont projetées sur une surface ou un volume.

En multipliant I’égalité par AB
AB."P[p =AB.([p + QRS/RO A AB)
AB.VB/p =AB."/,  Avec 4B. (ﬁRS AE) =0
(o] o /RO
Le champ des vitesses est equiprojectif < Antisymetrique.

La signification graphique

U
. . R
Soient deux points A et B appartenant .
au solide (S),on a: AW
173/ — Vs 0 B .\"\..\
RO RO + QRS/RO /\AB \\

: ﬁA 63 ..\"\.

Si Roet /Ro sont connus = :
B
Le champ des vitesses est déterminé en tout point du solide. &
Up
R,

Figure 3.4 Equiprojectivité du champ de vitesses.
3.3.3. Torseur cinématique.

Le torseur cinématique est un outil mathématique utilisé en mécanique pour décrire de
maniere compacte I'état de mouvement d'un solide ou d'un systeme mécanique. Il regroupe les
informations relatives a la vitesse de translation et de rotation en un seul objet. Cela permet
une analyse simplifiée et plus générale des mouvements, notamment dans les systémes
multicorps.

Comme le champ des vitesses est équiprojectif, donc Antisymetrique.

-5 UV -5 UV
Ona:AB."B Ro:AB' A R,

Donc le torseur cinématique est définit :
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Ou

(—)
Q
| RS/RO

(
|
[CRS/RO] - i By /Ro = iﬁA /Ro + Qrs e AAB

.QRS/R
0

3.3.4. Champ des accélérations.

Le champ des accélérations décrit la variation des accélérations en fonction de la
position dans un domaine spatial. Il s'agit d'un champ vectoriel qui associe a chaque point de
I'espace un vecteur représentant I'accélération a cet endroit.

Ona:

dﬁB @ dQRS/R dAB
dt / = dt ONAB + Org, A——
Ro Rot ar ks Nt
dQrg
> > dAB
VB/ - A/ R0\ B 1 G, A B
0 R, dt RS/ry " dt
d(A0+0B)

dQgg
dt/RO/\AB+QRS/ A (Qrs, AAB)
| Ro fo |
|

=0

]73 — _)A
/Ro— /Ro+

Formule de RIVALS (dérivée de la relation de VARIGNON)

Remarque : le champ des accélérations n’est pas Antisymétrique, donc il n’est un Torseur
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3.3.5. Dérivation vectorielle.

En suppose que R, étant le repére absolu, R, le repére relatif et R le repére lié au solide
(S). le dérivation du vecteur AB.

dAB / dAB /
dr/_ _dt, 5 B
RO R1 + .QRl/RO /\ AB

Le repére R, est mobile par rapport a au repére R,.
— . . B R,
Qr, Iz le vecteur rotation instantané de "'/ R,

Exemple : Rotation autour de ().

7=z
— de — =
O, =Gk =6k PS
Y
g y
[
R
X R’

x!

Figure 3.5 Rotation autour d’un axe.

3.4. Loi de composition des vitesses
En suppose que R, étant le repére absolu, R, le repére relié au solide (S).

Dans R, on peut écrire :
OM == 001 + OlM

. doM d00; do M \
Um — dt/ — dt/ + dt/
Ro Ro Ro Ro
doo, N 0
dt _ ‘701/
Ro Ro )
Rl(Ol,f,f,k)
)

RO(O: ?o:jo' ko )

Figure 3.6 Composition des vitesses.
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(Loi de derivation vectorielle L.D.V)

vm/ _ Vo, Uy o T
/Ro_ 1/Ro-l_ /R1+9R1/R NOM

Vu/ _Vm Vo o T

V(M) = v, (M) + v, (M) C’est Loi de composition des vitesses

va(M) ="M R, : Vitesse absolue

v (M) = vM/ R, : Vitesse relative.

—

. v - — .
v.,(M) = ! R, + ﬂRl/ A O1M : vitesse d’entrainement
Ro
3.5. Loi de composition des accélérations.

Nous avons précédemment la loi de composition des vitesses que nous allons dériver :

Uy  _ Uy Vo, 5 =

— d*)
d"’"/no/ 4, (M) v01/R0/ do
Ym — 5 —_ dt _ dt / dt dt / ’
RO _Ya(M) - RO — R0+ R0+ Ro/\011m +

doM
QRI/R N a /RO
0

dv, (M) dv, (M)
o dt / — dt I 5
Ro R1 +QR1/R0 Avr(M)

=¥ (M) +Qr;)  ATe(M)
o

d
1701/130
° at Ry~ Y2(01)

do M do M
.« O A dt / -0 Al at / +0Q AOM
Rl/Ro RO Rl/Ro Rl R1/R0 1

= ﬁRl/R A U.(M) + (—iRl/R A ((_iRl/R ANOM)
0 0 0
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D’ou:

dQg,

Ro , s
— ANO M
dt 1

Va(M) =¥ (M) H20r, A (M) [H{7a(01) +
Q

Accélération de Coriolis Accélération d’Entrainement

YaM) =7 (M) + ¥c(M) + y.(M)
NB : L’accélération d’entrainement est 1’accélération du point M fixe dans R, =

v, (M) =0 ety;(M) =0

3.6. Mouvement de translation

Un solide (S) lié & un repére R,(0,,7,7,k) est dit en mouvement de translation pur par
rapport & un repére Ry (0, 7,, 7, ko ) Si les axes de R,(0,,7,7,k) gardent une direction fixe par
rapport a ceux de Ry (0, T,, 7, Ko ), au cours du temps.

Tous les points du solide ont la méme vitesse et la méme accélération que le point P € (S).

La vitesse de rotation du solide est nulle par rapport & Ry(O, 7,,7,, ko).

On peut écrire : I7R1/R (P) = VRl/R (0y) &
0 0

Et Qs /. AO:P = 0
0

Comme O,P#0 donc ﬁg/R =0 ;
0 0

X

0o Yo

Xo

Figure 3.7 Mouvement de translation.

Dans ce cas le champ des vitesses est un champ uniforme.
Le torseur cinématique qui décrit le mouvement de translation pur est un torseur

couple, dont la résultante est nulle mais le moment n’est pas nul.
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QS/RO = 0

C ={_, - .
[ RI/RO]P Ve, (P) = Ve, (0) %0

3.7. Mouvement de rotation autour d’un axe (A) fixe.

Un solide (S) lié & un repére R,(0,,7,7,k) est dit en mouvement de rotation pur par
rapport & un repére Ry (O, 7,,7, k, ) Si un axe de R, (04,77, k) reste fixe a tout instant et d’une
maniére permanente dans le repére R, (O, 7,,7,, k, ). Nous avons donc deux points distincts Oy

et | du solide (qui restent fixent dans le repére au cours du mouvement de rotation.

Le repére R,(04,%,7, k) est en rotation pur par rapport
au repere Ry(0, T,, J,» EO ) a une vitesse angulaire donnée par :

- e i3 ]7’(0)/ =
Ony =i =7 e VR, =0

Soit P un point quelconque du solide et n"appartenant pas a I'axe de rotation tel que :

IP=1X
Quel que soit € Z, et Z , on peut écrire : zy Z
17(0/ 7(01)/ G AD]:
= Q AO4I:orn n (S)

R, R, + Qr, Jr, 0,1 : or nous avons
— —_— — —_— — ,’- ‘F\
Or,, 10,0= Qr,, AO;I=0 :dou VNP Y

/Ro /R0 S~F-

v/ Vo) o\

RO - RO ’

Xo
Figure 3.8 Mouvement de rotation.

| et P sont deux points du solide, nous pouvons alors écrire :

V’(p)/ ]7(1)/ — —_ = — V’(p)/ - —
= +Q ANIP =() ANIP = =0 AIP
Ro Ro ™ /g *1/ko Ry =~ /g,
On remplace 5121/ et IP par leurs expressions, la vitesse du point P devient :
Ro
V) o =B, ATP=WZArE = 0¥
0 /Rq

Dans un mouvement de rotation pur, le torseur des vitesses est équivalent au torseur
glisseur défini par :
ﬁs * 6

Cr ] =1 . Telque [ €ZyetZ
[ 1/R(, p VRl/R (HD=0 0
0
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3.8. Mouvement plan sur plan

Le mouvement d’un solide (S) lié a un repére R, (04,71, 1, k1) par rapport & un repére
fixe Ry (0o, 1o, Jo» ﬁo) est un mouvement plan sur plan si et seulement si, un plan (Ps) du solide

reste en coincidence avec un plan m, lié au repere Ry (0, o, Jo, Ko)-

On étudie ainsi le mouvement relatif de deux plans, 1’un constituant le référentiel fixe.

Les vecteurs iEO et El sont orthogonaux aux plans (Ps) et r,, respectivement en O et O;.

—

k1
N

=
[=]
.
e

o

Figure 3.9 Mouvement plan sur plan.

Le vecteur rotation instantané du solide (S) lié a Rl(Ol,?ljl,El) par rapport au repere fixe
R0 (00, 10, ], o) est donné par : K_is/R = Yk,
0

Tous les points du solide se déplacent parallélement au plan (m,), leurs vecteurs vitesses sont

aussi paralléles a ce plan, alors V P € (S) nous aurons :

V) e = F@h+ 9], = " Fy=0

On remarque dans ce cas que I’automoment V(P)/RO .S_ig/R = 0 du torseur cinématique
0

Qs

Ro

[CR1 ] =19 décrivant le mouvement est nul. En effet nous avons :
/R Vi, (P)
o'p Yp
0

V(P)/RO ”(_iS/R = (O + g(©)],)- Wk, = 0, nous pouvons conclure que :
0
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- Si¥Y=_Cte = QS/R =Y =0, larésultante du torseur étant nulle, alors le torseur est
0

un couple et le mouvement est une translation rectiligne sur le plan m,, I’axe central du
torseur reste indéfini ;

- Si y varie au cours du temps, alors Qs o = Y | dans ce cas le torseur est un glisseur
0

dont I’axe central est 1’axe instantané de rotation orthogonal au plan (1) donc

paralléle a k.
3.9. Mouvement composé

Un solide (S) lié a un repére R1(01,71,71,7€1) décrit un mouvement hélicoidal par

rapport & un repére fixe Ro(0g, Ly, J o Ko) Si :

- Un axe du repere R,(04,71,]1, El) reste en coincidence a tout instant avec un axe du
repére Ry(0o, %o, Jor Ko)-

- La coordonnée du point O; centre du repére R,(0;,%1,]1, k1) suivant P’axe de
coincidence, est proportionnelle & ’angle de rotation du repére R, (04,7, /1, k1) par

rapport au repere Ry (0o, 1, Jo, ko) au cours du mouvement de rotation.

Nous avons alors : 0,0, = A‘P(t)EO
Le scalaire A représente le pas du mouvement hélicoidal le long de 1’axe de coincidence.

Nous avons deux mouvements qui se superposent :
e Un mouvement de translation le long de I’axe commun k, = k;

e Un mouvement de rotation autour de ce méme axe EO = 751.

Soit P un point du solide, nous avons a chaque instant : O,P = 0,0, + 0, P

0
Le vecteur 0,0, s’écrit dans le repére Ry(Oo, o, Jo, ko) : 0907 = { 0
AW(t)
a
Le vecteur O, P s’écrit dans le repére R,(04,1;,1, k1) : O.P = {b
c
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L (acos¥(V)
et dans Ry (0o, 7o, Jo, ko) : 01P = { bsin¥(t)
Cc
acos¥(t)
la somme des deux vecteurs nous donne le vecteur 0, P dans R, : 0,P = { bsin¥(t)
c+ AP(t)

La vitesse et I’accélération du point P dans le repere R, se deduisent facilement par dérivation

dans le méme repere :

—aW¥.sin¥(t)
={ bW.cos¥(t)
290

V(P) / dOOP

et

—aW.sin¥(t) — aLPZCOSqJ(t)
=9 b¥.cos¥(t) — b‘i’zsin‘P(t)
AP (1)

Y(P) / dV(P )

3.10. APPLICATIONS

Exercice 1:

Soit une barre (OA) en rotation autour de z avec une vitesse constante. Ry (0o, %o, o, EO) etant le

repere absolu et R, (04,74,71, El) le repére relatif. Le point M glisse le long de la barre (OA).

. de
w=0= e Cte
V1 Yo
. X1
1- Vitesse absolue A
M
dO—M/ dpl, di, Jo
7 _ dt _ dt/ — 47 E/
Va(M) = Ry = R, =Putp /R, \ 6
i
4 de di, + 08,
pl+p— dt do = ply + p0.J1
Donc : V,(M) = piy + pb.J;
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2- Vitesse relative

Donc : V.(M) = pi,
3- Vitesse d’entrainement
(M) =V(0) + MOAG =0+ (—pi, A 6k) = —pb(=J,)
V(M) = pbj,
Vérifions :
Va(M) = V(M) + V(M)
ply + p0.j1 = piy + pOj,
4- ]7,4 (M) =?

V,(M) = pty + pOJ,

d20M dv,(M)
?A(M)= at R0= at R,

di djy
= piy +p dt R, T POJ1+pOI1 + pO dt/ R,
= piy + pOjy + pOj, + pbj, + po*(—1;)
=(p—pb?)i; + (2p0 + p0)j,
Orf=Cte = 6=0

Ya(M) = (p — p6?)iy + 2p6j;
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dvi,(M)

(M) = & /R1 tel que: V(M) = ¢,

Donc : y,.(M) = pi,
N N - — B — da_)) —_—
Ye(M) =7(0) + B A (& A O M) +——AOM
=0+ 6kA(6kApiy)+0

?E(M) = _pézi)l

Exercice 2 :

On considéere le systeme de pendule composé de deux tiges. Les deux tiges sont de longueurs
identiques L. Le bati (O) est lié au repére Ry (0o, To, o, Ko)-

Latige (1) est lié au repere R, (04,14, 1, l?l).
Latige (2) est lié au repere R, (05,75, J», l?z).

1- Determiner par la méthode derivation (méthode directe) :

Vae1/0 s Veezy1 s ]7,451/0 et }7352/0-
2- Determiner par la méthode de champ des vitesses :

Vae1/0 s Veez/1
3- Déterminer les torseurs cinématiques suivants :

(€3], el ezl s [enl,
4- Determiner par la méthode de composition de mouvement :

Vaez05 Viezjo

Solution de ’exercice 2 :

% / o 7, Jo
J1
. % 21
B o6
B(®) ()
ko =Fy [ [
52/0 = B(©)kz = B(®)Ko Q1) = a(Ok, = @)k,
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1- Par la méthode directe :

@ diy d11
g I7:461/0= dt/Ro_LdtL RO_L at R +.Ql/ /\ll —Lakl/\ll—La_ll

@ dOA dAB di,
* Veers1=° /Rl_ dt/ + o R, —0+Ldt/R1

di, di,

%/ _dt) i e
L Rl_L R2+QZ/1/\l2
Or (_1)2/1 = .(_).)2/0 —.(_2)1/0 = L(,B — d)EZ

V3e2/1 =L(B - @),

@ dOA dAB di,
* Vbeaso = /RO = @, R, T dt/RO _Ldt/R "'Ldt/R

Donc:

Vpez/o = Laj; + LB;Z

AV se1/0 dLaj, dji
* Vaerpo= * /R = dt /R = Laj, + La R
0 0 0

= LiJ, + La (?1’1/0 /\71) = LéJ, + La(ak, AJy) = Lij, — La*T,

7,461/0 = L&i1 - Ldza

AVpez/o d(Laji+LBj,) dji
o Vpezpo= % /Ro = a /Ro = Laj, + LpBj, + La % R,
Vpezjo = 0j; + LBJ, — L&, — LB?T,
2- Déterminer par la méthode des champs de vitesses :

Vae1/0 3 Veez/1
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* I7:4:51/0 = I70:51/0 +A0 A 61/0 =0- Li; A c'rfc)l = Lc'rj'l
Viaer/o = Laj,
* Vgez/1 = Vaez/s + BANA 92/1 =0—Lj; A (B — )k,

VBEZ/I = L(ﬁ - d)fz

3- Déterminer les torseurs cinématiques suivants :

_Cl/O_O ! _Cl/O]A ’ [Cz/l]A et [Cz/l]B
o, Qi =dk
° Cl/ = ] 1/0 _0)
- 0o Voe1/0 =0
-C q 61/0 = 0(]_()0
[ ] 1 = < - .
ol Vae1o = Ly,

-C {62/1 = (B - d)l_{)o
[ ] 2 = . .
-l Vaez/1 =0
-C 1 { 62/1 = (B — d)EO
[ ] 2 = R . .
s gy = LG8 - @0,

4- Déterminer par la méthode de composition de mouvement :
* VAEZ/O = VAEZ/l + VAe1/0 = VAEl/O = dt/RO = Ldﬁ

® Vgezo = Vpez/1 + Vperjo € Vgeryn = L(ﬁ - a)j,
Vee1/o = Voer/o + BO Ay, = —(Liy + Liz) A ko
Donc :

VBEZ/O = L‘ﬁl + Ll}fz
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4.1. Introduction

La dynamique du corps solide est une branche de la mécanique qui s'intéresse a I'étude
des mouvements des corps rigides sous l'influence de forces et de moments (ou couples).
Contrairement a la dynamique des points matériels, ou l'on considére des objets sans
dimension, la dynamique du corps solide prend en compte les dimensions et la distribution de
masse des objets. Les corps solides sont supposés indéformables, c'est-a-dire que la distance

entre deux points quelconques du corps reste constante pendant le mouvement.
4.1.1. Concepts fondamentaux

e Corps rigide : Un corps rigide est un objet dont la forme et les dimensions restent
inchangées sous l'action des forces appliquées. En pratique, les corps rigides sont une
idéalisation, car tous les matériaux se déforment dans une certaine mesure, mais cette
hypothése est souvent suffisamment précise pour I'étude des mouvements.

o Degrés de liberté : Un corps rigide dans I'espace tridimensionnel possede six degrés
de liberté, correspondant a trois translations (dans les directions x, y et z) et trois

rotations (autour des axes X, y et z).
4.1.2. Types de mouvements d'un corps solide

o Translation : Le corps se déplace de maniere telle que tous ses points suivent des
trajectoires paralléles. La direction et la vitesse de tous les points du corps sont
identiques.

« Rotation autour d'un axe fixe : Le corps tourne autour d'un axe fixe. Chaque point
du corps suit une trajectoire circulaire autour de cet axe.

o Mouvement général : Une combinaison de translation et de rotation. Par exemple, le
mouvement d'une roue de voiture en marche comporte a la fois une translation du

centre de la roue et une rotation autour de cet axe.

4.2. Rappels sur les quantités dynamiques pour un point matériel

La dynamique des particules est régie par des principes basés sur les lois de Newton.

- Premieére loi de Newton (loi d’inertie)

Dans un repére absolu, une particule (M) de masse m totalement isolée reste au repos

si elle est initialement au repos, ou bien est animée d’un mouvement de translation
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rectiligne uniforme si elle était en mouvement. Cette particule posséde une quantité

de mouvement constante. On écrit :

- Deuxiéme loi de Newton (Relation fondamentale de la dynamique).
Une particule (M) de masse m invariable est soumise a des actions de la part d'une

autre particule. A l'instant t, ces actions sont représentées par le vecteur force F

s'exercant sur cette particule. On écrit alors:

Le vecteur force F est la résultante de toutes les forces s’appliquant sur (M).

Remarque :

La loi de Newton définie les équations différentielles du mouvement.

% , ) dVy d??
P fimmin=m=t =2
(dV, (d2%
O
=3 it > = av, y
F=Z-=m. =<FE =m{_2X=m.—=
fozmu =2 b dt de?
SR A L
\dt \dt?

- Troisieme loi de Newton (Action-Réaction)
Quand deux corps s’interagissent, a partir du principe de la conservation de la quantité
de mouvement :
Apy  Ap,  dp, dp,

= — = = — — Fy, = —F
At At dt dt 12 21

F4, Force appliquee par le corps 1 sur le corps 2.

1_521 Force appliquée par le corps 2 sur le corps 1.
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4.3. Moment cinétique (Moment de la quantité de mouvement)

Le moment cinétique @4 du point matériel M en un point A quelconque de I’espace est

donné par le moment de la quantité de mouvement en A, il a pour grandeur :

4.4. Quantité de mouvement d’un systéme matériel (S)

a) Systéeme matériel discret :

Le systéme est constitué d’un ensemble de point M; de masse m; et de vitesses VMi dans

un repére R(0,%,7, k).

- La résultante cinétique (Quantité de mouvement) du systéme est donnée par la

p= z m;Vy,
7

- Le moment cinétique &4 du systeme (S) d’un point matériel A quelconque de

relation suivante :

I’espace est donné par le moment de la quantité de mouvement en A, il a pour

grandeur vectorielle :

—

G4 =AM, AmVy,
b) Systéme matériel continu :
Dans le cas d’un systéme matériel continu (S) : linéaire, surfacique ou volumique nous
avons :
- La résultante cinétique (quantité de mouvement) du systéme matériel continu,

est donnée par la grandeur vectorielle :

S

- Le moment cinétique &4 du systéeme (S) d’un point matériel A quelconque de
I’espace est donné par le moment de la quantité de mouvement en A, il a pour

grandeur vectorielle :

a,:fmmwdm
S

52



Chapitre 4 Dynamique du solide rigide

4.5. Torseur cinématique

Soit un solide (S) de masse m et de centre d’inertie G, en mouvement par rapport a un

repere fixe R(0,1,J, ﬁ). Soit M un point de ce solide et deux points A et B quelconque de
I’espace mais connus dans le repere R.

Par définition nous avons les moments cinétiques en A et B qui sont donnés par :

3A_3B:fmAdem_fmAdem:f<m_§M>Adem
S S S

:fﬁAdem
S

Cette relation est appelée loi de variation du moment cinétique.

On constate que le moment cinétique obéit a la loi des transports des moments. Nous
pouvons alors construire un torseur cinétique dont les éléments de réduction sont : la
résultante cinétique et le moment cinétique.

(

ol

17M dm

L —

—

S —

\

4.5.1. Expression de la résultante cinétique d’un systéme matériel

Soit un solide (S) de masse m et de centre d’inertie G, en mouvement par rapport a un
repere orthonormé fixe R(0,1,7, E). Quel que soit M € (S) nous avons par definition du

centre d’inertie :

I
=1

GM dm

ne—
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Zg

Y6

X

Figure 4.1 Résultante cinétique d’un systeme matériel
Les points G et M sont Mobiles dans le repére R(0, 1, ], k), nous pouvons écrire :
GM = OM — OG Leurs vitesses sont liées par la relation suivante :

dGM dOM dOG _ dGM

= =Vy—V
dt dt dt dt MG
En dérivant cette expression par rapport au temps sous le signe intégrale, on obtient :
dGM L .
dem= (VM—VG)dm=0
s s

D’ou: [ Vy dm = J; V, dm = mV, ce quidonne : P = mV,

4.6. Energie cinétique
4.6.1. Définition
L’énergie cinétique d’un systéme matériel continu (S) en mouvement par rapport a un

repere fixe R, est définie par la quantité scalaire exprimée par la relation :

4.6.2. Théoréeme de Koénig relatif a I’énergie cinétique
Soit RO(O,T,f,E) un repére orthonormé fixe. Le référentiel de Koénig (appelé aussi

référentiel barycentrique) R (G, 7,7, E) est le référentiel 1ié¢ au centre d’inertie du solide dont les

axes sont paralleles a ceux du repére fixe.

La vitesse du repére R par rapport au repere R, est nulle : .(_iRG/ =0
Ro

Nous allons chercher une relation entre :

54



Chapitre 4 Dynamique du solide rigide

— L’¢énergie cinétique du systéme dans son mouvement par rapport a R,

Et

— L’¢énergie cinétique du systéme dans son mouvement par rapport a R

Soit M un point du systeme matériel. La loi de composition des vitesses donne :
VS = V0 + U

en remplacant cette expression dans celle de I’énergie cinétique nous aurons :

EQ = f 5 Ve +Vi)idm =5 f (V)2dm + f Ve Vigdm + > f (Vi7)? dm
S S S S

= dGM \
Or nous avons : Vg = — dans le repére R;;.

Donc nous obtenons :
£Q == [ @02dm + 0.2 [ G dm + = [ (752 dm
C 2 G G- dt 2 M
S S S

nous avons aussi par définition du centre d’inertie que : fs GMdm =0

L’expression de 1’énergie cinétique devient :
0 1 17032 1 17G\2
EC=E( G) dm+z (Vm)*dm
S S
qui s’écrit aussi sous la forme réduite :
0 1 17042 G
S

L’¢énergie cinétique du systéme (S) en mouvement quelconque par rapport au repére R, est égale a
I’énergie cinétique du systéme dans son mouvement autour de son centre d’inertie G augmentée

de I’énergie cinétique du centre d’inertie affecté de la masse totale du systéme.

4.7. Solide indéformable en mouvement quelconque
Soit Ry(0o, %o, Jo, ko) UN repére orthonormé fixe et R, (04,71, k1) un repére lié a un
solide indéformable et de centre de d’inertie G.

Le solide est en mouvement quelconque tel que O € (S). La vitesse de rotation du repére R,

par rapport au repére R, est : 0

Soit M un point quelconque du solide, nous avons par la cinématique du solide :
VS =V + 09 A0M
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L’énergie cinétique du solide (S) est donnée par :

1 — 1 — — —_—
B = f (V92dm =5 f WS, + T A O M)2dm
S S
0 1 —>O =0 =0 R
EC - E (VM)(Vol + Ql N OlM)dm
S

S S
=§.(V01)-m. VG +Ql' E.OIM/\ M
S

L’expression du moment cinétique déja développée auparavant est donnée par :

53 = f OM A VO dm
S

Nous avons alors I’énergie cinétique en fonction du moment cinétique du solide:
0 _ 1 770 170 1. 00 20
EC - E (Vol).m. VG + Ql' 0-01
Si le centre 0, du repére R, est confondu avec le centre d’inertie G du solide : 0; = G alors :
0 _ 1 170\2 4 00 =20
EC - Em (VG) + 'Ql-O-G
Le moment cinétique en G s’écrit : 6% = I. 9 on aboutit & la relation finale :
EC —_— E.m. (VG) + Ql .1691
1 53 . T . .
S m. (V)? : est Iénergie cinétique de translation du solide

—aT = . . 7, . . . 9 .

QY . 1599 : est 1’énergie cinétique de rotation du solide autour de son centre d’inertie G.
L’énergie cinétique totale d’un solide en mouvement quelconque dans 1’espace est égale a la
somme de I’énergie cinétique de translation de son centre d’inertie affectée de la masse du

solide et de I’énergie cinétique de rotation autour du centre d’inertie.

L’énergie cinétique totale peut s’exprimer en fonction des torseurs cinématiques et cinétique au

20— (gi’) (m. VG°>
c VO ) O‘.’O
M 04
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L’¢énergie cinétique totale d’un solide est €gale a la moiti¢ du produit scalaire du torseur

cinématique par le torseur cinétique au point O, exprimé dans le repére R,,.

1
B2 = [V]o,.[Clo,

4.8. Théorémes fondamentaux de la dynamique
4.8.1. Objectifs de la dynamique

La dynamique permet d’analyser les liens existant entre les mouvements d’un solide
déja décrits par la cinématique et les forces ou actions qui les provoguent. Nous introduirons
la notion de torseur des efforts extérieurs, nécessaire a 1’écriture du principe fondamental de la
dynamique.

4.8.2. Notions de référentiels

Du principe fondamental de la dynamique et celui de 1’action-réaction, nous pouvons
établir les théoremes généraux de la dynamique dans un référentiel Galiléen ou non Galiléen.
En effet, un référentiel est dit Galiléen ou (absolu) si les lois de Newton exprimées dans
celui-ci sont valables. Tout repére en mouvement de translation uniforme par rapport a un
repere Galiléen est lui aussi Galiléen, car les accélérations constatées a partir d’un méme point

seront les méme dans les deux repeéres.

4.8.3. Expression de la loi fondamentale de la dynamique

Soit un systeme matériel (S) non isolé et soumis a des interactions dans un repére
Galiléen R, (0,%,,],, ko). Pour ce systéme matériel on distingue deux types d’actions :
- Les actions mécaniques intérieures, résultant des actions d’une partie de (S) sur une autre
partie de (S) ; ces actions sont appelées forces intérieures et notées : dﬁi
- Les actions mécaniques extérieures résultant des actions du reste de 1’univers (le milieu

extérieur) sur (S), ces actions sont appelées forces extérieures et notées : dF,
Il faut choisir convenablement les conditions aux limites du systéme pour pouvoir classer les
actions (forces) intérieures et extérieures.

En un point quelconque M du systeme (S), la relation fondamentale de la dynamique s’écrit :

dF, + dF, = ) dm
dm : Elément de masse au voisinage du point M ;
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Y - accélération du point M ;

u u 3 ériel, nous av :
En sommant sur I’ensemble du systéme matériel, nous avons 7

fdﬁe+fdﬁi=f)7Mdm
S

S S

X

Figure 4.2 Actions intérieures et extérieures sur un systéme matériel.

En un point A quelconque de I’espace les moments, de ces forces, sont donnés par :

fﬁAdﬁe+fﬁAdﬁi:fﬁAfMdm
S S S

Le systeme matériel (S), sa masse totale est constante.

Les actions mécaniques extérieures qui s’exercent sur (S) sont représentées par un torseur

[zr,,.] - appelé torseur des forces extérieures dont les éléments de réduction au point A sont :

-

F ext
MAext

[TFext]A = {

-

F,y: : est la résultante des forces extérieures s’exercant sur le systeme (S)
M 4., €St le moment au point A des forces extérieures s’exercant sur le systéme (S).
Le principe fondamental de la dynamique montre que dans tout référentiel Galiléen, le

torseur dynamique [D]a du systeme (S) est égal au torseur des forces extérieures [tr, ,]a

calculé au méme point A .

Les éléments de réduction du torseur dynamique [D]a du systeme (S) dans le repére Galiléen

RO (01 TO!j)OJ kO)

D : la résultante dynamique

5‘A : le moment dynamique au point A.
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L’égalité des deux torseurs induit I’égalité de leurs ¢éléments de réduction. Ce principe équivaut a
la généralisation des lois de Newton. Les éléments des deux torseurs peuvent étre calculés
séparément et ensuite faire 1’égalité des expressions obtenues.

Le point A par rapport auquel on calcul les moments est un point quelconque, il faut faire un choix
judicieux pour faciliter I’écriture des équations. Souvent dans les problémes de mécanique, on
choisit le centre de masse du systéme car le moment d’inertie intervenant dans les calculs est plus
facile & déterminer.

4.8.4. Théoreme du moment dynamique

Soit un systeme matériel (S) en mouvement dans un repére Galiléen RO(O,?O,jO,EO) et
soumis a des actions extérieures. Le moment dynamique du systeme matériel (S) en un point A

quelconque est égal au moment des actions (forces) mécaniques extérieures au méme point A.

34(5/r,) = Ma (S/R,)

Au centre d’inertie du systéme cette égalité s’écrirait :

O (S/Ro)

SG (S/Ro) =M (S/Ro) - dt

Comme nous 1’avons déja montré précédemment, le moment cinétique au point G centre d’inertie
du systeme est indépendant du repére dans lequel il est mesuré, alors il est souvent plus simple
d’effectuer le calcul des moments dynamiques au centre d’inertie des systeémes.
4.9. Théoreme de I’énergie cinétique

Dans de nombreux cas, pour déterminer I’équation du mouvement d’un solide ou d’un
systeme de solide, il est plus judicieux d’utiliser le théoréme de 1’énergie cinétique afin d’aboutir
a la solution du probleme mécanique.
De plus la dérivée de 1’énergie cinétique est liée a la puissance des efforts intérieurs et extérieurs
agissant sur le solide.
4.9.1. Travail et puissance d’une force

Soit un systéeme discret composé de n particules Mi de masse m;, mobiles dans un référentiel

Galiléen R(0,17,], ﬁ). Soit le vecteur position OM dans le repére R de la particule Mi, son

vecteur vitesse s’écrirait :

dOM; : le vecteur déplacement élémentaire durant un temps dt

Si la particule M est soumise a une force F;, le travail élémentaire de cette force est égale a :
|
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1

=l

~.

4.10. Applications
4.10.1. Cas de translation pure + rotation

On rappelle que moment d’inertie d’un cylindre homogéne de masse my et de rayon R par
rapport a son axe de révolution (A) est: Jy = %morz

Considérons le systéme suivant constitué d’un treuil de masse mg, d’un solide (S;) de masse
M, d’un solide (S;) de masse m et d’un cable inextensible et de masse négligeable entouré
autour d’un treuil et portant a ses extrémités les solides (S;) et (Sp).

On abandonne a I’instant initial le systéme sans vitesse initiale. Le solide (S;) se déplace sans
frottement le long de la ligne de plus grande pente du plan incliné qui fait un angle a@ = 30°
avec I’horizontale.

On donne : M=3Kg ; m=2Kg ; g=10m/s™

1- Exprimer I’énergie cinétique du systéme constitué
par (S1), (S2), le treuil et le cable en fonction de la
vitesse V des solides (S;) et (S2).

2- En appliquant le théoréme de 1’énergie cinétique que I’on énoncera,
Donner I’expression de la vitesse V en fonction de g, des différentes masses,

De I’angle « et de h la hauteur de chute de (Sy).

Solution de ’exercice 1 :
1- Expression de I’énergie cinétique du systeme ((S1)+ (S2)+ le treuil + le céble)
E. = E.(S;) + E.(S,) + E.(treuil)
E. = 1M. V2 + 1m. V7 + le.wZ
2 2 2
OrVy=V,=V et w=-
On peut écrire donc :
E.= lM. VZ + 1m. VZ+ l (lmorz). (K)z
2 2 2 2 T
= (M +m+7Yy?
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2- Expression de V en fonction de h

—

Bilan des forces : ﬁl ; ﬁz 'R, ; ﬁo et ﬁo Ro

D’apres le théoréeme de I’énergie cinétique (TEC) :

Ec—Ey = W(Pl) + W(PZ) + W(PO) + W(Rn) + W(RO) Pz)

%(M+m+?)V2 = —Mg h, + mgh,

h; =hsin30

h:hz

1 moy )
—(M+m+7)l/ = —Mg hsin30 + mgh

2
1(M +m+22) V2 = gh(m — Msin30)
2 2 g
my 2 .
(M +m +=2) V2 = 29(m — Msin30)h
2g(m — Msin30
yo [29C n )
M+m+7°

3- Expression de I’accélération (a) du systéeme
B 2g(m — Msin30) B

VZ

M+m+%
Posons x=h

2g(m — Msin30
V2 = 9( = ).x

M+m+ =2
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d[Zg(m — Msin30) ]

ay __ Mam+P
at dt
- 2 d_VV _ Zg(m—Ms:'T?OBO)d_x
dt M+m+7 dt

__ g(m—Msin30)
M+m+22

a.V

V < Donc :

a
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Chapitre 5 Géomeétrie des masses

5.1. Introduction

La géométrie des masses est un concept fondamental dans la mécanique, et elle
concerne la maniére dont la masse d'un systeme matériel est répartie dans l'espace. Cette
distribution influence les propriétés mécaniques d'un objet, notamment son centre de masse,
son moment d'inertie, et sa dynamique dans des mouvements complexes.

La masse d’un systéme peut étre définie de deux manieres, en fonction de la nature du
systeme matériel : discret ou continu. Voici une distinction claire entre ces deux concepts.

5.2. Masse d’un systeme discret

Dans un systéme discret, la masse est répartie en un nombre fini de points. Chaque
point possede une masse distincte et se trouve a une position spécifique dans l'espace. Ce type
de systeme est souvent utilisé pour modéliser des objets composés de particules distinctes ou

des assemblages de masses.
Formule pour la masse d'un systeme discret :

La masse totale M d'un systeme discret composé de n points de masse est simplement la

somme des masses individuelles m; :

chaque m; représente la masse d'un élément discret (par exemple, une particule ou un objet).

* 4
e e b

&Y

(@) Systeme discret (b) Systéme continu

Fiagure 5.1 Systéme discret et systéme continu.

5.3. Masse d'un systeme continu

Un systéme continu, quant a lui, correspond a un objet ou une distribution de masse qui

est étendue sur une région de l'espace de manic¢re continue. Au lieu d’étre divisée en
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particules discrétes, la masse est distribuée de maniere uniforme ou non uniforme a travers

I’objet.
Formule pour la masse d*un systeme continu :

La masse totale M est calculée a I'aide d'une intégrale, qui prend en compte la densité p(x) de
la matiere en chaque point de I’espace. Selon la dimension du systéme (ligne, surface,

volume), l'intégrale est differente :

o Pouruneligne: [ p(x)dx

ou p(x) est la densité linéique (masse par unité de longueur) le long de la ligne L.

e Pourunesurface : [, p(x,y)dA

ou p(x,y) est la densité surfacique (masse par unité de surface), et dA est I'élément de surface.

e Pourunvolume: [ p(xy,z)dV

ou p(x,y,z) est la densité volumique (masse par unité de volume), et dV est I'élément de
volume.
Exemple :

Considérons une tige de longueur L, avec une densité de masse linéique uniforme
p = 2Kg/m. La masse totale de la tige serait : fOL 2dx = 2L Kg

5.4. Formulation intégrale du centre de masse.

Le centre de masse (G) d'un objet est le point ou 1’on peut considérer que toute la
masse de I'objet est concentrée pour simplifier les calculs de dynamique. Sa position dépend
de la répartition de la masse dans I'espace et peut étre calculée de maniere différente pour les

systemes discrets et continus.

5.4.1. Centre de masse d’un systéme discret

Pour un systéeme discret constitué de plusieurs particules de masse m; situées a des
positions r;, la position du centre de masse G est donnée par :
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Ou:

m; : La masse de la i°™ particule

r; : La position de la i*™ particule

n : Le nombre de particules.

5.4.2. Formulation intégrale pour un systéeme continu.

Pour un systeme continu, la masse est distribuée de fagon uniforme ou non sur une
ligne, une surface, ou un volume. Le centre de masse est alors calculé a l'aide d'intégrales
prenant en compte la distribution de la masse (via la densité) dans I'espace.

a. Centre de masse d'une ligne (distribution unidimensionnelle)
Pour une distribution continue de masse le long d'une ligne L, avec une densité linéique

de masse A(x), la position du centre de masse Xcm est donnée par :

J, xA(x)dx
Xg=—"T"—"—"™"7—
J, A(x)dx
b. Centre de masse d'une surface (distribution bidimensionnelle)

Pour une distribution de masse sur une surface S, avec une densité centre de masse sont
calculées par :surfacique a(x, y), les coordonnées (x¢, y;) du
. Jg xo(x,y)dA
o Jg o(x,y)dA
Js yo(x,y)dA
Jg o(x,y)dA

Ou dA est I'élément de surface différentielle.

Ye =

c. Centre de masse d'un volume (distribution tridimensionnelle)
Pour une distribution de masse dans un volume V, avec une densité volumique p(x,y, z), les

coordonnées du centre de masse (xg, V¢, Z¢) sont données par les équations :

. _Jy xp(xy, 2)dv
;=
J, p(x,y,2)dv
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_Js yp(x.y,2)dv
g p(x,y,2)dV

Ye

s zp(x,y, 2)dv
=
g p(x,y,2)dV
Ou dV est I'élément de volume différentiel.

5.4.3. Formulation discréte du centre de masse (centre d’inertie)

La formulation discréte du centre de masse concerne un systéme constitué d'un
nombre fini de masses ponctuelles situées a des positions spécifiques. Contrairement a un
systeme continu, ou la masse est répartie de maniére uniforme ou non uniforme sur une
région, un systéeme discret considere un ensemble de particules ou objets ayant des masses
distinctes.

Pour un systeme discret tridimensionnel composé de plusieurs masses ponctuelles my,
Mo, ..., my, Situées a des positions ry,r,...,r,. la position du centre de masse (centre d’inertie)

est donné par les expressions suivantes :

Xi, Vi, Z; - sont les coordonnés de 1’élément de masse m;

X, Ve, Z¢ - Les coordonnées du systéme composé.
5.5. Théoreme de GULDIN

Le théoreme de Guldin (ou théoreme de Pappus-Guldin) est un ensemble de deux
theoremes de geométrie qui permettent de calculer l'aire et le volume d'un solide de
révolution. Ces théorémes sont particulierement utiles en mécanique et en ingénierie pour
déterminer des grandeurs comme les volumes et les surfaces de solides obtenus par la rotation

d'une courbe ou d'une surface autour d'un axe.
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5.5.1. Premier Théoréme de GULDIN

La surface S engendrée par la rotation d’un arc de courbe de longueur L autour
d’un axe (A) sans I’intercepter dans son plan est égale au produit de la longueur L
de I’arc par la longueur de la circonférence 2nR¢ décrite par le centre d’inertie G

de I’arc de courbe.

8)

L\

Fiagure 5.2 Centre d’inertie d’une courbe plane.

La longueur (périmétre) décrite par la rotation du centre d’inertie G par rapport a I’axe

(A) est donnée par : 2.n.R¢ , alors la surface décrite par cet élément est égale a :

S/a
Sn=2.m.Rg.L d’ou: Rs = =
/A G G 2.m.L
. . . L Stotale A
Dans le cas d’un systeme homogene de plusieurs ¢léments on aura : R; = Tl !
Il.Ltotale

. , , . S
si I’axe (A) représente I’axe (O, y ) nous aurons : x; = z/ﬁ

S/ox

si I’axe (A) représente I’axe (O, X ) nous aurons : y; = Tl

5.5.2. Deuxiéme Théoréme de GULDIN

Le volume d'un solide de révolution généré par la rotation d'une surface plane S
autour d'un axe extérieur a cette surface est égal a I'aire de la surface multipliée par la distance

parcourue par le centre de gravité de la surface. S (4)

Fiagure 5.3 Centre d’inertie d’une surface plane.
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Si A est l'aire de la surface S, et si : 2.w.Rg est la distance parcourue par le centre de

masse de la surface lors de la rotation, alors le volume V du solide de révolution est donné par

9 N 4
:V/y=2.mReS dou  Rg=5"-

. . ) o Vtotal
Dans le cas d’un syst¢tme homogene de plusieurs ¢léments on aura: R; = Trs nosa o2
Jl.ototale

. , , . 14
si I’axe (A) représente I’axe (O, y ) nous aurons : x; = 2/%

V/ox
2.m.S

si I’axe (A) représente ’axe (O, X ) nous aurons : y; =

5.6. Moment d’inertie

Soit un solide de masse dm lié a une tige (44°) de masse négligeable, en rotation
autour d’un axe (A). Si on applique un couple au systeme (tige + masse), il se mettra a tourner
librement autour de I’axe (A). Le temps nécessaire a cet élément de masse dm pour atteindre
une vitesse de rotation donnée est proportionnel a la masse dm et au carré de la distance r qui
sépare la masse de I’axe (A). C’est pour cette raison que le produit r2. dm est appelé moment

d’inertie de la masse dm par rapport a I’axe (A).

D,

dm

(8)

Figure 5.4 Moment d’inertie par rapport a un axe.

Soit un repere orthonormé R(0,1,7, ﬁ) et un solide (S) tel que O € (S). Le moment
d’inertie de ce solide par rapport au point O (Moment polaire) est obtenu en intégrant la

relation 2. dm.
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Ip = frzdm
&)

Nous avons : r2 = OP? = x% + y? + z2

PZ
\.
\.
NS
Le solide peut étre linéaire, surfacique ou volumique. i
L’élément d’intégration dm(P) est situé en un point P du solide. !
0 ! y
- T B re
N | e
~ o
.............. N

Figure 5.5 Moments d’inertie par rapport aux axes et aux plans.
Le tenseur d’inertie du solide au point O est représenté dans la base R(0,7,7,k) par une

matrice notée: appelée matrice d’inertie en O dans la base R(0,7,7, k) du solide (S):

Ixx _Ixy _Ixz
="y Ly -~y

IO(S)/R
_Ixz _Iyz Izz

Les éléments de la matrice s’écrivent comme suit :

e Moment d’inertie par rapport a I’axe (OX) : Iy = | (

e Moment d’inertie par rapport & I'axe (Oy) : I, = | ® (x? + z%)dm

2 2
5 (y* +z%)dm

e Moment d’inertie par rapport a I’axe (Oy) : I, = [ .. (x? + y?)dm

)]
e Moment d’inertie par rapport au plan (Oxy) ou produit d'inertie : I,,, = fs x.ydm

e Moment d’inertie par rapport au plan (Oxz) ou produit d'inertie : I, = fs x.zdm

e Moment d’inertie par rapport au plan (Oyz) ou produit d'inertie : I,,, = fs y.zdm

Remarque : Lorsque des solides admettant des plans de symétrie par rapport aux axes du
repere choisi. Pour chaque plan de symétrie, les produits d’inertie sur les deux autres plans

sont nuls :

(x0y) plan de symétrie ==>1I,, = [ x.z=0 etl,, = [ y.zdm =0
(yOz)plan de symétrie ==>1I,, = [ x.z=0et I, = [( x.ydm =0

(x0z) plan de symétrie ==>1,, = [ y.zdm = 0etl,, = [( x.ydm =0
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5.6.1. Solides plans.

Dans le cas des solides plans, I’une des coordonnées de 1’élément, dm est {/Iulle. Si le solide

est dans le plan (xOy) alors =0 . A
On déduit immédiatement que :
I, = f y:.dm
)
I, = f x%.dm
X
) 0

D’ou: . ) . .
Figure 5.6 Moment d’inertie d’un solide plan.

I, = f (2 +yHdm =1, +1,,
)

I,y = [ x.ydm Avec: I, =1,,=0

5.7. Théoreme de HUYGENS
Le théoreme de Huygens stipule que le moment d'inertie d'un solide par rapport a un
axe quelcongue est égal a la somme du moment d'inertie par rapport a un axe parallele passant

par le centre de masse et du produit de la masse du solide par le carré de la distance entre les

deux axes.

Autrement dit, si :

e [, estle moment d'inertie par rapport a I'axe passant par le centre de masse G,
e d est ladistance entre I'axe passant par le centre de masse et I'axe décalé,

e m est la masse totale du solide.

I, = I; + m.d?

D’une maniére générale :

Fiqure 5.7 Théoreme de HUYGENS par rapport a un axe.
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Tox,x, = Iexx + m(yg + zZ)
Ioy,y, = Igyy + m(x¢ + z¢)
loz,z, = Igzz + m(x% + ¥2)
Et les produits d’inertie sont :
Loy,y, = lgxy + M. X¢.Yg

onoZo = IGXZ +m.xq.zZg

loy,,, = lgyz + m.yg.2¢

Xo

Figure 5.8 Théoréme de HUYGENS aénéral

5.8. Applications
Exercice 1:
Déterminer le moment d’inertic au point O de la plague mince rectangulaire de masse m, de

longueur 2a et de largeur 2b de centre d’inertie G (a, b, 0).

En appliquant le théoreme de HUY GENS, nous obtenons :

b2
onoxo = IGXX + m(yé + Z%;) =m—+ m.bz

3
aZ
onoyo = IGYY + m(x%; + Z%) = m? + m. az
s o a’> b? 4 s o
IOZOZO=Iazz+m(xG+y6)=m ?"‘? +m.(a2+b2)=§m.(a +b)

Les produits d’inertie sont :

Iox,y, = Igxy + Mm.xXg.y¢ = 0 + m.ab = m.ab Y
loy,z, = Igxz t m.x6.2¢6 =0+ m.a.0=0
loy,z, =lgyz+mys.26=0+m.b.0=0
2b
2a X
@)
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Exercice 2 :

Déterminer le moment d’inertie au point G centre d’inertiec d’une plaque mince
rectangulaire de masse m, de longueur 2a et de largeur 2b et de coordonnées G (a, b, 0).
Les plans (xGz) et (yGz) sont des plans de symétrie, alors tous les produits d’inertie sont nuls
Igxy = lgxz = Igyz = 0; la matrice d’inertie en G est diagonale.
Masse de la plaque : m = 6.5 = 0.4ab

Nous avons un solide plan: z = 0 donc Ig,; = Igxx + Igyy

+a +b
2 2 2 b?
Icsx =.fy dmzfy adSzfyzadxdyza f dx f yZdy=02a.§bb2 =o.m
s s s Za b
+a +b
2 2 2 2 2 a’
Iny=fx dm=]x adS=jx odxdy =0 f x“dx j dy=a.§aa .2b=0.m?
S s S Za b
a’? b?
IGZZ = IGxx + Iny = O-m(_+_
3 3
La masse d’inertie au point G s’écrit :
bZ
— 0 0
m3
2
a
IS)=1 0 m—= 0
a2 bZ
0 0 —+ =
m(z+ 3]
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