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Avant-propos 

 

 

Ce polycopié de cours est destiné aux étudiants de deuxième année du semestre 3 des 

sciences techniques du système LMD et aux étudiants de deuxième année du parcours 

ingénieur. Il  respecte le contenu du descriptif de la mécanique Rationnelle pour la filière 

Génie civil. Ce polycopié contient des chapitres de cours et des exercices résolus à la fin de 

chaque chapitre. Les solutions sont souvent détaillées et permette à l’étudiant de compléter sa 

compréhension du cours et faire soit même son évaluation. L’étudiant sera en mesure de saisir 

et comprendre un problème (statique, cinématique et dynamique) de mécanique du solide, il 

possèdera les outils lui permettant de résoudre un problème dans le cadre de la mécanique 

classique. Ce cours est un pré requis pour la RDM et la mécanique analytique. La mécanique 

rationnelle, en tant que discipline fondamentale de la physique appliquée, repose sur un 

ensemble de concepts et de méthodes indispensables pour comprendre le mouvement des 

corps dans l'espace. Ce domaine combine des outils mathématiques tels que le calcul vectoriel 

avec des principes physiques pour analyser les solides en équilibre, décrire la cinématique des 

corps solides, étudier la géométrie des masses et prédire le comportement dynamique des 

systèmes. 

 



Introduction générale 

 

La mécanique rationnelle, en tant que discipline fondamentale de la physique appliquée, 

repose sur un ensemble de concepts et de méthodes indispensables pour comprendre le 

mouvement des corps dans l'espace. Ce domaine combine des outils mathématiques tels que le 

calcul vectoriel avec des principes physiques pour analyser les solides en équilibre, décrire la 

cinématique des corps solides, étudier la géométrie des masses et prédire le comportement 

dynamique des systèmes. 

Dans ce contexte, le calcul vectoriel constitue le langage de base de la mécanique rationnelle, 

permettant de décrire de manière précise les quantités physiques telles que la force, la vitesse et 

l'accélération. Il fournit également un cadre mathématique pour résoudre les problèmes de 

statique et de dynamique en trois dimensions. 

Le premier volet de notre exploration se concentrera donc sur le calcul vectoriel, où nous 

examinerons les opérations de base, telles que l'addition et la multiplication vectorielle, ainsi que 

des concepts avancés tels que le produit scalaire et le produit vectoriel, qui seront ensuite 

appliqués à la résolution de problèmes en statique et en dynamique. 

Dans la deuxième partie, nous aborderons la statique des solides, explorant les conditions 

d'équilibre des corps rigides soumis à des forces externes. Nous étudierons les principes 

fondamentaux de la résolution de systèmes de forces, ainsi que les concepts de moments et de 

couples, essentiels pour l'analyse des structures et des mécanismes. 

Ensuite, nous plongerons dans la cinématique du corps solide, où nous examinerons les 

mouvements de rotation et de translation, ainsi que les trajectoires et les vitesses relatives des 

points à l'intérieur d'un solide. Ce volet nous permettra de comprendre les mouvements 

complexes des objets dans l'espace et leur évolution au fil du temps. 

Dans la quatrième partie, nous aborderons la géométrie des masses, qui nous permettra de 

déterminer les propriétés géométriques des objets tels que le centre de masse et les moments 

d'inertie. Ces concepts sont essentiels pour prédire le comportement dynamique des systèmes en 

mouvement. 

Enfin, dans le dernier volet de notre exploration, nous nous pencherons sur la dynamique, où 

nous appliquerons les lois de Newton pour étudier le mouvement des corps sous l'influence des 

forces. Nous aborderons les concepts de forces de frottement, de traction et de mouvement de 

rotation, en mettant l'accent sur la résolution de problèmes pratiques en mécanique rationnelle. 
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1. Un scalaire 

Un scalaire est une quantité qui est définie par une seule valeur numérique, sans direction ni 
sens. Exemples de scalaires: 

- La température: 20°C 
- La masse: 10 kg 
- Le temps: 5 secondes 
- La vitesse d'un objet en mouvement: 10 m/s (scalaire car ne précise pas la direction). 

 
2. Un vecteur 

En mathématiques et en physique, un vecteur est une quantité qui possède à la fois une 

origine, une magnitude (ou une longueur), une direction dans l'espace et un sens. Les vecteurs 

sont souvent représentés graphiquement par des flèches, où la longueur de la flèche représente 

la magnitude du vecteur et la direction de la flèche indique la direction du vecteur. 

 

 

 

 

 

 

Le vecteur s’exprime dans la base orthonormée      ⃗  ⃗  ⃗⃗  sous la forme : 

 ⃗⃗     ⃗     ⃗     ⃗⃗  (
  
  
  

) 

            sont les composantes du vecteur   ⃗⃗  

(        )    (des réelles). 

 

 

 

 

 

 

A 

𝑉⃗⃗ 

B 

Figure 1.1 Représentation d’un vecteur dans un plan   

𝑉⃗⃗ 

𝑉⃗⃗𝑧 

𝑉⃗⃗𝑦 

𝑉⃗⃗𝑋 

z 

y 

x 𝑉⃗⃗𝑥𝑦 

O 

𝑖 

𝑘⃗⃗ 

𝑗 

Figure 1.2 Représentation d’un vecteur dans l’espace 
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2.1. Types des vecteurs:  

Les vecteurs peuvent être classés en plusieurs types en fonction de différentes 

caractéristiques. Voici quelques types de vecteurs courants : 

- Vecteurs géométriques : Ce sont des vecteurs utilisés pour décrire des grandeurs 

physiques dans l'espace, comme la position, le déplacement, la vitesse, etc. Ils sont 

souvent représentés graphiquement par des flèches dans un système de coordonnées. 

- Vecteurs unitaires : Ce sont des vecteurs ayant une magnitude de 1 et qui servent 

souvent de base pour décrire la direction dans un espace donné. Les vecteurs unitaires 

sont souvent utilisés pour définir des systèmes de coordonnées et des bases 

orthogonales. 

- Vecteurs colinéaires : Deux vecteurs sont colinéaires s'ils sont alignés sur la même 

droite ou s'ils sont parallèles. Cela signifie que l'un peut être obtenu en multipliant 

l'autre par un scalaire. Les vecteurs colinéaires ont la même direction ou des directions 

opposées. 

- Vecteurs opposés : Deux vecteurs sont opposés s'ils ont la même norme mais des 

directions opposées. Lorsqu'ils sont ajoutés, ils se neutralisent mutuellement. 

- Vecteurs orthogonaux : Deux vecteurs sont orthogonaux s'ils sont perpendiculaires 

l'un à l'autre. Le produit scalaire de vecteurs orthogonaux est nul. 

- Vecteurs libres : Ce sont des vecteurs qui peuvent être déplacés dans l'espace sans 

changer leur effet. Ils sont définis uniquement par leur magnitude et leur direction. 

- Vecteurs liés : Ce sont des vecteurs qui ont un point d'application spécifique dans 

l'espace et sont définis par leur origine et leur extrémité. 

2.2. Operations algébriques sur les vecteurs  

2.2.1. Module d’un vecteur 

Soit un vecteur   ⃗⃗  (
  
  
  

)  défini dans un repère cartésien orthonormé      ⃗  ⃗  ⃗⃗ . 

Son module est un scalaire égal à : || ⃗⃗||=  √            

2.2.2. Vecteur unitaire 

On peut exprimer le vecteur  ⃗⃗ :         ⃗⃗     ⃗⃗  d’où 

 ⃗⃗  
 ⃗⃗

 
   | ⃗⃗|    

𝑉⃗⃗ 

𝑢⃗⃗ 

Figure 1.3 Vecteur unitaire 
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On peut écrire aussi : 

 ⃗⃗  
   ⃗     ⃗     ⃗⃗

√           
 

  

√           
 

  

√           
 

  

√           
 

 ⃗⃗  
 

 
(

  
  
  

) 

 ⃗⃗        ⃗        ⃗        ⃗⃗  

 

 ⃗⃗  
 

 
(

  
  
  

)=(
     
     

     

) 

2.2.3. Egalité entre deux vecteurs 

Soient deux vecteurs  ⃗⃗  et  ⃗⃗   dans une base orthonormée       ⃗  ⃗  ⃗⃗ , tel que : 

   ⃗⃗  (

  

  

  
)  et  ⃗⃗  (

  

  

  
)   

    ⃗⃗   ⃗⃗           ,      ,      . 

   ⃗⃗    ⃗⃗            ,       ,       .  

2.2.4. Somme des vecteurs 

Soient deux vecteurs  ⃗⃗  et  ⃗⃗   dans une base orthonormée       ⃗  ⃗  ⃗⃗ , tel que : 

   ⃗⃗  (

  

  

  
)  et   ⃗⃗  (

  

  

  
), la somme des vecteurs est : 

   ⃗⃗   ⃗⃗  (

  

  

  
)  (

  

  

  
)  (

     

     

     

)  

 

2.2.5. Soustraction de deux vecteurs 

Soient deux vecteurs  ⃗⃗  et  ⃗⃗   dans une base orthonormée       ⃗  ⃗  ⃗⃗ , tel que : 

  ⃗⃗  (

  

  

  
)  et   ⃗⃗  (

  

  

  
), la différence des vecteurs est : 

𝑉⃗⃗  

𝑉⃗⃗  

𝑉⃗⃗ 

Figure 1.5 Somme de deux vecteurs 

𝑉⃗⃗ 

 𝛽 

𝛾 

𝛼 

x 

y 

𝑧 

Figure 1.4 Composantes d’un vecteur unitaire 
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             ⃗⃗   ⃗⃗  (

  

  

  
)  (

  

  

  
)  (

     

     

     
) 

2.2.6. Propriétés des vecteurs 

  ⃗⃗   ⃗⃗   ⃗⃗   ⃗⃗        ⃗⃗   ⃗⃗   ⃗⃗ ;      ⃗⃗  (  ⃗⃗)   ⃗⃗ 

  ⃗⃗    ⃗⃗   ⃗⃗   ( ⃗⃗   ⃗⃗ )   ⃗⃗  

  ( ⃗⃗   ⃗⃗ )    ⃗⃗    ⃗⃗  ;     

       ⃗⃗    ⃗⃗    ⃗⃗  ;       

   ⃗⃗   ⃗⃗⃗⃗ ;     

 ⃗⃗⃗⃗   (  ⃗   ⃗   ⃗⃗)  (
  
  
  

)   (
 
 
 
) 

 ⃗⃗⃗⃗ a la même direction que  ⃗⃗ si {
              
               

 

| ̅|  |  ̅|=| || ̅| 

3. Produit scalaire  

Le produit scalaire de deux vecteurs  ⃗⃗  et  ⃗⃗  tel que : 

 ⃗⃗  (

  

  

  
)  et   ⃗⃗  (

  

  

  
) 

Est une opération qui donne un scalaire : 

 

 ⃗⃗   ⃗⃗  ‖ ⃗⃗ ‖‖ ⃗⃗ ‖     

         

             ⃗⃗ ,  ⃗⃗ )    tel que           

 

Analytiquement on écrit : 

 ⃗⃗   ⃗⃗  (

  

  

  
)  (

  

  

  
)                 

Le produit scalaire est un scalaire. 

  

3.1. Propriétés du produit scalaire 
 

 Commutativité :  ⃗⃗   ⃗⃗   ⃗⃗   ⃗⃗  

 Distributivité :  ⃗⃗  ( ⃗⃗   ⃗⃗ )   ⃗⃗   ⃗⃗   ⃗⃗   ⃗⃗  

 Multiplication par un réel :  ( ⃗⃗   ⃗⃗ )  (  ⃗⃗ )  ⃗⃗   ⃗⃗     ⃗⃗   ;     

 Vecteurs orthogonaux :   ⃗⃗   ⃗⃗    ⃗⃗   ⃗⃗   ⃗⃗ 

𝑉⃗⃗  

𝑉⃗⃗  

𝜃 

Figure 1.6 Produit scalaire de deux vecteurs 
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 Vecteurs parallèles : :   ⃗⃗   ⃗⃗     ⃗⃗   ⃗⃗   ‖ ⃗⃗ ‖‖ ⃗⃗ ‖ 

 Dérivée d’un produit scalaire : 
   ⃗⃗⃗   ⃗⃗⃗  

  
  ⃗⃗ 

   ⃗⃗⃗  

  
  ⃗⃗ 

   ⃗⃗⃗  

  
 

 Calcul sur les vecteurs de la base orthonormée :  ⃗  ⃗   ⃗  ⃗⃗   ⃗⃗  ⃗          ⃗  ⃗   ⃗  ⃗   ⃗⃗  ⃗⃗    

 

4. Produit vectoriel  

Le produit vectoriel de deux vecteurs  ⃗⃗  et  ⃗⃗  donne un autre vecteur  ⃗⃗⃗⃗ qui est 

perpendiculaire aux deux vecteurs d’origine : 

 

    ⃗⃗⃗⃗   ⃗⃗   ⃗⃗  ‖ ⃗⃗ ‖‖ ⃗⃗ ‖      ⃗⃗  

 

 ⃗⃗  : vecteur unitaire supporté par  ⃗⃗⃗⃗. 

     ⃗⃗   ⃗⃗ 
̂    

-  ⃗⃗⃗⃗ est perpendiculaire au plan formé par  ⃗⃗  et  ⃗⃗ . 

- Sa direction est perpendiculaire à  ⃗⃗  et  ⃗⃗ . 

- Son sens est celui de la rotation de  ⃗⃗  et  ⃗⃗  (sens de rotation d’une vis) 

- Sa norme est :   ‖ ⃗⃗⃗⃗‖  ‖ ⃗⃗ ‖‖ ⃗⃗ ‖     ‖ ⃗⃗ ‖ 

 

‖ ⃗⃗⃗⃗‖ : aire du parallélogramme formé par 

 ⃗⃗  et  ⃗⃗ .  

 

 

 

Expression analytique du produit vectoriel 

 ⃗⃗  (

  

  

  
)  et   ⃗⃗  (

  

  

  
) 

 ⃗⃗   ⃗⃗  (

  

  

  
)  (

  

  

  
)  (

         
         
         

) 

4.1. Propriétés du produit vectoriel 

  ⃗⃗   ⃗⃗    ⃗⃗   ⃗⃗  

  ⃗⃗  ( ⃗⃗   ⃗⃗ )   ⃗⃗   ⃗⃗   ⃗⃗   ⃗⃗  ;   ⃗⃗   ⃗⃗    ⃗⃗   ⃗⃗   ⃗⃗   ⃗⃗   ⃗⃗  

𝑉⃗⃗  

𝑉⃗⃗  

𝑊⃗⃗⃗⃗ 

𝑢⃗⃗𝑊 

𝜃 

Figure 1.7 Produit vectoriel de deux vecteurs 

𝑉⃗⃗  

𝑉⃗⃗  

𝑊⃗⃗⃗⃗ 

𝑢⃗⃗𝑊 

𝜃 

Figure 1.8 Norme du produit vectoriel  
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  ( ⃗⃗   ⃗⃗ )  (  ⃗⃗ )   ⃗⃗   ⃗⃗     ⃗⃗   ;     

  ⃗⃗   ⃗⃗   ⃗⃗   {
 ⃗⃗   ⃗⃗     ⃗⃗   ⃗⃗ 

  

 ⃗⃗   ⃗⃗        ⃗⃗      ⃗⃗                   

 

4.2. Dérivée d’un produit vectoriel 

   ⃗⃗   ⃗⃗  

  
 

   ⃗⃗  

  
  ⃗⃗   ⃗⃗  

   ⃗⃗  

  
 

 

4.3. Calcul sur les vecteurs d’une base orthonormée directe 

  ⃗   ⃗   ⃗⃗     ⃗   ⃗⃗   ⃗       ⃗⃗   ⃗   ⃗ 

  ⃗   ⃗   ⃗⃗     ⃗   ⃗   ⃗⃗       ⃗⃗   ⃗⃗   ⃗⃗ 

  ⃗⃗   ⃗    ⃗     ⃗   ⃗    ⃗⃗       ⃗   ⃗⃗    ⃗ 

 

 

 

5. Produit mixte 

Soient trois vecteurs  ⃗⃗    ⃗⃗  et  ⃗⃗   dans une base orthonormée       ⃗  ⃗  ⃗⃗ , le produit 

mixte est calculé comme suit : 

 ⃗⃗  ( ⃗⃗   ⃗⃗ )   ⃗⃗  ( ⃗⃗   ⃗⃗ )   ⃗⃗  ( ⃗⃗   ⃗⃗ ) 

Le produit mixte est un scalaire égal au volume du parallélépipède formé par les trois 

vecteurs.  

  

| ⃗⃗  ( ⃗⃗   ⃗⃗ )|                            

 ⃗⃗  ( ⃗⃗   ⃗⃗ )     

 

 si : 

- Les trois vecteurs sont coplanaires. 

- Deux vecteurs sont colinéaires. 

- Un vecteur est nul. 

 

+ 

𝒋 

𝒊 

𝑘⃗⃗ 

Figure 1.9 Convention de  signe dans une base orthonormée 

𝑉⃗⃗  
𝑉⃗⃗  

𝑉⃗⃗  

Figure 1.10 Norme du produit mixte 
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6. Double produit vectoriel 

Soient trois vecteurs  ⃗⃗    ⃗⃗  et  ⃗⃗   dans une base orthonormée       ⃗  ⃗  ⃗⃗ , le double  

produit vectoriel est un vecteur  ⃗⃗⃗⃗ calculé comme suit : 

 ⃗⃗⃗⃗   ⃗⃗  ( ⃗⃗   ⃗⃗ )  ( ⃗⃗   ⃗⃗ ) ⃗⃗    ⃗⃗   ⃗⃗   ⃗⃗  

La règle est comme suit : 

 ⃗  ( ⃗⃗   ⃗)  ( ⃗  ⃗) ⃗⃗    ⃗  ⃗⃗  ⃗ 

  ⃗   ⃗⃗   ⃗  ( ⃗  ⃗) ⃗⃗    ⃗⃗  ⃗  ⃗ 

7. Projection des vecteurs 

7.1. Projection d’un vecteur sur un axe  

La projection du vecteur  ⃗⃗⃗ sur l’axe (   ayant 

 un vecteur unitaire  ⃗⃗⃗ est un vecteur  ⃗⃗⃗  : 

 ⃗⃗⃗  ( ⃗⃗⃗  ⃗⃗⃗) ⃗⃗⃗          ⃗⃗⃗ 

 ⃗⃗⃗  | ⃗⃗⃗ | ⃗⃗⃗ 

                      ⃗⃗⃗  ( ⃗⃗⃗  ⃗⃗⃗) ⃗⃗⃗ 

 

7.2. Projection d’un vecteur sur un plan  

 ⃗⃗   ⃗⃗   ⃗⃗         ⃗⃗   ⃗⃗   ⃗⃗     

 ⃗⃗   ⃗⃗  ( ⃗⃗  ⃗⃗) ⃗⃗    ⃗⃗  ⃗⃗  ⃗⃗  ( ⃗⃗  ⃗⃗) ⃗⃗ 

                ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗   ⃗⃗⃗ 

 

 

7.3. Projection d’un vecteur dans un repère oblique 

Soit un vecteur  ⃗⃗⃗ dans un repère oblique (Ox,Oy),  

pour determiner les composantes du vecteur dans cette base : 

- On trace une droite parallèle à (Oy) jusqu’à couper 

 l’axe (Ox). 

𝑉⃗⃗ 

𝑉⃗⃗𝑢 

𝑢⃗⃗ 

    

𝛼 

Figure 1.11 Projection d’un vecteur sur un axe. 

𝑉⃗⃗𝑛 

𝑉⃗⃗𝜋 

𝜋 

𝑛⃗⃗ 
𝑉⃗⃗ 

Figure 1.12 Projection d’un vecteur sur un plan. 

x 

y 

O 

A 
B 

C 

𝑉⃗⃗ 

𝑉⃗⃗𝑥 

𝑉⃗⃗𝑦 

Figure 1.13 Projection dans un repère oblique. 
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- On trace une droite parallèle à (Ox) jusqu’à couper 

 l’axe (Oy). 

- On obtient le parallélogramme (OABC). 

- Sur le triangle (OAB) ou celui (OBC), on applique la règle des sinus, donc : 

Sur (OBC) : 

    

  
 

    

 
 

    

  
 

 

Nous obtenons les composantes du vecteur  ⃗⃗ dans le repère oblique : 

{
 

    
    

    
  

   
    

    
  

 

 

  

 

 

 

 

 

 

 

8. Moment d’un vecteur 

8.1. Moment d’un vecteur par rapport à un point 

a) Méthode vectorielle 

Le moment d’un vecteur  ⃗⃗⃗ de point d’application B par rapport à un point quelconque 

A  est donné par l’expression vectorielle : 

 ⃗⃗⃗   ⃗⃗    ⃗⃗⃗⃗ ⃗⃗   ⃗⃗ 

 ⃗⃗⃗ ( ⃗⃗)  ‖  ⃗⃗⃗⃗ ⃗⃗ ‖‖ ⃗⃗‖      ⃗⃗ 

 

 

 

A B 

𝑉⃗⃗ 

𝜃 

𝑀⃗⃗⃗𝐴 𝑉⃗⃗  

𝑢⃗⃗ 

Figure 1.15 Moment vectoriel d’un vecteur/un point.  

𝑉⃗⃗𝑥 

𝑉⃗⃗𝑦 
𝑉⃗⃗ 

𝛼 

𝛾 

𝛽 
O 

B 

C 

Figure 1.14 Règle du triangle (Sinus). 
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b) Par méthode du bras de levier : 

| ⃗⃗⃗ ( ⃗⃗)|  | ⃗⃗|   

 

 

 

 

8.2. Moment d’un vecteur par rapport à un axe 

Le moment  ⃗⃗⃗   ⃗⃗  par rapport à un axe     défini par un point A et un vecteur unitaire  ⃗⃗  

est : 

  ⃗⃗⃗ ( ⃗⃗)    ⃗⃗⃗ ( ⃗⃗)  ⃗⃗   ⃗⃗  ; projection du  ⃗⃗⃗   ⃗⃗  sur    . 

9. Les torseurs 

9.1. Définition 

Un torseur   est défini comme étant un ensemble de deux champs de vecteurs définis 

dans l’espace géométrique :  

  

{
 
 

 
  ⃗⃗  ∑ ⃗⃗ 

 

 ⃗⃗⃗  ∑  ⃗⃗⃗⃗ ⃗⃗

 

  ⃗⃗ 

 

A : point quelconque 

Bi : point d’application de  ⃗⃗ . 

10. Formule de transport 

Soit un vecteur   ⃗⃗ de point d’application O  et deux quelconque A et B, on peut écrire : 

 ⃗⃗⃗ ( ⃗⃗)    ⃗⃗⃗⃗ ⃗⃗   ⃗⃗     ⃗⃗⃗⃗ ⃗⃗    ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗  

                                ⃗⃗⃗⃗ ⃗⃗   ⃗⃗    ⃗⃗ ⃗⃗ ⃗⃗   ⃗⃗ 

                                ⃗⃗⃗⃗ ⃗⃗   ⃗⃗   ⃗⃗⃗   ⃗⃗  

Donc  

 ⃗⃗⃗ ( ⃗⃗)    ⃗⃗⃗⃗ ⃗⃗   ⃗⃗   ⃗⃗⃗   ⃗⃗  

 

B

⬚⃗⃗⃗⃗

A 

𝑉⃗⃗ 

d 

Ligne d’action 

Figure 1.16 Moment d’un vecteur par bras de levier. 
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11. APPLICATIONS 

 

Exercice 1 : 

Deux points  A et B, ont pour coordonnées cartésiennes dans l’espace : A(2,3,-3),  

B(5,7,2). 

- Déterminer les composantes du vecteur   ⃗⃗⃗⃗⃗⃗   ainsi que son module, sa direction et son 

sens. 

Exercice 2 : 

Soient les vecteurs suivants :  ⃗⃗⃗     ⃗     ⃗     ⃗⃗⃗     et     ⃗⃗⃗     ⃗     ⃗     ⃗⃗⃗ 

1) Calculer les produits scalaires :  ⃗⃗⃗   ⃗⃗⃗  ;     ⃗⃗⃗   ⃗⃗⃗    et    ⃗⃗⃗   ⃗⃗⃗  

On donne :   ⃗⃗    ⃗   ⃗    ⃗⃗ ,   ⃗⃗     ⃗      ⃗      ⃗⃗  et   ⃗⃗     ⃗    ⃗   ⃗⃗   

2) Calculer  ⃗⃗    ⃗⃗  ;   ⃗⃗   ⃗⃗ . 

3) Sans faire de représentation graphique que peut-on dire du sens et de la direction du 

vecteur   ⃗⃗  par rapport à   ⃗⃗ . 

4) Calculer les produits suivants :  ⃗⃗    ⃗⃗   ⃗⃗ )   et   ⃗⃗    ⃗⃗   ⃗⃗ ). 

5) Déterminer la surface du triangle formé par les vecteurs   ⃗⃗  et   ⃗⃗ . 

Exercice 3 : 

Soient les vecteurs : 

 ⃗⃗⃗    ⃗    ⃗⃗⃗ ,   ⃗⃗⃗    ⃗    ⃗    ⃗⃗⃗  ,   ⃗⃗⃗    ⃗    ⃗    ⃗⃗⃗ et   ⃗⃗⃗     ⃗    ⃗     ⃗⃗⃗. 

1) Déterminer y et z pour que les vecteurs  ⃗⃗⃗ et  ⃗⃗  soient colinéaires. 

2) Déterminer la valeur de y pour que les vecteurs   ⃗⃗ et    ⃗⃗ soient perpendiculaires. 

Exercice 4 : 

Trouver le volume d’un parallélépipède dont les côtés sont les vecteurs :   ⃗⃗⃗ ,   ⃗⃗ et    ⃗⃗ tel que : 

 ⃗⃗⃗    ⃗    ⃗⃗⃗ ,    ⃗⃗⃗    ⃗    ⃗⃗⃗  et    ⃗⃗⃗   ⃗    ⃗    ⃗⃗⃗.  
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Solution de l’exercice 1 : 

- Le vecteur   ⃗⃗⃗⃗ ⃗⃗  peut s’écrire comme suit : 

   ⃗⃗⃗⃗ ⃗⃗    ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗⃗⃗ ⃗⃗    ⃗    ⃗    ⃗⃗ 

- Son module (norme) est : ‖  ⃗⃗⃗⃗ ⃗⃗ ‖  √          √  

- Sa direction est déterminée par les angles 

(       qu’il fait avec chacun des axes du repère R, ces angles se deduisent par le 

produit scalaire de   ⃗⃗⃗⃗ ⃗⃗  par le vecteur unitaire du repère orthonormé, donc : 

   (  ⃗⃗⃗⃗ ⃗⃗   ⃗)  tel que   ⃗⃗⃗⃗ ⃗⃗   ⃗    ̅̅ ̅̅              
  ⃗⃗ ⃗⃗ ⃗⃗   ⃗

  ̅̅ ̅̅
 

D’où       
 

 √ 
                    

   (  ⃗⃗⃗⃗ ⃗⃗   ⃗)  tel que   ⃗⃗⃗⃗ ⃗⃗   ⃗    ̅̅ ̅̅              
  ⃗⃗ ⃗⃗ ⃗⃗   ⃗

  ̅̅ ̅̅
 

D’où       
 

 √ 
                    

   (  ⃗⃗⃗⃗ ⃗⃗   ⃗⃗)  tel que   ⃗⃗⃗⃗ ⃗⃗   ⃗⃗    ̅̅ ̅̅              
  ⃗⃗ ⃗⃗ ⃗⃗   ⃗⃗

  ̅̅ ̅̅
 

D’où       
 

 √ 
                    

- Son sens : comme le produit scalaire selon les trois directions est positif donc on peut 

dire que le sens du vecteur   ⃗⃗⃗⃗ ⃗⃗  est positif dans les trois directions Ox, Oy et Oz. 

 

Solution de l’exercice 2 : 

Soient les vecteurs suivants :  ⃗⃗⃗     ⃗     ⃗     ⃗⃗⃗     et     ⃗⃗⃗     ⃗     ⃗     ⃗⃗⃗ 

1- Produit scalaire de  ⃗⃗⃗   ⃗⃗⃗  ;   ⃗⃗⃗   ⃗⃗⃗   et    ⃗⃗⃗   ⃗⃗⃗  

  ⃗⃗⃗   ⃗⃗⃗  (
  
  
  

)  (
  
  
  

)                 

 ⃗⃗⃗   ⃗⃗⃗  (
  

  

  

)  (
  

  

  

)                 

 ⃗⃗⃗   ⃗⃗⃗  (
  

  

  

)  (
  

  

  

)                 

 

A 

𝑉⃗⃗ 

B 
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2-  ⃗⃗    ⃗   ⃗    ⃗⃗ ,   ⃗⃗     ⃗      ⃗      ⃗⃗  et   ⃗⃗     ⃗    ⃗   ⃗⃗ 

Calcul de : 

  ⃗⃗   ⃗⃗  (
 
  
 
)  (

  
   
    

)                  

 

 ⃗⃗   ⃗⃗  (
 ⃗  ⃗  ⃗⃗
    
         

)  (
 
 
 

)   ⃗⃗ 

3- Comme le produit vectoriel est un vecteur nul donc les deux vecteurs sont parallèles : 

 ⃗⃗   ⃗⃗   ⃗⃗         ⃗⃗   ⃗⃗  

De plus   ⃗⃗   ⃗⃗             les deux vecteurs sont de sens opposés. 

4- Calcul du produit mixte : 

 ⃗⃗  ( ⃗⃗   ⃗⃗ )     

On calcule d’abord :  ⃗⃗   ⃗⃗  (
 ⃗  ⃗  ⃗⃗

         
    

)  (
    
    
    

) 

 ⃗⃗  ( ⃗⃗   ⃗⃗ )  (
 
  
 

)  (

    
    
    

)    

 ⃗⃗  ( ⃗⃗   ⃗⃗ )  (
 ⃗  ⃗  ⃗⃗
    

            

)  (

    
     
     

) 

 

5- La surface formée par les deux vecteurs  ⃗⃗      ⃗⃗  est donnée par la moitié du module 

du produit vectoriel 

 | ⃗⃗   ⃗⃗ |  
√                  

 
=24.75 

 

 

 

 

Solution de l’exercice 3 : 

 ⃗⃗⃗    ⃗    ⃗⃗ ,  ⃗⃗    ⃗    ⃗    ⃗⃗  ,   ⃗⃗    ⃗    ⃗    ⃗⃗ et   ⃗⃗     ⃗    ⃗     ⃗⃗ 

𝑉⃗⃗  

𝑉⃗⃗  

Surface du parallélogramme 
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1- Si  ⃗⃗⃗ et  ⃗⃗ sont colinéaires alors :  

 ⃗⃗⃗   ⃗⃗    ⃗⃗⃗   ⃗⃗   ⃗⃗     (
 ⃗  ⃗  ⃗⃗
   
   

)   ⃗⃗    {
     

        
    

 

{
   
    

 

2- Si  ⃗⃗ et  ⃗⃗ sont perpendiculaires : 

 ⃗⃗   ⃗⃗     ⃗⃗  ⃗⃗    

(

 
  
 

)  (

  
 
  

)             

Donc     
 

 
 

Solution de l’exercice 4 : 

Soient      ⃗⃗⃗    ⃗    ⃗⃗ ,    ⃗⃗    ⃗    ⃗⃗  et    ⃗⃗   ⃗    ⃗    ⃗⃗. 

Le volume d’un parallélépipède est un scalaire positif, c’est le module du produit mixte des 

vecteurs qui le forment,    ⃗⃗⃗,   ⃗⃗ et   ⃗⃗ : 

 ⃗⃗⃗  (

 
 
 
)   ⃗⃗  (

 
 
 
)   ⃗⃗  (

 
 
  

) 

  |   ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⃗⃗   ⃗⃗ |  (

 
 
 
)  (

   
 
  

)     

 

 

 

𝑈⃗⃗⃗ 
𝑄⃗⃗ 

 𝑃⃗⃗⃗ 
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2.1. Introduction  

 

 La statique des solides est une branche de la mécanique qui étudie les corps solides 

en équilibre, c’est-à-dire des objets qui ne sont pas en mouvement. Elle s'intéresse à l'analyse 

des forces et des moments appliqués à un corps solide afin de déterminer les conditions 

nécessaires pour que ce corps reste immobile ou en équilibre. 

Dans ce contexte, un solide est considéré comme rigide, ce qui signifie qu'il ne se déforme pas 

sous l'effet des forces appliquées (même si dans la réalité, les matériaux peuvent subir des 

déformations, cela est négligé dans la statique). 

Les principes de base incluent : 

1. Somme des forces égale à zéro : Pour qu'un corps reste immobile, la somme 

vectorielle des forces agissant sur lui doit être nulle. 

2. Somme des moments égale à zéro : La somme des moments (ou des couples) 

agissant sur un corps autour d’un point doit également être nulle pour qu'il ne tourne 

pas. 

Sinon on peut dire qu’un système matériel est en équilibre statique par rapport à un repère 

donné, si au cours du temps, chaque point de ce système garde une position fixe par rapport 

au repère. 

Ces deux conditions sont nécessaires pour assurer l'équilibre statique d'un solide. La statique 

des solides est souvent utilisée en génie civil, en architecture et en ingénierie mécanique pour 

concevoir des structures stables et sûres. 

2.2. Les systèmes de forces dans l’espace. 

 

Les systèmes de forces dans l'espace sont des configurations de forces appliquées à un 

objet qui peuvent être classées en plusieurs types, selon leur direction, leur point d'application 

et leurs interactions mutuelles. Voici les principaux types de systèmes de forces que l'on 

rencontre en statique des solides dans l'espace (c'est-à-dire en trois dimensions) : 
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2.2.1.  Système de forces concourantes : 

 Les lignes d'action de toutes les forces se rejoignent en un seul point. Cela signifie que 

ces forces peuvent être représentées par un vecteur unique qui passe par ce point de 

convergence. 

 

 

 

 

 Exemple : Les forces agissant sur une structure suspendue par des câbles à partir d'un 

point. 

2.2.2.  Système de forces parallèles : 

 Toutes les forces sont parallèles entre elles, mais elles n'ont pas nécessairement le 

même point d'application. 

 

 

 

 

 

 

 Ce type de système de forces est souvent rencontré dans des situations où plusieurs 

forces agissent verticalement sur une structure, comme dans les poutres ou les 

colonnes. 

 Exemple : Le poids des différentes parties d'un pont soutenu par des piliers. 

2.2.3.  Système de forces coplanaires : 

 Toutes les forces agissent dans un seul plan. Cela signifie qu'elles peuvent être 

représentées dans deux dimensions. 

 Exemple : Les forces agissant sur une structure plate, comme un cadre ou une plaque. 

 

Figure 2.1 Forces concourantes. 

Figure 2.2 Système de forces parallèles. 
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2.2.4.  Système de forces non concourantes et non parallèles : 

 C’est un système dans lequel les forces ont des lignes d’action différentes, ne se 

rencontrent pas en un point et ne sont pas parallèles. 

 Un tel système nécessite souvent une analyse des moments (ou des couples) ainsi que 

des forces pour déterminer les conditions d'équilibre. 

 Exemple : Plusieurs forces appliquées sur une structure tridimensionnelle comme un 

bâtiment. 

 

 

 

2.2.5.  Système de forces en couple : 

 Deux forces égales en grandeur, opposées en direction, mais avec des lignes d'action 

différentes. Cela crée un couple ou un moment pur qui tend à faire tourner l'objet sans 

provoquer de translation. 

 Exemple : Une clé à molette lorsqu'elle est utilisée pour tourner un écrou. 

 

 

2.2.6.  Système de forces générales dans l'espace : 

 Un système de forces quelconques appliquées sur un solide en trois dimensions. Ce 

type de système est plus complexe à analyser, car il nécessite la considération des 

forces dans les trois directions (x, y, z) ainsi que des moments autour des axes 

correspondants. 

 Exemple : Une grue supportant une charge avec des forces et des moments agissant 

dans toutes les directions. 

2.3.  Composantes d’une force 

Dans un repère orthonormé à trois dimensions (noté      ⃗  ⃗  ⃗⃗ , une force  ⃗ est 

représentée par un vecteur qui peut être décomposé en trois composantes selon les axes 

        . Ces axes sont perpendiculaires entre eux et forment un système orthonormé. 

Figure 2.3 Système de forces non concourantes et 

non parallèles. 
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2.3.1. Décomposition de la force  ⃗ 

Soit une force  ⃗ appliquée à un point. On peut la décomposer comme suit : 

 ⃗     ⃗     ⃗     ⃗⃗   où : 

              sont les composantes scalaires de la force dans les directions des axes 

         respectivement, 

  ⃗  ⃗       ⃗⃗    sont les vecteurs unitaires dans les directions des axes         . 

Les composantes               peuvent être déterminées si on connaît la direction et la norme 

de la force, ou si l'on connaît les projections de cette force sur les différents axes du repère. 

2.3.2. Calcul de la norme de la force 

La norme (ou Le module) de la force  ⃗ est calculée à partir de ses composantes à l'aide de la 

relation : 

  ‖ ⃗‖  √            

Cette norme représente la longueur du vecteur  ⃗, c'est-à-dire l'intensité de la force. 

2.3.3. Direction de la force 

La direction de la force dans l'espace est définie par les angles directeurs  ,    et   , 

qui sont les angles que fait la force avec les axes         , respectivement. Ils sont liés aux 

composantes par les relations suivantes : 

 

𝜃 

𝜑 

𝜃 

𝐹⃗𝑧 

𝐹⃗𝑦 

𝐹⃗𝑥 

𝐹⃗⃗𝐻  𝐹𝑠𝑖𝑛𝜃 

𝐹⃗ 

Figure 2.4 Composantes d’une force dans 

l’espace. 
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‖ ⃗⃗⃗‖
,          

  

‖ ⃗⃗⃗‖
,         

  

‖ ⃗⃗⃗‖
, 

         ,            ,             

 ⃗           ⃗        ⃗         ⃗⃗⃗  

 ⃗⃗⃗    ⃗⃗⃗ ⃗⃗⃗     ⃗⃗⃗ ⃗⃗⃗  (
     
     

     

) 

 Ces angles permettent de connaître l'orientation de la force dans le repère orthonormé. 

Une force définie par son module et deux points sur sa ligne d’action 

 ⃗⃗⃗    ⃗⃗⃗  
  ⃗⃗⃗⃗⃗⃗⃗

‖  ‖
=

 

‖  ‖
(
     
     
     

) 

F est supportée par l’axe  , d’où : 

 ⃗     ⃗⃗⃗  

Si un vecteur moment supporté par  , on écrit : 

 ⃗⃗⃗      ⃗⃗⃗  

 

 

 

 

2.4.   Axiomes de la statique 

2.4.1.  1
er 

Axiome : Un solide est soumis à deux forces, ce solide ne peut se trouver en 

equilibre que dans le cas où : 

 ⃗     ⃗  ,     ⃗      ⃗  sont alignées 

|  |  |  | et sont opposées. 

 

 

 

 

 

 

 

2.4.2. 2
ème

 Axiome (Principe de glissement) : l’action d’un système de forces donné sur un 

solide ne changera pas si on ajoute à ce système ou si on lui retranche un système de forces 

équilibré.   

 

𝜃𝑍 

𝜃 

𝐹⃗𝑧 

𝐹⃗𝑦 

𝐹⃗𝑥 

𝐹⃗ 

𝜃𝑥 𝜃𝑦 

Figure 2.5 Directions d’une force. 

Z 

X 

Y 

B 
A 

F⃗⃗ 
(   

 

(S) 

(S) 

𝐹⃗  𝐹⃗  

𝐹⃗  𝐹⃗  

Figure 2.6  Vecteur force passant par deux points. 

Figure 2.7  Equilibre d’un solide sous deux forces opposées 



Chapitre 2                                                                                                    Statique des solides 

20 
 

 

 

 

 

 

 

 

 

 

 

 Principe de glissement 

On peut glisser le point d’application d’une force appliquée sur un solide le long de sa 

ligne d’action appartenant au solide. 

 

2.4.3. 3
ème

 Axiome : (Principe du parallélogramme)  

Deux forces agissant sur un solide en un même point, admettent une résultante 

représentée par la diagonale du parallélogramme ayant ces forces comme cotés.  

 ⃗⃗   ⃗   ⃗  

 
 

 

2.4.4. 4
ème

 Axiome (Principe d’Action – Réaction) 

 

 

 

 

 

 

 

 

 

 

Soient deux solides (S1) et (S2) en contact entre eux. Si  (S1) agit sur (S2) avec une 

force  ⃗   , alors (S2) agira sur  (S1) avec une force  ⃗   tel que : 

 ⃗     ⃗   

 

(S) 

𝐹⃗  

𝐹⃗  

𝑅⃗⃗ 

A 

 

(S) 

(S) 

𝐹⃗𝐴 

A 

B 

⇔

⇔

⇔

⇔

𝐹⃗𝐴 

𝐹⃗𝐵 

𝐹⃗𝐵 
  𝐹⃗𝐵 

Si 𝐹𝐴  𝐹𝐵 

(S1) (S
2
) 

𝐹⃗   𝐹⃗   

Figure 2.8  Principe de glissement. 

Figure 2.9 Résultante de deux forces (Principe du parallélogramme. 

Figure 2.10 Action-réaction entre deux solides. 
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2.5. Equilibre du solide  

Soit un solide (S) soumis à des forces ( ⃗   ⃗   ⃗      ⃗   appliquées aux points 

(              . Pour que le solide soit en   (équilibre) statique, il faut et il suffit 

que : 

 La résultante de toutes les forces extérieures appliquées soit nulle. 

 Le moment résultant de toutes ces forces en un point quelconque O 

soit nul. 

 

 ⃗⃗  ∑ ⃗ 

 

  ⃗⃗ 

 ⃗⃗⃗  ∑ ⃗⃗⃗   ⃗  

 

 ∑  ⃗⃗ ⃗⃗ ⃗⃗
 ⃗

 

  ⃗   ⃗⃗ 

Le système est complètement déterminé si le nombre d’inconnues 

est égal aux nombre d’équations indépendantes. 

 

2.5.1. Equilibre d’un solide dans un plan. 

 

Dans le cas des forces coplanaires dans le plan x-y, le système d’équations se réduit à trois 

(03) équations (colinéaires) scalaires. 

 

                    

      ∑      

 

   

La résultante est : {
   ∑       

   ∑    
   

 

 

 

 

 

 

 

2.5.2.  Réactions aux appuis et aux liaisons : 

A. Appui simple d’un solide sur une surface parfaitement lisse :  

 

La réaction d’une surface lisse sur un solide est normale à cette surface au point de 

contact. 

 

 

 

 

 

 

 

(S) 
Y 

X 

𝐹⃗  𝐹⃗  

𝐹⃗  

𝐹⃗𝑛 

O 

𝑅⃗⃗ 
𝑅⃗⃗ 

𝑅⃗⃗ 

𝑅⃗⃗ 

𝑅⃗⃗𝐴 

A 

Figure 2.11 Equilibre d’un solide dans le plan. 

Figure 2.12 Appui simple sur une surface lisse.  



Chapitre 2                                                                                                    Statique des solides 

22 
 

B. Articulation d’un solide  

 Articulation cylindrique : (Appui double). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Articulation sphérique (Rotule) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 

y 

z 

O 

(S1) 

(S2) 

𝑅⃗⃗𝐴 

𝑅⃗⃗𝐴𝑋 

𝑅⃗⃗𝐴𝑌 

X 

Y 

𝑅⃗⃗𝐴  (
𝑅⃗⃗𝐴𝑥

𝑅⃗⃗𝐴𝑦
) 

𝑅⃗⃗𝐴   

𝑅⃗⃗𝐴𝑥
 

𝑅⃗⃗𝐴𝑧
  

La réaction d’appui double ou cylindrique a 

deux (02) composantes. 

A 

Z 

X 

Y 

𝑅⃗⃗𝐴𝑋 

𝑅⃗⃗𝐴𝑍 

𝑅⃗⃗𝐴𝑌 

A 

La réaction d’une rotule a  (03) composantes. 

 

Figure 2.13 Appui double ou articulation cylindrique.  

Figure 2.14 Appui  triple ou Articulation sphérique.  
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 Encastrement d’un solide  

A deux dimensions (2D) : 

 

 ⃗⃗  (
 ⃗⃗  

 ⃗⃗  
)  ;     (

 
 

  

) 

A trois dimensions (3D) : 

 ⃗⃗  (
 ⃗⃗  

 ⃗⃗  

 ⃗⃗  

)  ;    (
   
   
   

) 

 

 

 Conditions de liaisons  

 Combinaisons de liaisons 

- Appui simple 02 fois 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Appui simple et appui double 

 

 

 

 

- Encastrement et appui simpe 

 

 

 

 

 

 

 

 

y 

x A 

𝑅⃗⃗𝐴𝑌 

𝑅⃗⃗𝐴𝑋 

𝑀⃗⃗⃗𝐴𝑍 

𝑅⃗⃗𝐴 𝑅⃗⃗𝐵 

𝑅⃗⃗𝐴 

𝑅⃗⃗𝐵 

𝑅⃗⃗𝐴 𝑅⃗⃗𝐵𝑦 

𝑅⃗⃗𝐵𝑥 

𝑅⃗⃗𝐵 

x A 

𝑅⃗⃗𝐴𝑌 

𝑅⃗⃗𝐴𝑋 

𝑀⃗⃗⃗𝐴𝑍 
𝑅⃗⃗𝐵 

Système dit hyperstatique 

Figure 2.15 Encastrement.  
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2.6. Types de force 

2.6.1. Force ponctuelle 

Une force ponctuelle est une force qui agit sur un point précis d'un corps solide ou 

d'une structure. 

 

 

 

 

 

2.6.2. Force linéique 

Une force linéique est une force répartie le long d'une ligne, exprimée en termes 

d'intensité par unité de longueur. 

 

 

 

 

2.6.3. Force surfacique 

Une force surfacique est une force répartie sur une surface, exprimée par unité de 

surface. 

 

 

 

 

 

2.6.4. Force volumique 

Une charge volumique est une force ou une charge répartie dans un volume, exprimée 

par unité de volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐹⃗ 

𝛿𝐹  

𝑞[𝑁/𝑚] 

𝑞[𝑁/𝑚 ] 

 
𝑞[𝑁/𝑚  

Figure 2.16 Force ponctuelle.  

Figure 2.17 Charge répartie.  

Figure 2.18 Charge surfacique.  

Figure 2.19 Charge volumique.  
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2.7. Applications 

 

Exercice 1 : soient quatre forces agissant sur une plaque représentée sur la figure ci-dessous. 

- Calculer la résultante  ⃗⃗ des forces ainsi que le moment résultant  agissant sur 

la plaque. 

- Déduisez  et tracez la ligne d’action réelle de  ⃗⃗ en déterminant le point 

d’intersection    de cette ligne avec (CX).   

 

 

 

 

 

 

 

Exercice 2 : 

Soit le système ci-contre composé d’un support encastré 

Et d’une poulie de rayon r=200mm.  

On tire sur un fil avec une tension  

de 1200N, inclinée d’un angle  .   

 

 

 

 

 

 

 

On demande de : 

- Calculer le moment de la force  ⃗⃗ de module 1200N  

Par rapport au point A. 

500mm 

600mm 

2 

1 

r 

𝛼 

1200 N 

A C 

B 

𝑭𝟏  𝟕𝟔𝟎𝑵 

𝑭𝟐  𝟑𝟒𝟎𝑵 𝑭𝟑  𝟓𝟎𝟎𝑵 

𝑭𝟒  𝟔𝟎𝟎𝑵 

C 

A B 

E 

D 

X 

Y 

𝛽 𝛼 

375mm 

500mm 200mm 
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- Pour un calcul simple, réduisez la force à un 

 Système force-couple appliqué en C. 

- Donner le moment de la même force par rapport au point B. 

 

Exercice 3 : 

Les forces représentées sur la figure   ⃗⃗   ⃗⃗      ⃗⃗ sont concourantes. 

 Un cylindre de rayon r et de poids Q repose sur un mur vertical et une barre (AB) de 

longueur 3r et de poids P. Cette dernière tourne autour d’un axe horizontal en (A) et s’appuie 

simplement sur l’arrete en (D) avec un angle       et AD=2r. 

- Determiner enfonction de P et Q. 

a) L’action du mur sur le cylindre ( ⃗⃗⃗   

b) L’action de l’articulation (A) et la réaction de l’arrete (D) sur la barre (AB). 

 

 

 

 

  

 

 

Exercice 4 :  

Soit la barre (AB) de poids négligeable chargée par P=30Kn au point D, en équilibre par deux 

(02) câbles (BC, EF) et une articulation sphérique A. 

- Représenter tous les efforts agissant sur la barre et lrs expressions véctorielles. 

- Donner les expressions d’équilibre de la barre et calculer T1 et T2 ainsi que 

RAx, RAy et RAz. 

 

 

 

 

 

E O 

D 

𝑅⃗⃗𝐸  𝑅⃗⃗𝐶 

𝑄⃗⃗ 

𝑷⃗⃗⃗ 

𝑅⃗⃗𝐷 

A 

B 

x y 

z 

3m 

4m 

3m 
2m 

C 

A 

D 

A 

E 

B 

𝑅⃗⃗𝐴𝑥 
𝑅⃗⃗𝐴𝑦 

𝑅⃗⃗𝐴𝑧 

𝑇⃗⃗  

𝑇⃗⃗  

P 
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Solution de l’exercice 1 :  

Le calcul consiste à déterminer le torseur   [ ⃗⃗  ⃗⃗⃗ ] tel que : 

  {
 ⃗⃗  ∑  ⃗  

 ⃗⃗⃗ ( ⃗ )     
⃗⃗ ⃗⃗ ⃗⃗ ⃗   ⃗ 

   

   : point d’application de la force  ⃗ . 

    
   

   
                 

    
   

   
                  

1- Calcul de la résultante  ⃗⃗  ∑  ⃗   

 ⃗⃗   ⃗   ⃗   ⃗   ⃗      ⃗          ⃗         ⃗           ⃗         ⃗     ⃗ 

                      ⃗                      ⃗ 

 ⃗⃗     ⃗     ⃗        ⃗       ⃗     {
  √                 

      (
  

  
)       

 

2- Le moment résultant  ⃗⃗⃗   

 par la méthode du bras de levier  

   ∑                                   

                            

 

 Par la méthode vectorielle 

 ⃗⃗⃗ ( ⃗ )     
⃗⃗ ⃗⃗ ⃗⃗ ⃗   ⃗    ⃗⃗⃗⃗⃗⃗   ⃗    ⃗⃗⃗⃗⃗⃗   ⃗    ⃗⃗⃗⃗⃗⃗   ⃗    ⃗⃗⃗⃗⃗⃗   ⃗  

x 

y 

+ 
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{
 
 
 
 
 
 

 
 
 
 
 
 

 ⃗⃗⃗ ( ⃗ )    ⃗⃗⃗⃗⃗⃗   ⃗  (
 ⃗  ⃗  ⃗⃗

     
      

)  (

 
 
 
)

 ⃗⃗⃗ ( ⃗ )    ⃗⃗⃗⃗⃗⃗   ⃗  (
 ⃗  ⃗  ⃗⃗

         
       

)  (

 
 

   
)

 ⃗⃗⃗ ( ⃗ )    ⃗⃗⃗⃗⃗⃗   ⃗  (
 ⃗  ⃗  ⃗⃗
       

        

)  (

 
 

   
)

 ⃗⃗⃗ ( ⃗ )    ⃗⃗⃗⃗⃗⃗   ⃗  (
 ⃗  ⃗  ⃗⃗
   

     

)  (

 
 
 
)

 

Donc : 

 ⃗⃗⃗ ( ⃗ )      ⃗⃗ 

Le système devient : 

  {
 ⃗⃗        ⃗       ⃗

 ⃗⃗⃗ ( ⃗ )      ⃗⃗
 

3- Déduire et tracer la ligne d’action de la résultante  

 ⃗⃗ en determinant la position du point d’intersection 

     de cette ligne avec l’axe     . 

 

Nous avons :  ⃗⃗⃗ ( ⃗ )      ⃗⃗ 

De plus nous avons : 

 

 

  ⃗⃗⃗ ( ⃗⃗)    ⃗⃗⃗⃗ ⃗⃗   ⃗⃗  (
 ⃗  ⃗  ⃗⃗
    

          

)  (
 
 

      
)  (

 
 

   
) 

 

D’où : 1200  =300         
   

    
       

 

Solution de l’exercice 2 : 

 

{

  ̅̅ ̅̅           ̅̅ ̅̅      
            

    
 

 
              

 

Le moment de T par rapport à A et B : 

c) Par rapport à A. 

x 

y 

𝑀⃗⃗⃗𝐶 

𝑅⃗⃗ 

𝜃        

x 

y 

𝑅⃗⃗ 

𝜃 

G 

𝑇𝑥 

𝑇𝑦 

𝑑  
𝛼 

C 

P 

𝑑  
𝐴 

𝐵 

T 
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Avec : {
         
                       {

              
              

 

      [                      ]           (Sens anti-horaire) 

 

Par déplacement du point (P) au centre (C) de la poulie   apparition d’un couple       

dans le sens anti-horaire. 

                   +M 

               ̅̅ ̅̅         

               ̅̅ ̅̅             

                                        

              

d) Par rapport à B. 

                      

               ̅̅ ̅̅           ̅̅ ̅̅         

                 (Sens anti-horaire). 

Solution de l’exercice 3 : 

Les données :   ̅̅ ̅̅     ;   ̅̅ ̅̅     

Le calcul consiste à trouver :   ,   , et    ⃗⃗     ⃗     ⃗ ( le tout 04 inconnues) 

Etant donné qu’il n y a que 03 équations d’équilibre pour 04 inconnues, donc le problème est 

impossible. Donc on doit décomposer le système en deux sous-systèmes :  

(La barre (AB) + le cylindre).  

1- L’équilibre du cylindre : 03 forces concourantes. 

On peut procéder de résoudre le problème de deux méthodes : 

a) Méthode graphique : Triangle des forces (règle des sinus)  

 

     
 

  

     
 

  
 ⁄

     
            et    

 ⁄
 

 

     
 √   

𝑅𝐸 
𝑅𝐵

𝐶⁄
 

Q 

𝑂 

C 

E 

𝑅𝐸 

𝑅𝐶 
Q 

45 

45 
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b) Méthode analytique (équilibre du cylindre) 

∑ ⃗   ⃗⃗   ⃗⃗   ⃗⃗ 
 ⁄
  ⃗⃗  

{
∑ ⃗    

 ⁄
                 

∑ ⃗    
 ⁄
                 

 

De (2) on obtient :   
 ⁄
 

 

     
 √   

 Et de (1) :                     

2- Equilibre de la barre (AB) : (Analytique) 

∑  ⃗   ⃗⃗   ⃗⃗   ⃗⃗   ⃗⃗ 
 ⁄
  ⃗⃗ 

Avec :  ⃗⃗ 
 ⁄
   ⃗⃗ 

 ⁄
 

Donc : {
∑  ⃗             

 ⁄
                    

 ∑  ⃗             
 ⁄
                   

 

L’équilibre des moments nous donne : 

∑     ̅̅ ̅̅    
 ⁄
 (

 

 
   ̅̅ ̅̅       )     ̅̅ ̅̅                

Avec :   ̅̅ ̅̅           

    

∑       
 ⁄
 (

 

 
        )           

      
 

 
 (√  )  

 

 
 
√ 

 
       

D’où :            
 

√ 
 (  

 

 
)     

De (3)         
 

 
 
 

 
         et     

 

 
   

 

 
   

 

Solution de l’exercice 4 : 

 (

 
 
 
)       (

 
 
 
)      (

 
 
 
)      (

 
 
 
)      (

 
 
 
) 

𝐴𝑥 

𝐴𝑦 

𝑅𝐶
𝐵⁄
 

P 

𝑅𝐷 
45 

45 

D 

B 
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1- Les expressions vectorielles des efforts : 

{
 
 

 
  ⃗⃗    ⃗⃗    ⃗⃗    ⃗⃗  

 ⃗⃗     ⃗

 ⃗⃗      ⃗

 ⃗⃗     
  ⃗⃗⃗⃗⃗⃗

  ̅̅ ̅̅

 

  ⃗⃗⃗⃗⃗⃗    ⃗    ⃗    ⃗⃗  et   ̅̅ ̅̅  √                

 ⃗⃗          ⃗       ⃗       ⃗⃗  

 

2- Les moments autour des 03 axes 

 Axe (Ox) :   et    développent un moment 

 Axe (Oy) :    et    

 Axe (Oz) : aucune force. 

3- Calcul des moments  

-  ⃗⃗⃗       ⃗⃗⃗⃗⃗⃗   ⃗⃗    ⃗⃗      ⃗     ⃗ 

-  ⃗⃗⃗        ⃗⃗⃗⃗⃗⃗   ⃗⃗    ⃗⃗       ⃗       ⃗ 

-  ⃗⃗⃗        ⃗⃗⃗⃗ ⃗⃗   ⃗⃗    ⃗⃗     (     ⃗       ⃗       ⃗⃗) 

   (     ⃗       ⃗⃗) 

4- Conditions d’équilibre 

∑  ⃗    ⃗⃗   ⃗⃗   ⃗⃗   ⃗⃗  

∑ ⃗⃗⃗   ⃗⃗⃗ ( ⃗⃗)   ⃗⃗⃗ ( ⃗⃗ )   ⃗⃗⃗ ( ⃗⃗ )   ⃗⃗⃗ ( ⃗⃗ )   ⃗⃗ 

Donc :  

∑ ⃗   {

 ⃗                

 ⃗               

 ⃗             

 

∑ ⃗⃗⃗              ⃗               ⃗   ⃗⃗ 

 

                           et    

                

D’où : 

{
 
 

 
 
          
          
         
         

          

 

0 
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3.1. Introduction  

La cinématique du solide est une branche de la mécanique qui étudie les mouvements 

des objets rigides sans tenir compte des forces qui les provoquent. Elle se concentre 

uniquement sur la description géométrique des déplacements, des vitesses et des accélérations 

d’un corps solide ou de ses différentes parties, sans s’intéresser aux causes de ces 

mouvements (c’est-à-dire les forces). 

Concepts clés de la cinématique du solide : 

1. Solide indéformable : 

o En cinématique du solide, on considère les objets comme indéformables, 

c'est-à-dire que la distance entre deux points quelconques du corps reste 

constante au cours du mouvement. Cela signifie que les objets ne subissent ni 

déformation ni changement de forme. 

2. Types de mouvements : 

o Les mouvements d’un solide peuvent être décrits par trois types principaux : 

 Translation : Tous les points du solide se déplacent dans la même 

direction et à la même vitesse. 

 Rotation : Le solide tourne autour d’un axe fixe, et chaque point du 

solide décrit un cercle ou une trajectoire circulaire autour de cet axe. 

 Mouvement plan : Il s'agit d'une combinaison de translation et de 

rotation dans un plan bidimensionnel. 

3. Paramètres de mouvement : 

o Position : La position d’un point ou d’un objet dans l’espace est définie à un 

instant donné. 

o Vitesse : La vitesse d’un point est le taux de variation de sa position par 

rapport au temps. 

o Accélération : C’est la variation de la vitesse d’un point au cours du temps. 

4. Référentiel : 

o Le mouvement d’un solide est toujours étudié par rapport à un système de 

référence, appelé référentiel. Le choix du référentiel peut influencer la 

manière dont le mouvement est perçu et décrit (référentiel fixe ou mobile, 

inertiel ou non inertiel). 
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Objectifs de la cinématique du solide : 

L’objectif principal de la cinématique du solide est de décrire avec précision comment un 

solide se déplace dans l’espace au cours du temps, en déterminant : 

 Les trajectoires des différents points du solide. 

 La vitesse de chaque point, qui peut être calculée à partir de la dérivée de la position 

par rapport au temps. 

 L’accélération, obtenue en dérivant la vitesse. 

Importance de la cinématique du solide : 

La cinématique du solide est une étape préalable à l’étude des forces (statique et dynamique) 

dans la mécanique. Elle est essentielle pour comprendre le mouvement d’objets dans de 

nombreux domaines scientifiques et techniques, notamment en robotique, en ingénierie 

mécanique, dans la conception de machines et dans les simulations numériques de systèmes 

physiques. 

En résumé, la cinématique du solide fournit un cadre rigoureux pour analyser et comprendre 

les mouvements sans se soucier des causes, et elle constitue une base indispensable avant de 

passer à la dynamique où les forces sont considérées. 

3.2.  Les quantités cinématiques d’un point matériel 

 Notion de référentiel  

Un référentiel en mécanique est un système de coordonnées utilisé pour décrire la 

position et le mouvement d'un objet dans l’espace et dans le temps. Il sert de point de 

référence par rapport auquel les positions, les vitesses et les accélérations des objets sont 

mesurées. Il est composé d’un repère d’espace et d’un repère de temps. 
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La vitesse du point M par rapport au repère    peut s’écrire comme suit : 

 ⃗⃗        ⁄  

   ⃗⃗⃗⃗⃗⃗  ⃗

  
  

⁄
  ̇    ̇    ̇ ⃗⃗  

L’accélération du point M par rapport au repère    peut s’écrire comme suit : 

 ⃗⃗        ⁄  

    ⃗⃗⃗⃗⃗⃗  ⃗

   

  

⁄  

  ⃗⃗ 

  
  

⁄   ̈    ̈    ̈ ⃗⃗  

3.3. Cinématique d’un corps solide 

3.3.1. Champs des vitesses : 

 Soit (S) un solide indéformable. 

Si   ̅̅ ̅̅      au cours du temps     ̅̅ ̅̅       

Donc on peut écrire : 

   ⃗⃗⃗⃗  ⃗ 

  
    ⃗⃗⃗⃗  ⃗

   ⃗⃗⃗⃗  ⃗

  
   

 

D’où 

𝑅𝑂 𝑂, 𝑖 , 𝑗 , 𝑘⃗   

Repère d’espace 

+ 
 𝑡  

Repère de temps 

Trouver la position du solide au cours du temps. 

M 

(S) 

z 

x 

y 

𝑅𝑂 

O 

𝑖  

𝑘⃗  

𝑗  

𝑅𝑂 

 

𝑴   𝑺   
(S) est en mouvement par rapport à  

A 

(S) 
z 

x 

y 

𝑅𝑂 

O 

𝑖  

𝑘⃗  

𝑗  

B 

Figure 3.1 Référentiel d’un point matériel. 

Figure 3.2 Champ des vitesses d'un solide en mouvement. 
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  ⃗⃗⃗⃗  ⃗ 
   ⃗⃗⃗⃗  ⃗

  
   

donc : 

  ⃗⃗⃗⃗  ⃗  
   ⃗⃗⃗⃗  ⃗

  
 

Remarque : 

(S) est indéformable, c’est-à-dire que la distance entre A et B ne change pas mais le vecteur 

  ⃗⃗⃗⃗  ⃗ peut changer de direction.  

Champs des vitesses 

Soit un référentiel       ,   ,   ,  ⃗   fixe  

   est lié au solide (S) 

     ,    ,    ,  ⃗     
Le repère    ou (S) étant en mouvement par rapport à   . 

 

On a dans    : {
   ⃗⃗⃗⃗⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗

  ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 

 

On a dans    : {
   ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗⃗⃗ ⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗

  ⃗⃗⃗⃗  ⃗     ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗⃗⃗ ⃗⃗  ⃗
 

 On utilise la notion du vecteur rotation (dérivation) 

 

   
  

⁄ =

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 

  
  

⁄  

   
  

⁄ =

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 

  
  

⁄   ⃗⃗   
  

⁄
    ⃗⃗ ⃗⃗ ⃗⃗  ⃗                                    (1) 

De même : 

 

   
  

⁄ =

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  

  
  

⁄   ⃗⃗   
  

⁄
    ⃗⃗⃗⃗⃗⃗⃗⃗                                       (2) 

 

Donc pour un vecteur position  ⃗  : 
 

                                            ⃗̇  

  ⃗⃗ 

  
  

⁄  

  ⃗⃗ 

  
  

⁄   ⃗⃗   
  

⁄
  ⃗  

A 

(S) 
z 

x 

y

 
𝑅𝑂 

𝑂  

𝑖  

𝑘⃗  

𝑗  

𝑅𝑆 

𝑂𝑠 

𝑥𝑆 

𝑦𝑆 

𝑧𝑆 

B 

Figure 3.3 Composition de mouvements 
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 ⃗⃗   
  

⁄
 : vecteur instantané de rotation de 

  
  

⁄  

  2  -   1  

   
  

⁄  
   

  
⁄  

 (   ⃗⃗⃗⃗⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
  

  

⁄
  ⃗⃗   

  
⁄

     ⃗⃗⃗⃗⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  ⃗  

                           

 (  ⃗⃗ ⃗⃗  ⃗)

  
  

⁄   ⃗⃗   
  

⁄
   ⃗⃗⃗⃗  ⃗    Avec      

 (  ⃗⃗ ⃗⃗  ⃗)

  
  

⁄    

                            ⃗⃗   
  

⁄
   ⃗⃗⃗⃗  ⃗ 

 

   
  

⁄  
   

  
⁄   ⃗⃗   

  
⁄

   ⃗⃗⃗⃗  ⃗ 

   

 

 

 

 

 

 

 
 

 

 

 

 

 

   
 𝑜

⁄ =
   

 𝑜
⁄ +  ⃗⃗  𝑆

  
⁄

   ⃗⃗⃗⃗  ⃗ 

Si Ω⃗⃗ 𝑅𝑆
𝑅𝑂

⁄
   

Alors 
𝑣 𝐵

𝑅𝑜
⁄  

𝑣 𝐴
𝑅𝑜

⁄  

Le mouvement est de 
Translation. 
(Torseur couple) 

Si 
𝑣 𝐴

𝑅𝑜
⁄    

Alors 
𝑣 𝐵

𝑅𝑜
⁄  Ω⃗⃗ 𝑅𝑆

𝑅𝑂
⁄

 𝐴𝐵⃗⃗⃗⃗  ⃗ 

Le mouvement est de 
Rotation. 
(Torseur glisseur) 
 

  

Formule fondamentale de la cinématique du solide 

(Relation de VARIGNON) 
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3.3.2. Equiprojectivité du champ de vitesses. 

 
L'équiprojectivité du champ des vitesses est un concept utilisé en dynamique des milieux 

continus. Cela signifie que les vectrices vitesses d'un ensemble de particules d'un milieu en 

mouvement restent dans des directions qui conservent des propriétés géométriques particulières 

lorsqu'elles sont projetées sur une surface ou un volume. 

 

   
  

⁄  
   

  
⁄   ⃗⃗   

  
⁄

   ⃗⃗⃗⃗  ⃗ 

En multipliant l’égalité par   ⃗⃗⃗⃗  ⃗ 
 

  ⃗⃗⃗⃗  ⃗ 
   

  
⁄    ⃗⃗⃗⃗  ⃗  

   
  

⁄   ⃗⃗   
  

⁄
   ⃗⃗⃗⃗  ⃗  

  ⃗⃗⃗⃗  ⃗ 
   

  
⁄    ⃗⃗⃗⃗  ⃗ 

   
  

⁄      Avec    ⃗⃗⃗⃗  ⃗ ( ⃗⃗   
  

⁄
   ⃗⃗⃗⃗  ⃗)    

Le champ des vitesses est equiprojectif  ⇔ Antisymetrique. 
 
La signification graphique 

 

Soient deux points A et B appartenant 

au solide (S), on a : 

  

   
  

⁄  
   

  
⁄   ⃗⃗   

  
⁄

   ⃗⃗⃗⃗  ⃗ 

Si 
   

  
⁄ et 

   
  

⁄  sont connus    

Le champ des vitesses est déterminé en tout point du solide.   

 

 

 

 

 

3.3.3. Torseur cinématique. 

 

Le torseur cinématique est un outil mathématique utilisé en mécanique pour décrire de 

manière compacte l'état de mouvement d'un solide ou d'un système mécanique. Il regroupe les 

informations relatives à la vitesse de translation et de rotation en un seul objet. Cela permet 

une analyse simplifiée et plus générale des mouvements, notamment dans les systèmes 

multicorps. 

Comme le champ des vitesses est équiprojectif, donc Antisymetrique. 

On a :   ⃗⃗⃗⃗  ⃗ 
   

  
⁄    ⃗⃗⃗⃗  ⃗ 

   
  

⁄   

Donc le torseur cinématique est définit : 

A 

B 

𝑣 𝐴
𝑅𝑜

⁄  

𝑣 𝐵
𝑅𝑜

⁄  

Figure 3.4 Equiprojectivité du champ de vitesses. 



Chapitre 3                                                                                          Cinématique du solide 

38 
 

[   
  

⁄
]
 

 

{
 
 

 
  ⃗⃗   

  
⁄

   
  

⁄
 

{
 
 

 
  ⃗⃗   

  
⁄

   
  

⁄   ⃗⃗   
  

⁄
   ⃗⃗⃗⃗  ⃗                  

  

Ou 

  

[   
  

⁄
]
 

 

{
 
 

 
  ⃗⃗   

  
⁄

   
  

⁄
 

{
 
 

 
  ⃗⃗   

  
⁄

   
  

⁄   ⃗⃗   
  

⁄
   ⃗⃗⃗⃗  ⃗ 

 

3.3.4. Champ des accélérations. 

 

Le champ des accélérations décrit la variation des accélérations en fonction de la 

position dans un domaine spatial. Il s'agit d'un champ vectoriel qui associe à chaque point de 

l'espace un vecteur représentant l'accélération à cet endroit.  

On a : 

   
  

⁄  
   

  
⁄   ⃗⃗   

  
⁄

   ⃗⃗⃗⃗  ⃗ 

    
  

  

⁄  

    
  

  

⁄  

  ⃗⃗   
  

⁄

  
   ⃗⃗⃗⃗  ⃗   ⃗⃗   

  
⁄

 
   ⃗⃗⃗⃗  ⃗

  
 

   
  

⁄  
   

  
⁄  

  ⃗⃗   
  

⁄

  
   ⃗⃗⃗⃗  ⃗   ⃗⃗   

  
⁄

 
   ⃗⃗⃗⃗  ⃗

  
 

        
   

  
⁄  

  ⃗⃗   
  

⁄

  
   ⃗⃗⃗⃗  ⃗   ⃗⃗   

  
⁄

 
    ⃗⃗⃗⃗⃗⃗    ⃗⃗⃗⃗⃗⃗  

  
 

 
   

  
⁄  

  ⃗⃗   
  

⁄

  
   ⃗⃗⃗⃗  ⃗   ⃗⃗   

  
⁄

  
   

  
⁄  

   
  

⁄   

   
  

⁄  
   

  
⁄  

  ⃗⃗   
  

⁄

  
   ⃗⃗⃗⃗  ⃗   ⃗⃗   

  
⁄

   ⃗⃗   
  

⁄
   ⃗⃗⃗⃗  ⃗  

 

 

 

 

 

Remarque : le champ des accélérations n’est pas Antisymétrique, donc il n’est un Torseur 

 

 

 

 

= 0 

Formule de RIVALS (dérivée de la relation de VARIGNON) 
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3.3.5. Dérivation vectorielle. 

 

En suppose  que    étant le repère absolu,    le repère relatif et   le repère lié au solide 

(S). le dérivation du vecteur   ⃗⃗⃗⃗  ⃗. 
 

  

   ⃗⃗⃗⃗  ⃗

  
  

⁄
 

   ⃗⃗⃗⃗  ⃗

  
  

⁄
  ⃗⃗   

  
⁄

   ⃗⃗⃗⃗  ⃗ 

Le repère    est mobile par rapport à au repère   .  

 ⃗⃗   
  

⁄
 le vecteur rotation instantané de  

  
  

⁄ . 

 

Exemple : Rotation autour de (z). 

 

  ⃗⃗   

  
⁄

 
  

  
 ⃗    ⃗ 

̇
 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Loi de composition des vitesses 

 

En suppose  que    étant le repère absolu,    le repère relié au solide (S). 

 

Dans    on peut écrire : 

  ⃗⃗ ⃗⃗ ⃗⃗      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

  ⃗⃗⃗⃗  ⃗
  

⁄  

   ⃗⃗⃗⃗⃗⃗  ⃗

  
  

⁄  

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

  
  

⁄  

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗

  
  

⁄  

    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

  
  

⁄
 

   
⃗⃗ ⃗⃗ ⃗⃗ 

  
⁄  

 

 

 

𝜃 

𝜃 

x 

𝑥′ 

𝑦 ′ 

y 

z=𝑧′ 

R 
𝑅′ 

M 

𝑅  𝑂 , 𝑖 , 𝑗 , 𝑘⃗ ) 

𝑂  

o 

𝑅 (O, 𝑖 𝑜, 𝑗 𝑜, 𝑘⃗ 𝑜   

Figure 3.5  Rotation autour d’un axe. 

Figure 3.6  Composition des vitesses. 
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    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

  
  

⁄  

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

  
  

⁄   ⃗⃗   
  

⁄
    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

(Loi de dérivation vectorielle L.D.V) 

 

  ⃗⃗ ⃗⃗  ⃗
  

⁄  
   
⃗⃗ ⃗⃗ ⃗⃗  

  
⁄  

  ⃗⃗ ⃗⃗  ⃗
  

⁄   ⃗⃗   
  

⁄
    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

  ⃗⃗ ⃗⃗  ⃗
  

⁄  
  ⃗⃗ ⃗⃗  ⃗

  
⁄  

   
⃗⃗ ⃗⃗ ⃗⃗  

  
⁄   ⃗⃗   

  
⁄

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

  ⃗⃗ ⃗⃗       ⃗⃗⃗⃗       ⃗⃗⃗⃗     

 

  ⃗⃗ ⃗⃗     
  ⃗⃗ ⃗⃗  ⃗

  
⁄  : vitesse absolue 

  ⃗⃗⃗⃗     
  ⃗⃗ ⃗⃗  ⃗

  
⁄  : vitesse relative. 

  ⃗⃗⃗⃗     
   
⃗⃗ ⃗⃗ ⃗⃗  

  
⁄   ⃗⃗   

  
⁄

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ : vitesse d’entrainement 

3.5. Loi de composition des accélérations. 

 

Nous avons précédemment la loi de composition des vitesses que nous allons dériver : 

 
  ⃗⃗ ⃗⃗  ⃗

  
⁄  

  ⃗⃗ ⃗⃗  ⃗
  

⁄  
   
⃗⃗ ⃗⃗ ⃗⃗  

  
⁄   ⃗⃗   

  
⁄

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

 
  ⃗⃗ ⃗⃗  ⃗

  
⁄    ⃗⃗ ⃗⃗     

  ⃗⃗  
  

⁄

  
  

⁄
 

  ⃗⃗     

  
  

⁄  

  ⃗⃗   
  

⁄

  
  

⁄
 

  ⃗⃗ 

  
  

⁄     ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗  

 ⃗⃗   
  

⁄
 

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

  
  

⁄  

 

  ⃗⃗     

  
  

⁄  

  ⃗⃗     

  
  

⁄   ⃗⃗   
  

⁄
  ⃗⃗      

              ⃗⃗⃗⃗      ⃗⃗   
  

⁄
  ⃗⃗      

 

  ⃗⃗   
  

⁄

  
  

⁄
   ⃗⃗ ⃗⃗      

  ⃗⃗   
  

⁄
 

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

  
  

⁄   ⃗⃗   
  

⁄
 (

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

  
  

⁄   ⃗⃗   
  

⁄
    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

                                 ⃗⃗   
  

⁄
   ⃗⃗       ⃗⃗   

  
⁄

   ⃗⃗   
  

⁄
    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗  

C’est Loi de composition des vitesses 
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D’où : 

 

 

 

 

 

 

 

 

 

  ⃗⃗ ⃗⃗       ⃗⃗⃗⃗       +    ⃗⃗⃗⃗      +    ⃗⃗⃗⃗     
 

NB : L’accélération d’entrainement est l’accélération du point M fixe dans       

 

  ⃗⃗⃗⃗     = 0  et   ⃗⃗⃗⃗       

 

 

3.6. Mouvement de translation  

Un solide (S) lié à un repère      ,   ,   ,  ⃗   est dit en mouvement de translation pur par 

rapport à un repère   (O,    ,    ,  ⃗     si les axes de      ,   ,   ,  ⃗    gardent une direction fixe par 

rapport à ceux de   (O,    ,    ,  ⃗    , au cours du temps.  

Tous les points du solide ont la même vitesse et la même accélération que le point    𝑆 . 

La vitesse de rotation du solide est nulle par rapport à   (O,    ,    ,  ⃗     

 

 

On peut écrire :  ⃗   
  

⁄
     ⃗   

  
⁄

     

Et                       ⃗⃗  
  

⁄
    ⃗⃗⃗⃗ ⃗⃗  ⃗   ⃗  

Comme       ⃗⃗⃗⃗ ⃗⃗  ⃗   ⃗      donc   ⃗⃗  
  

⁄
  ⃗  

 

 

 

 

 

 

 

 

 

Dans ce cas le champ des vitesses est un champ uniforme. 

Le torseur cinématique qui décrit le mouvement de translation pur est un torseur 

couple, dont la résultante est nulle mais le moment n’est pas nul. 

 

𝜸𝒂⃗⃗ ⃗⃗  𝑴  𝜸𝒓⃗⃗⃗⃗  𝑴  𝟐𝛀⃗⃗ 𝑹𝟏
𝑹𝑶

⁄
 𝒗⃗⃗ 𝒓 𝑴  𝜸𝒂⃗⃗ ⃗⃗  𝑶𝟏  

𝒅𝛀⃗⃗ 𝑹𝟏
𝑹𝑶

⁄

𝒅𝒕
 𝑶𝟏𝑴⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Accélération de Coriolis Accélération d’Entrainement 

𝑥  

𝑦  

𝑧  

𝑂  

𝑂  

X 

Z 

Y P 

Q 

(S) 

Figure 3.7  Mouvement de translation. 
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[   
  

⁄
]
 

 {
 ⃗⃗  

  
⁄

  ⃗ 

 ⃗⃗   
  

⁄
     ⃗⃗   

  
⁄

      ⃗ 
 

 

3.7. Mouvement de rotation autour d’un axe     fixe. 

 

Un solide (S) lié à un repère      ,   ,   ,  ⃗   est dit en mouvement de rotation pur par 

rapport à un repère   (O,    ,    ,  ⃗     si un axe de      ,   ,   ,  ⃗   reste fixe à tout instant et d’une 

manière permanente dans le repère   (O,    ,    ,  ⃗    . Nous avons donc deux points distincts O1 

et I du solide (qui restent fixent dans le repère au cours du mouvement de rotation. 

Le repère      ,   ,   ,  ⃗   est en rotation pur par rapport 

 au repère   (O,    ,    ,  ⃗     à une vitesse angulaire donnée par : 

 ⃗⃗   
  

⁄
  ̇     ̇       et 

 ⃗     
  

⁄   ⃗  

Soit P un point quelconque du solide et n’appartenant pas à l’axe de rotation tel que : 

  ⃗⃗⃗⃗      

Quel que soit              , on peut écrire : 

 ⃗    
  

⁄  
 ⃗     

  
⁄   ⃗⃗   

  
⁄

    ⃗⃗⃗⃗ ⃗⃗  : or nous avons 

 ⃗⃗   
  

⁄
    ⃗⃗⃗⃗ ⃗⃗    ⃗⃗   

  
⁄

    ⃗⃗⃗⃗ ⃗⃗   ⃗     : d’où 

 ⃗    
  

⁄  
 ⃗     

  
⁄  

 

 

 

 

I et P sont deux points du solide, nous pouvons alors écrire : 

 

 ⃗    
  

⁄  
 ⃗    

  
⁄   ⃗⃗   

  
⁄

   ⃗⃗⃗⃗   ⃗⃗   
  

⁄
   ⃗⃗⃗⃗          

 ⃗    
  

⁄   ⃗⃗   
  

⁄
   ⃗⃗⃗⃗  

On remplace  ⃗⃗   
  

⁄
 et   ⃗⃗⃗⃗  par leurs expressions, la vitesse du point P devient : 

 ⃗    
  

⁄   ⃗⃗   
  

⁄
   ⃗⃗⃗⃗   ̇         ̇ ⃗  

Dans un mouvement de rotation pur, le torseur des vitesses est équivalent au torseur 

glisseur défini par : 

 

[   
  

⁄
]
 

 {
 ⃗⃗  

  
⁄

  ⃗ 

 ⃗⃗   
  

⁄
     ⃗ 

      Tel que            ⃗⃗  

 

 

 

𝑧  

𝑦  

𝑥  
X 

Y 

Z 

Ψ 

𝑂  

(S) 

𝐼 
P 

 

Ψ 

Figure 3.8  Mouvement de rotation. 
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3.8. Mouvement plan sur plan 

 

Le mouvement d’un solide (S) lié à un repère      ,    ,    ,  ⃗    par rapport à un repère 

fixe      ,    ,    ,  ⃗    est un mouvement plan sur plan si et seulement si, un plan (PS) du solide 

reste en coïncidence avec un plan    lié au repère       ,    ,    ,  ⃗   . 

On étudie ainsi le mouvement relatif de deux plans, l’un constituant le référentiel fixe. 

Les vecteurs  ⃗   et  ⃗   sont orthogonaux aux plans (PS) et    respectivement en O et O1. 

 

 

 

 

 

 

 

 

 

 

 

 

Le vecteur rotation instantané du solide (S) lié à      ,    ,    ,  ⃗
 
   par rapport au repère fixe 

     ,    ,    ,  ⃗
 
   est donné par :  ⃗⃗  

  
⁄

  ̇ ⃗   

Tous les points du solide se déplacent parallèlement au plan (   , leurs vecteurs vitesses sont 

aussi parallèles à ce plan, alors      𝑆  nous aurons : 

 ⃗    
  

⁄                
 
          

 ⃗    
  

⁄   ⃗     

On remarque dans ce cas que l’automoment  
 ⃗    

  
⁄   ⃗⃗ 𝑆

  
⁄

    du torseur cinématique 

[   
  

⁄
]
 

 {
 ⃗⃗  

  
⁄

 ⃗⃗   
  

⁄
   

   décrivant le mouvement est nul. En effet nous avons : 

 ⃗    
  

⁄   ⃗⃗ 𝑆
  

⁄
 (              

 
)  ̇ ⃗    , nous pouvons conclure que :   

𝑂  
𝑂  

𝑖   

𝑘⃗   

𝑗   

𝑗   

𝑖   

𝑘⃗   
𝜋  

(PS) 

Figure 3.9  Mouvement plan sur plan. 
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- Si          ⃗⃗  
  

⁄
  ̇    ,  la résultante du torseur étant nulle, alors le torseur est 

un couple et le mouvement est une translation rectiligne sur le plan   , l’axe central du 

torseur reste indéfini ;  

- Si ψ varie au cours du temps, alors   ⃗⃗  
  

⁄
  ̇ , dans ce cas le torseur est un glisseur 

dont l’axe central est l’axe instantané de rotation orthogonal au plan (    donc 

parallèle à  ⃗  .  

 

3.9. Mouvement composé 

Un solide (S) lié à un repère      ,    ,    ,  ⃗
 
    décrit un mouvement hélicoïdal par 

rapport à un repère fixe      ,    ,    ,  ⃗
 
    si : 

 

- Un axe du repère      ,    ,    ,  ⃗     reste en coïncidence à tout instant avec un axe du 

repère      ,    ,    ,  ⃗   .    

- La coordonnée du point    centre du repère      ,    ,    ,  ⃗    suivant l’axe de 

coïncidence, est proportionnelle à l’angle de rotation du repère      ,    ,    ,  ⃗    par  

           rapport au repère      ,    ,    ,  ⃗    au cours du mouvement de rotation.  

 

Nous avons alors :     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗        ⃗   

Le scalaire   représente le pas du mouvement hélicoïdal le long de l’axe de coïncidence. 

 Nous avons deux mouvements qui se superposent : 

 Un mouvement de translation le long de l’axe commun  ⃗    ⃗   

 Un mouvement de rotation autour de ce même axe  ⃗    ⃗  . 

Soit P un point du solide, nous avons à chaque instant :     ⃗⃗ ⃗⃗ ⃗⃗  ⃗      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      ⃗⃗⃗⃗ ⃗⃗  ⃗ 

Le vecteur      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   s’écrit dans le repère      ,    ,    ,  ⃗     :     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   {
 
 

     
 

Le vecteur    ⃗⃗⃗⃗ ⃗⃗  ⃗ s’écrit dans le repère      ,    ,    ,  ⃗    :    ⃗⃗⃗⃗ ⃗⃗  ⃗  {
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                                                et dans      ,    ,    ,  ⃗    :    ⃗⃗⃗⃗ ⃗⃗  ⃗  {
  𝑜     
        

 

 

la somme des deux vecteurs nous donne le vecteur    ⃗⃗ ⃗⃗ ⃗⃗  ⃗ dans    :    ⃗⃗ ⃗⃗ ⃗⃗  ⃗  {

  𝑜     
        
       

 

La vitesse et l’accélération du point P dans le repère    se déduisent facilement par dérivation 

dans le même repère : 

 ⃗    
  

⁄  
    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

  
 {

   ̇        

  ̇  𝑜     

  ̇   

 

    et  

     
  

⁄  
  ⃗    

  
 {

   ̈           ̇
 
 𝑜     

  ̈  𝑜        ̇
 
       

  ̈   

 

3.10. APPLICATIONS  

Exercice 1 : 

Soit une barre (OA) en rotation autour de z avec une vitesse constante.      ,    ,    ,  ⃗     etant le 

repère absolu et       ,    ,    ,  ⃗     le repère relatif. Le point M glisse le long de la barre (OA). 

   ̇  
  

  
     

 

1- Vitesse absolue  

 ⃗      

   ⃗⃗ ⃗⃗ ⃗⃗  

  
  

⁄
 

     
  

  

⁄   ̇     

    
  

  

⁄  

 ̇     
  

  
 
    
  

  ̇      ̇     

Donc :                                         ⃗⃗       ̇      ̇     

𝑖   

𝑗   

𝑦  

𝑥  
O 

A 

M 

𝑥  

𝑦  

𝜃 
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2- Vitesse relative  

 ⃗      

    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  

  
  

⁄
 

     
  

  

⁄   ̇    

Donc :                                               ⃗⃗       ̇    

3- Vitesse d’entrainement  

 ⃗       ⃗       ⃗⃗ ⃗⃗ ⃗⃗    ⃗⃗   ⃗  (       ̇ ⃗ )     ̇       

 ⃗⃗        ̇    

Vérifions : 

 ⃗         ⃗⃗       ⃗⃗      

 ̇      ̇      ̇      ̇    

4-          

 ⃗       ̇      ̇    

       

    ⃗⃗ ⃗⃗ ⃗⃗  

  
  

⁄
 

  ⃗     
  

  

⁄
 

  ̈     ̇

    
  

  

⁄   ̇ ̇      ̈      

    
  

  

⁄

̇

 

  ̈     ̇ ̇     ̇ ̇      ̈      ̇        

 ( ̈    ̇ )       ̇ ̇     ̈     

Or  ̇                ̈    

       ( ̈    ̇ )      ̇ ̇    
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  ⃗⃗     

  
  

⁄      tel que :     ⃗       ̇    

Donc :         ̈    

              ⃗⃗  ( ⃗⃗     ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  )  
  ⃗⃗ 

  
    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗   

  ⃗⃗   ̇ ⃗⃗  ( ̇ ⃗⃗      )   ⃗  

  ̇ ⃗⃗    ̇    

 ⃗⃗         ̇     

 

Exercice 2 : 

On considère le système de pendule composé de deux tiges. Les deux tiges sont de longueurs 

identiques L. Le bâti (O) est lié au repère      ,    ,    ,  ⃗   . 

La tige (1) est lié au repère      ,    ,    ,  ⃗   . 

La tige (2) est lié au repère      ,    ,    ,  ⃗   . 

1- Determiner par la méthode derivation (méthode directe) : 

 ⃗     ⁄  ;  ⃗     ⁄  ;       ⁄  et       ⁄ . 

2- Determiner par la méthode de champ des vitesses : 

 ⃗     ⁄  ;  ⃗     ⁄  

3- Déterminer les torseurs cinématiques suivants : 

*  
 ⁄
+
 

 ; *  
 ⁄
+
 

 ; *  
 ⁄
+
 

 ; *  
 ⁄
+
 

 

4- Determiner par la méthode de composition de mouvement : 

 ⃗     ⁄  ;    ⃗     ⁄     

Solution de l’exercice 2 :  

 

 

 

 

(O) 

𝑖   

𝑗   

𝑖   𝑖   
𝑖   

O 

A 

B 

𝛼 𝑡  

𝛽 𝑡  

(1) 

(2) 

𝑖   

𝑖   

𝑗   𝑗   

𝑘⃗   𝑘⃗   

Ω⃗⃗  
 ⁄
 𝛽̇ 𝑡 𝑘⃗   𝛽̇ 𝑡 𝑘⃗   

𝛽 𝑡  

𝛽 𝑡  

𝑖   

𝑗   

𝑖   
𝑗   

 
𝛼 𝑡  

𝛼 𝑡  

Ω⃗⃗  
 ⁄
 𝛼̇ 𝑡 𝑘⃗   𝛼̇ 𝑡 𝑘⃗   

(O) 

𝑖   

𝑗   

𝑖   𝑖   
𝑖   

O 

A 

B 

𝛼 𝑡  

𝛽 𝑡  

(1) 

(2) 
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1- Par la méthode directe : 

  ⃗     ⁄  

   ⃗⃗⃗⃗⃗⃗ 

  
  

⁄   

    

  
  

⁄   [

    

  
  

⁄   ⃗⃗  
 ⁄
    ]    ̇ ⃗         ̇    

  ⃗     ⁄  

   ⃗⃗⃗⃗⃗⃗ 

  
  

⁄  

   ⃗⃗⃗⃗⃗⃗ 

  
  

⁄  

   ⃗⃗ ⃗⃗  ⃗

  
  

⁄   ⃗   

    

  
  

⁄  

 

    
  

  

⁄   

    
  

  

⁄   ⃗⃗  
 ⁄
     

Or   ⃗⃗  
 ⁄
  ⃗⃗  

 ⁄
  ⃗⃗  

 ⁄
    ̇   ̇  ⃗   

 ⃗⃗     ⁄     ̇   ̇     

  ⃗     ⁄  

   ⃗⃗⃗⃗⃗⃗ 

  
  

⁄  

   ⃗⃗⃗⃗⃗⃗ 

  
  

⁄  

   ⃗⃗ ⃗⃗  ⃗

  
  

⁄   

    

  
  

⁄   

    

  
  

⁄  

  ̇      ̇ ⃗         ̇      ̇  
 
  

Donc :                            

      ⃗⃗     ⁄    ̇      ̇  
 
 

       ⁄  

  ⃗⃗     ⁄

  
  

⁄  

   ̇   

  
  

⁄    ̈      ̇

    

  
  

⁄  

    ̈      ̇ ( ⃗⃗  
 ⁄
    )    ̈      ̇( ̇ ⃗      )    ̈      ̇     

 

 ⃗⃗     ⁄    ̈      ̇     

= 

  ⃗     ⁄  

  ⃗⃗     ⁄

  
  

⁄  

    ̇      ̇    

  
  

⁄    ̈      ̈      ̇

    

  
  

⁄  

 ⃗⃗     ⁄   ̈      ̈      ̇       ̇     

2- Déterminer par la méthode des champs de vitesses : 

 ⃗     ⁄  ;  ⃗     ⁄  
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  ⃗     ⁄   ⃗     ⁄    ⃗⃗⃗⃗  ⃗   ⃗⃗  
 ⁄
  ⃗        ̇ ⃗     ̇  

 
 

 ⃗⃗     ⁄     ̇  
 
 

  ⃗     ⁄   ⃗     ⁄    ⃗⃗⃗⃗  ⃗   ⃗⃗  
 ⁄
  ⃗         ̇   ̇  ⃗   

 ⃗⃗     ⁄     ̇   ̇   
 
 

3- Déterminer les torseurs cinématiques suivants : 

*  
 ⁄
+
 

 ;   *  
 ⁄
+
 

 ; *  
 ⁄
+
 

 et  *  
 ⁄
+
 

 

 *  
 ⁄
+
 
 {

 ⃗⃗  
 ⁄
  ̇ ⃗  

 ⃗     ⁄   ⃗ 
 

 *  
 ⁄
+
 
 {

 ⃗⃗  
 ⁄
  ̇ ⃗  

 ⃗     ⁄    ̇  
 

 

 *  
 ⁄
+
 
 {

 ⃗⃗  
 ⁄
   ̇   ̇  ⃗  

 ⃗     ⁄   ⃗ 
 

 *  
 ⁄
+
 
 {

 ⃗⃗  
 ⁄
   ̇   ̇  ⃗  

 ⃗     ⁄     ̇   ̇   
 

 

4- Déterminer par la méthode de composition de mouvement : 

  ⃗     ⁄   ⃗     ⁄   ⃗     ⁄   ⃗     ⁄  

   ⃗⃗⃗⃗⃗⃗ 

  
  

⁄    ̇    

  ⃗     ⁄   ⃗     ⁄   ⃗     ⁄       et    ⃗     ⁄     ̇   ̇   
 
 

 ⃗     ⁄   ⃗     ⁄    ⃗⃗ ⃗⃗  ⃗   ⃗⃗  
 ⁄
               ̇ ⃗   

Donc : 

                                  ⃗⃗     ⁄    ̇  
 
   ̇  
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4.1. Introduction  

La dynamique du corps solide est une branche de la mécanique qui s'intéresse à l'étude 

des mouvements des corps rigides sous l'influence de forces et de moments (ou couples). 

Contrairement à la dynamique des points matériels, où l'on considère des objets sans 

dimension, la dynamique du corps solide prend en compte les dimensions et la distribution de 

masse des objets. Les corps solides sont supposés indéformables, c'est-à-dire que la distance 

entre deux points quelconques du corps reste constante pendant le mouvement. 

4.1.1. Concepts fondamentaux 

 Corps rigide : Un corps rigide est un objet dont la forme et les dimensions restent 

inchangées sous l'action des forces appliquées. En pratique, les corps rigides sont une 

idéalisation, car tous les matériaux se déforment dans une certaine mesure, mais cette 

hypothèse est souvent suffisamment précise pour l'étude des mouvements. 

 Degrés de liberté : Un corps rigide dans l'espace tridimensionnel possède six degrés 

de liberté, correspondant à trois translations (dans les directions x, y et z) et trois 

rotations (autour des axes x, y et z). 

4.1.2. Types de mouvements d'un corps solide 

 Translation : Le corps se déplace de manière telle que tous ses points suivent des 

trajectoires parallèles. La direction et la vitesse de tous les points du corps sont 

identiques. 

 Rotation autour d'un axe fixe : Le corps tourne autour d'un axe fixe. Chaque point 

du corps suit une trajectoire circulaire autour de cet axe. 

 Mouvement général : Une combinaison de translation et de rotation. Par exemple, le 

mouvement d'une roue de voiture en marche comporte à la fois une translation du 

centre de la roue et une rotation autour de cet axe. 

4.2. Rappels sur les quantités dynamiques pour un point matériel 

 

La dynamique des particules est régie par des principes basés sur les lois de Newton. 

 

- Première loi de Newton (loi d’inertie) 

 

Dans un repère absolu, une particule (M) de masse m totalement isolée reste au repos 

si elle est initialement au repos, ou bien est animée d’un mouvement de translation 



Chapitre 4                                                                                     Dynamique du solide rigide 

51 
 

rectiligne uniforme si elle était en mouvement. Cette particule possède une quantité 

de mouvement constante. On écrit : 

 

 ⃗⃗     ⃗⃗   

 

- Deuxième loi de Newton (Relation fondamentale de la dynamique). 

Une particule (M) de masse m invariable est soumise à des actions de la part d'une 

autre particule. À l'instant t, ces actions sont représentées par le vecteur force    

s'exerçant sur cette particule. On écrit alors: 

 

   
   

  
 

     ⃗⃗   

  
       

 

Le vecteur force    est la résultante de toutes les forces s’appliquant sur (M). 

Remarque :  

La loi de Newton définie les équations différentielles du mouvement. 

   ∑            
  ⃗⃗  
  

 
    

   
 

   ∑          {

   

   

   

   

{
  
 

  
   ⃗  

  

  ⃗  

  

  ⃗  
  

   

{
  
 

  
 
    

   

    

   

    

   

 

- Troisième loi de Newton (Action-Réaction) 

Quand deux corps s’interagissent, à partir du principe de la conservation de la quantité 

de mouvement :  

  ⃗⃗  
  

  
  ⃗⃗  
  

  
  ⃗⃗  
  

  
  ⃗⃗  
  

   ⃗⃗      ⃗⃗    

 

 ⃗⃗    Force appliquée par le corps 1 sur le corps 2. 

 ⃗⃗    Force appliquée par le corps 2 sur le corps 1. 
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4.3. Moment cinétique (Moment de la quantité de mouvement) 

 

Le moment cinétique  ⃗⃗   du point matériel M en un point A quelconque de l’espace est 

donné par le moment de la quantité de mouvement en A, il a pour grandeur :  

 

 ⃗⃗     ⃗⃗⃗⃗⃗⃗  ⃗    ⃗⃗   

 

4.4. Quantité de mouvement d’un système matériel (S) 

a) Système matériel discret : 

Le système est constitué d’un ensemble de point Mi de masse mi et de vitesses  ⃗   
 dans 

un repère            ⃗  . 

- La résultante cinétique (Quantité de mouvement) du système est donnée par la 

relation suivante : 

 ⃗⃗  ∑   ⃗⃗   

 

 

- Le moment cinétique  ⃗⃗   du système (S) d’un point matériel A quelconque de 

l’espace est donné par le moment de la quantité de mouvement en A, il a pour 

grandeur vectorielle :  

 ⃗⃗      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      ⃗⃗   

 

b) Système matériel continu : 

Dans le cas d’un système matériel continu (S) : linéaire, surfacique où volumique nous 

avons : 

- La résultante cinétique (quantité de mouvement) du système matériel continu, 

est donnée par la grandeur vectorielle :  

 ⃗⃗  ∫  ⃗⃗  
 

   

- Le moment cinétique  ⃗⃗   du système (S) d’un point matériel A quelconque de 

l’espace est donné par le moment de la quantité de mouvement en A, il a pour 

grandeur vectorielle :  

 ⃗⃗   ∫   ⃗⃗⃗⃗⃗⃗  ⃗

 

  ⃗⃗     
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4.5. Torseur cinématique 

Soit un solide (S) de masse m et de centre d’inertie G, en mouvement par rapport à un 

repère fixe            ⃗  . Soit M un point de ce solide et deux points A et B quelconque de 

l’espace mais connus dans le repère R.  

Par définition nous avons les moments cinétiques en A et B qui sont donnés par : 

 ⃗   ∫   ⃗⃗⃗⃗ ⃗⃗ 
 

  ⃗        et    ⃗   ∫   ⃗⃗⃗⃗ ⃗⃗  
 

  ⃗     

 ⃗    ⃗   ∫   ⃗⃗⃗⃗ ⃗⃗ 

 

  ⃗     ∫   ⃗⃗⃗⃗ ⃗⃗  

 

  ⃗     ∫ 

 

  ⃗⃗⃗⃗ ⃗⃗    ⃗⃗ ⃗⃗ ⃗⃗     ⃗     

 ∫   ⃗⃗ ⃗⃗ ⃗⃗ 

 

  ⃗⃗     

 

 ⃗    ⃗     ⃗⃗⃗⃗  ⃗  ∫  ⃗    
 

 

 

 ⃗⃗    ⃗⃗     ⃗⃗⃗⃗⃗⃗   ⃗⃗  

 

Cette relation est appelée loi de variation du moment cinétique.    

 On constate que le moment cinétique obéit à la loi des transports des moments. Nous 

pouvons alors construire un torseur cinétique dont les éléments de réduction sont : la 

résultante cinétique et le moment cinétique. 

[ ]  

{
  
 

  
 

 ⃗  ∫  ⃗    

 

 ⃗⃗   ∫   ⃗⃗⃗⃗ ⃗⃗ 

 

  ⃗    

 

4.5.1. Expression de la résultante cinétique d’un système matériel 

 

Soit un solide (S) de masse m et de centre d’inertie G, en mouvement par rapport à un 

repère orthonormé fixe            ⃗  . Quel que soit       nous avons par définition du 

centre d’inertie : 

∫   ⃗⃗⃗⃗⃗⃗  ⃗

 

    ⃗⃗  
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Les points G et M sont Mobiles dans le repère            ⃗  , nous pouvons écrire : 

  ⃗⃗⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗ ⃗⃗  ⃗    ⃗⃗⃗⃗⃗⃗     Leurs vitesses sont liées par la relation suivante : 

   ⃗⃗⃗⃗⃗⃗  ⃗

  
 

   ⃗⃗⃗⃗⃗⃗  ⃗

  
 

   ⃗⃗⃗⃗⃗⃗ 

  
  

   ⃗⃗⃗⃗⃗⃗  ⃗

  
  ⃗    ⃗    

En dérivant cette expression par rapport au temps sous le signe intégrale, on obtient : 

∫
   ⃗⃗⃗⃗⃗⃗  ⃗

  
 

   ∫ 

 

 ⃗    ⃗       ⃗  

D’où : ∫  ⃗   
   ∫  ⃗   

     ⃗    ce qui donne :  ⃗    ⃗   

 

4.6. Energie cinétique  

4.6.1. Définition  

L’énergie cinétique d’un système matériel continu (S) en mouvement par rapport à un 

repère fixe    est définie par la quantité scalaire exprimée par la relation :  

 

  
  ∫

 

 
  ⃗  

     

 

 

 

4.6.2. Théorème de Koënig relatif à l’énergie cinétique 

Soit             ⃗⃗   un repère orthonormé fixe. Le référentiel de Koënig (appelé aussi 

référentiel barycentrique)             ⃗⃗   est le référentiel lié au centre d’inertie du solide dont les 

axes sont parallèles à ceux du repère fixe. 

La vitesse du repère    par rapport au repère    est nulle :  ⃗⃗   
  

⁄
  ⃗  

Nous allons chercher une relation entre : 

G 

M 

x 

y 

z 

o 

𝑥𝐺  

𝑦𝐺  

𝑧𝐺  

Figure 4.1 Résultante cinétique d’un système matériel 
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- L’énergie cinétique du système dans son mouvement par rapport à    

                                      Et  

- L’énergie cinétique du système dans son mouvement par rapport à    

Soit M un point du système matériel. La loi de composition des vitesses donne : 

 ⃗  
   ⃗  

   ⃗  
  

en remplaçant cette expression dans celle de l’énergie cinétique nous aurons : 

  
  ∫

 

 
  ⃗⃗  

   ⃗⃗  
     

 

 
 

 
∫  ⃗  

     

 

 ∫  ⃗  
  

 

 ⃗  
    

 

 
∫  ⃗  

   

 

   

 

Or nous avons :   ⃗  
  

   ⃗⃗ ⃗⃗ ⃗⃗  

  
   dans le repère   . 

Donc nous obtenons :  

  
  

 

 
∫  ⃗  

     

 

  ⃗  
  

 

  
∫   ⃗⃗⃗⃗ ⃗⃗ 

 

   
 

 
∫  ⃗  

   

 

   

nous avons aussi par définition du centre d’inertie que : ∫   ⃗⃗⃗⃗ ⃗⃗ 
 

     

L’expression de l’énergie cinétique devient : 

  
  

 

 
  ⃗  

   ∫   

 

 
 

 
∫  ⃗  

   

 

   

qui s’écrit aussi sous la forme réduite : 

  
  

 

 
  ⃗  

   ∫   

 

   
  

L’énergie cinétique du système (S) en mouvement quelconque par rapport au repère    est égale à 

l’énergie cinétique du système dans son mouvement autour de son centre d’inertie G augmentée 

de l’énergie cinétique du centre d’inertie affecté de la masse totale du système. 

 

4.7. Solide indéformable en mouvement quelconque 

Soit                ⃗    un repère orthonormé fixe et                ⃗      un repère lié à un 

solide indéformable et de centre de d’inertie G. 

Le solide est en mouvement quelconque tel que      . La vitesse de rotation du repère    

par rapport au repère    est :  ⃗⃗  
  

Soit M un point quelconque du solide, nous avons par la cinématique du solide : 

 ⃗  
   ⃗   

   ⃗⃗  
     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
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L’énergie cinétique du solide (S) est donnée par : 

  
  

 

 
∫  ⃗  

     

 

 
 

 
∫  ⃗   

   ⃗⃗  
     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      

 

 

  
  

 

 
∫  ⃗  

    ⃗   

   ⃗⃗  
     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗     

 

 

   ⃗   

  ∫
 

 
  ⃗  

    ∫
 

 
  ⃗  

 

 

 

 

 ⃗⃗  
     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      

 
 

 
   ⃗   

      ⃗  
   ⃗⃗  

  ∫
 

 
 

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    ⃗  
  

L’expression du moment cinétique déjà développée auparavant est donnée par : 

    

  ∫    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    ⃗  
 

 

   

Nous avons alors l’énergie cinétique en fonction du moment cinétique du solide: 

  
  

 

 
   ⃗   

      ⃗  
   ⃗⃗  

      

  

Si le centre    du repère    est confondu avec le centre d’inertie G du solide :      alors : 

  
  

 

 
     ⃗  

     ⃗⃗  
     

  

Le moment cinétique en G s’écrit :  ⃗⃗  
      ⃗⃗  

   on aboutit à la relation finale : 

  
  

 

 
     ⃗  

     ⃗⃗  
 
 
    ⃗⃗  

  

 
 

 
     ⃗  

     : est l’énergie cinétique de translation du solide 

 ⃗⃗  
 
 
    ⃗⃗  

  : est l’énergie cinétique de rotation du solide autour de son centre d’inertie G.  

L’énergie cinétique totale d’un solide en mouvement quelconque dans l’espace est égale à la 

somme de l’énergie cinétique de translation de son centre d’inertie affectée de la masse du 

solide et de l’énergie cinétique de rotation autour du centre d’inertie. 

 

L’énergie cinétique totale peut s’exprimer en fonction des torseurs cinématiques et cinétique au 

point en la mettant sous la forme : 

  
  (

 ⃗⃗  
 

 ⃗  
 )  (

   ⃗  
 

    

 ) 
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L’énergie cinétique totale d’un solide est égale à la moitié du produit scalaire du torseur 

cinématique par le torseur cinétique au point    exprimé dans le repère   . 

 

  
  

 

 
[ ]  

 [ ]  
 

 

4.8. Théorèmes fondamentaux de la dynamique 

4.8.1. Objectifs de la dynamique 

La dynamique permet d’analyser les liens existant entre les mouvements d’un solide 

déjà décrits par la cinématique et les forces où actions qui les provoquent. Nous introduirons 

la notion de torseur des efforts extérieurs, nécessaire à l’écriture du principe fondamental de la 

dynamique. 

4.8.2. Notions de référentiels 

 

Du principe fondamental de la dynamique et celui de l’action-réaction, nous pouvons 

établir les théorèmes généraux de la dynamique dans un référentiel Galiléen ou non Galiléen.  

En effet, un référentiel est dit Galiléen ou (absolu) si les lois de Newton exprimées dans 

celui-ci sont valables. Tout repère en mouvement de translation uniforme par rapport à un 

repère Galiléen est lui aussi Galiléen, car les accélérations constatées à partir d’un même point 

seront les même dans les deux repères. 

 

4.8.3. Expression de la loi fondamentale de la dynamique  

 

Soit un système matériel (S) non isolé et soumis à des interactions dans un repère 

Galiléen                ⃗   . Pour ce système matériel on distingue deux types d’actions :  

- Les actions mécaniques intérieures, résultant des actions d’une partie de (S) sur une autre 

partie de (S) ; ces actions sont appelées forces intérieures et notées :      

- Les actions mécaniques extérieures résultant des actions du reste de l’univers (le milieu 

extérieur) sur (S), ces actions sont appelées forces extérieures et notées :      

Il faut choisir convenablement les conditions aux limites du système pour pouvoir classer les 

actions (forces) intérieures et extérieures. 

En un point quelconque M du système (S), la relation fondamentale de la dynamique s’écrit : 

 

                

   : Élément de masse au voisinage du point M ; 
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    : accélération du point M ; 

En sommant sur l’ensemble du système matériel, nous avons : 

∫     
 

 ∫     
 

 ∫      

 

 

 

 

 

 

 

 

 

En un point A quelconque de l’espace les moments, de ces forces, sont donnés par : 

∫   ⃗⃗⃗⃗  ⃗      
 

 ∫   ⃗⃗⃗⃗  ⃗      
 

 ∫   ⃗⃗⃗⃗  ⃗       

 

 

 

Le système matériel (S), sa masse totale est constante. 

  

Les actions mécaniques extérieures qui s’exercent sur (S) sont représentées par un torseur 

[     
] : appelé torseur des forces extérieures dont les éléments de réduction au point A sont : 

[     
]  {      

     

 

 

      : est la résultante des forces extérieures s’exerçant sur le système (S) 

      : est le moment au point A des forces extérieures s’exerçant sur le système (S).  

Le principe fondamental de la dynamique montre que dans tout référentiel Galiléen, le 

torseur dynamique [D]A  du système (S) est égal au torseur des forces extérieures [     
]  

calculé au même point A . 

Les éléments de réduction du torseur dynamique [D]A du système (S) dans le repère Galiléen 

              ⃗   . 

[ ]  {
 ⃗⃗ 

   
 

 ⃗⃗  : la résultante dynamique 

    : le moment dynamique au point A. 

d𝐹 𝑒 
d𝐹 𝑖 

dm

M 

Z 

Y 

X 

Figure 4.2 Actions intérieures et extérieures sur un système matériel.   
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L’égalité des deux torseurs induit l’égalité de leurs éléments de réduction. Ce principe équivaut à 

la généralisation des lois de Newton. Les éléments des deux torseurs peuvent être calculés 

séparément et ensuite faire l’égalité des expressions obtenues.  

Le point A par rapport auquel on calcul les moments est un point quelconque, il faut faire un choix 

judicieux pour faciliter l’écriture des équations. Souvent dans les problèmes de mécanique, on 

choisit le centre de masse du système car le moment d’inertie intervenant dans les calculs est plus 

facile à déterminer. 

4.8.4. Théorème du moment dynamique 

Soit un système matériel (S) en mouvement dans un repère Galiléen               ⃗    et 

soumis à des actions extérieures. Le moment dynamique du système matériel (S) en un point A 

quelconque est égal au moment des actions (forces) mécaniques extérieures au même point A. 

 ⃗⃗  (   
⁄ )   ⃗⃗⃗  (   

⁄ ) 

Au centre d’inertie du système cette égalité s’écrirait : 

 ⃗⃗  (   
⁄ )   ⃗⃗⃗  (   

⁄ )  
 ⃗⃗  (   

⁄ )

  
 

Comme nous l’avons déjà montré précédemment, le moment cinétique au point G centre d’inertie 

du système est indépendant du repère dans lequel il est mesuré, alors il est souvent plus simple 

d’effectuer le calcul des moments dynamiques au centre d’inertie des systèmes. 

4.9.  Théorème de l’énergie cinétique 

Dans de nombreux cas, pour déterminer l’équation du mouvement d’un solide où d’un 

système de solide, il est plus judicieux d’utiliser le théorème de l’énergie cinétique afin d’aboutir 

à la solution du problème mécanique.  

De plus la dérivée de l’énergie cinétique est liée à la puissance des efforts intérieurs et extérieurs 

agissant sur le solide. 

4.9.1. Travail et puissance d’une force 

Soit un système discret composé de n particules M
i 
de masse mi, mobiles dans un référentiel 

Galiléen            ⃗  . Soit le vecteur position   ⃗⃗ ⃗⃗ ⃗⃗   dans le repère   de la particule M
i
, son 

vecteur vitesse s’écrirait : 

 ⃗⃗   
 

   ⃗⃗⃗⃗⃗⃗  ⃗
 

  
     ⃗⃗⃗⃗⃗⃗  ⃗

    ⃗⃗   
   

 

   ⃗⃗⃗⃗⃗⃗  ⃗
  : le vecteur déplacement élémentaire durant un temps dt 

Si la particule M
i
  est soumise à une force    , le travail élémentaire de cette force est égale à : 
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  ⃗⃗⃗          ⃗⃗ ⃗⃗ ⃗⃗  
  

 

4.10. Applications 

4.10.1. Cas de translation pure + rotation 

On rappelle que moment d’inertie d’un cylindre homogène de masse m0  et de rayon R par 

rapport à son axe de révolution     est :     
 

 
   

  

Considérons le système suivant constitué d’un treuil de masse   , d’un solide (S1)  de masse 

M, d’un solide (S2) de masse m et d’un câble inextensible et de masse négligeable entouré 

autour d’un treuil et portant à ses extrémités les solides (S1) et (S2). 

On abandonne à l’instant initial le système sans vitesse initiale. Le solide (S1) se déplace sans 

frottement le long de la ligne de plus grande pente du plan incliné qui fait un angle       

avec l’horizontale. 

On donne : M=3Kg ; m=2Kg ; g=10m/s
-2

  

1- Exprimer l’énergie cinétique du système constitué 

 par (S1), (S2), le treuil et le câble en fonction de la  

vitesse V des solides (S1) et (S2). 

 

 

2- En appliquant le théorème de  l’énergie cinétique que l’on énoncera,  

Donner l’expression de la vitesse V en fonction de g, des différentes masses,  

De l’angle   et de h la hauteur de chute de (S2).         

 

Solution de l’exercice 1 : 

1- Expression de l’énergie cinétique  du système ((S1)+ (S2)+ le treuil + le câble) 

                            

   
 

 
    

  
 

 
    

  
 

 
    

  

Or           et      
 

 
   

On peut écrire donc :  

   
 

 
    

  
 

 
    

  
 

 
  
 

 
   

    
 

 
   

      
 

 
     

  

 
    

 

𝑚  

m 

M 

(𝑆   

(𝑆   
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2- Expression de V en fonction de h 

Bilan des forces :  ⃗   ;  ⃗   ;  ⃗   ;  ⃗   et  ⃗   

 

D’après le théorème de l’énergie cinétique (TEC) :  

                                     

 

 

 

                           

 

 
(    

  

 
)                

 

 

 

 

 

 

 

 

 

 
(    

  

 
)                  

 

 
(    

  

 
)                

(    
  

 
)                 

  √
            

    
  

 

   

3- Expression de l’accélération (a) du système  

   
            

    
  

 

   

Posons x=h 

   
            

    
  

 

   

𝑚  

m 

M 

(𝑆   

(𝑆   

𝑃  

𝑅𝑛 

𝑃  

𝑃  

𝑅  

𝑚  

m 

M 

(𝑆   

(𝑆   

𝑃  

𝑅𝑛 

𝑃  

𝑃  

𝑅  

h=   

   hsin30 

30  
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 [
            

    
  

 

  ]

  
 

   
  

  
  

            

    
  
 

  

  
 

    
           

    
  
 

             Donc :      
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5.1. Introduction 

La géométrie des masses est un concept fondamental dans la mécanique, et elle 

concerne la manière dont la masse d'un système matériel est répartie dans l'espace. Cette 

distribution influence les propriétés mécaniques d'un objet, notamment son centre de masse, 

son moment d'inertie, et sa dynamique dans des mouvements complexes. 

La masse d’un système peut être définie de deux manières, en fonction de la nature du 

système matériel : discret ou continu. Voici une distinction claire entre ces deux concepts. 

5.2. Masse d’un système discret 

Dans un système discret, la masse est répartie en un nombre fini de points. Chaque 

point possède une masse distincte et se trouve à une position spécifique dans l'espace. Ce type 

de système est souvent utilisé pour modéliser des objets composés de particules distinctes ou 

des assemblages de masses. 

Formule pour la masse d'un système discret : 

La masse totale M d'un système discret composé de n points de masse est simplement la 

somme des masses individuelles    : 

  ∑  

 

   

 

chaque     représente la masse d'un élément discret (par exemple, une particule ou un objet). 

 

5.3. Masse d'un système continu 

Un système continu, quant à lui, correspond à un objet ou une distribution de masse qui 

est étendue sur une région de l'espace de manière continue. Au lieu d’être divisée en 

(a) Système discret (b) Système continu 

Figure 5.1 Système discret et système continu. 
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particules discrètes, la masse est distribuée de manière uniforme ou non uniforme à travers 

l’objet. 

Formule pour la masse d'un système continu : 

La masse totale M est calculée à l'aide d'une intégrale, qui prend en compte la densité      de 

la matière en chaque point de l’espace. Selon la dimension du système (ligne, surface, 

volume), l'intégrale est différente : 

 Pour une ligne :     ∫       
 

 

où      est la densité linéique (masse par unité de longueur) le long de la ligne L. 

 Pour une surface : ∫         
 

 

où        est la densité surfacique (masse par unité de surface), et    est l'élément de surface. 

 Pour un volume :    ∫           
 

 

où          est la densité volumique (masse par unité de volume), et    est l'élément de 

volume. 

Exemple : 

Considérons une tige de longueur L, avec une densité de masse linéique uniforme  

       . La masse totale de la tige serait : ∫    
 

 
       

5.4. Formulation intégrale du centre de masse. 

Le centre de masse (G) d'un objet est le point où l’on peut considérer que toute la 

masse de l'objet est concentrée pour simplifier les calculs de dynamique. Sa position dépend 

de la répartition de la masse dans l'espace et peut être calculée de manière différente pour les 

systèmes discrets et continus. 

 

5.4.1. Centre de masse d’un système discret 

Pour un système discret constitué de plusieurs particules de masse    situées à des 

positions   , la position du centre de masse G est donnée par : 
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∑     

 
   

∑   
 
   

 

Où : 

   : La masse de la i
ème

 particule 

    La position de la i
ème 

particule 

n : Le nombre de particules. 

5.4.2. Formulation intégrale pour un système continu. 

Pour un système continu, la masse est distribuée de façon uniforme ou non sur une 

ligne, une surface, ou un volume. Le centre de masse est alors calculé à l'aide d'intégrales 

prenant en compte la distribution de la masse (via la densité) dans l'espace. 

a. Centre de masse d'une ligne (distribution unidimensionnelle) 

Pour une distribution continue de masse le long d'une ligne L, avec une densité linéique 

de masse λ(x), la position du centre de masse xCM est donnée par : 

 

   
∫        
 

∫       
 

 

b. Centre de masse d'une surface (distribution bidimensionnelle) 

Pour une distribution de masse sur une surface S, avec une densité centre de masse sont 

calculées par :surfacique       , les coordonnées (     ) du  

   
∫          
 

∫         
 

 

   
∫          
 

∫         
 

 

Où dA est l'élément de surface différentielle. 

c. Centre de masse d'un volume (distribution tridimensionnelle) 

Pour une distribution de masse dans un volume V, avec une densité volumique         , les 

coordonnées du centre de masse (        ) sont données par les équations : 

 

   
∫            
 

∫           
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∫            
 

∫           
 

 

   
∫            
 

∫           
 

 

Où dV est l'élément de volume différentiel. 

5.4.3. Formulation discrète du centre de masse (centre d’inertie)  

La formulation discrète du centre de masse concerne un système constitué d'un 

nombre fini de masses ponctuelles situées à des positions spécifiques. Contrairement à un 

système continu, où la masse est répartie de manière uniforme ou non uniforme sur une 

région, un système discret considère un ensemble de particules ou objets ayant des masses 

distinctes. 

Pour un système discret tridimensionnel composé de plusieurs masses ponctuelles m1, 

m2, …, mn situées à des positions r1,r2,…,rn. la position du centre de masse (centre d’inertie) 

est donné par les expressions suivantes : 
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         : sont les coordonnés de l’élément de masse      

         : Les coordonnées du système composé. 

5.5. Théorème de GULDIN 

Le théorème de Guldin (ou théorème de Pappus-Guldin) est un ensemble de deux 

théorèmes de géométrie qui permettent de calculer l'aire et le volume d'un solide de 

révolution. Ces théorèmes sont particulièrement utiles en mécanique et en ingénierie pour 

déterminer des grandeurs comme les volumes et les surfaces de solides obtenus par la rotation 

d'une courbe ou d'une surface autour d'un axe. 
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5.5.1. Premier Théorème de GULDIN 

La surface S engendrée par la rotation d’un arc de courbe de longueur L autour 

d’un axe (Δ) sans l’intercepter dans son plan est égale au produit de la longueur L 

de l’arc par la longueur de la circonférence 2πRG décrite par le centre d’inertie G 

de l’arc de courbe. 

 

 

 

 

 

 

 

La longueur (périmètre) décrite par la rotation du centre d’inertie G par rapport à l’axe 

(Δ) est donnée par : 2.π.RG , alors la surface décrite par cet élément est égale à :  

                             d’où :               
   

      
 

Dans le cas d’un système homogène de plusieurs éléments on aura :     
         

            
 

si l’axe  Δ  représente l’axe (O,  ⃗ ) nous aurons :    
    

      
 

si l’axe  Δ  représente l’axe (O,  ⃗ ) nous aurons :    
    

      
 

5.5.2. Deuxième Théorème de GULDIN 

Le volume d'un solide de révolution généré par la rotation d'une surface plane S 

autour d'un axe extérieur à cette surface est égal à l'aire de la surface multipliée par la distance 

parcourue par le centre de gravité de la surface. 
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Figure 5.2 Centre d’inertie d’une courbe plane. 

Figure 5.3 Centre d’inertie d’une surface plane. 
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Si A est l'aire de la surface S, et si : 2.π.RG est la distance parcourue par le centre de 

masse de la surface lors de la rotation, alors le volume V du solide de révolution est donné par 

:                   d’où         
   

      
 

Dans le cas d’un système homogène de plusieurs éléments on aura :     
         

            
 

si l’axe  Δ  représente l’axe (O,  ⃗ ) nous aurons :    
    

      
 

si l’axe  Δ  représente l’axe (O,  ⃗ ) nous aurons :    
    

      
 

5.6. Moment d’inertie  

Soit un solide de masse    lié à une tige (AA’) de masse négligeable, en rotation 

autour d’un axe (Δ). Si on applique un couple au système (tige + masse), il se mettra à tourner 

librement autour de l’axe (Δ). Le temps nécessaire à cet élément de masse    pour atteindre 

une vitesse de rotation donnée est proportionnel à la masse    et au carré de la distance r qui 

sépare la  masse de l’axe (Δ). C’est pour cette raison que le produit       est appelé moment 

d’inertie de la masse    par rapport à l’axe (Δ).  

 

 

 

 

 

 

 

 

 

 

Soit un repère orthonormé      ⃗  ⃗  ⃗⃗  et un solide (S) tel que      . Le moment 

d’inertie de ce solide par rapport au point O (Moment polaire) est obtenu en intégrant la 

relation      . 

𝐴 

(   

dm 

𝐴′ 
r 

Figure 5.4 Moment d’inertie par rapport à un axe. 
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   ∫     

   

 

 

Nous avons :                 

 

 

Le solide peut être linéaire, surfacique ou volumique.  

L’élément d’intégration dm(P) est situé en un point P du solide.  

 

 

 

 

 

 

Le tenseur d’inertie du solide au point O est représenté dans la base      ⃗  ⃗  ⃗⃗  par une 

matrice notée: appelée matrice d’inertie en O dans la base      ⃗  ⃗  ⃗⃗   du solide (S) : 

     
 ⁄
 [

           
           

           

] 

Les éléments de la matrice s’écrivent comme suit : 

 Moment d’inertie par rapport à l’axe (Ox) :     ∫           
   

 

 Moment d’inertie par rapport à l’axe (Oy) :     ∫           
   

  

 Moment d’inertie par rapport à l’axe (Oy) :     ∫           
   

 

 Moment d’inertie par rapport au plan (Oxy) où produit d'inertie :     ∫      
 

 

 Moment d’inertie par rapport au plan (Oxz) où produit d'inertie :     ∫    
 

    

 Moment d’inertie par rapport au plan (Oyz) où produit d'inertie :     ∫      
 

 

 

Remarque : Lorsque des solides admettant des plans de symétrie par rapport aux axes du 

repère choisi. Pour chaque plan de symétrie, les produits d’inertie sur les deux autres plans 

sont nuls : 

 

(     plan de symétrie ==>     ∫    
 

    𝑒𝑡     ∫      
 

    

(    plan de symétrie ==>     ∫    
 

   𝑒𝑡     ∫      
 

    

(     plan de symétrie ==>     ∫      
 

   𝑒𝑡     ∫      
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Figure 5.5 Moments d’inertie par rapport aux axes et aux plans. 
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5.6.1. Solides plans. 

Dans le cas des solides plans, l’une des coordonnées de l’élément,    est nulle. Si le solide 

est dans le plan (     alors    .  

On déduit immédiatement que : 

    ∫       

   

 

    ∫       

   

 

D’où :  

    ∫                   
   

 

                                        ∫      
 

  Avec :            

 

 

5.7. Théorème de HUYGENS 

Le théorème de Huygens stipule que le moment d'inertie d'un solide par rapport à un 

axe quelconque est égal à la somme du moment d'inertie par rapport à un axe parallèle passant 

par le centre de masse et du produit de la masse du solide par le carré de la distance entre les 

deux axes. 

Autrement dit, si : 

    est le moment d'inertie par rapport à l'axe passant par le centre de masse G, 

 d est la distance entre l'axe passant par le centre de masse et l'axe décalé, 

 m est la masse totale du solide. 

           

 

D’une manière générale :  
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Figure 5.6 Moment d’inertie d’un solide plan. 

Figure 5.7 Théorème de HUYGENS par rapport à un axe. 
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                    Et  les produits d’inertie sont : 

      
              

      
              

                    

 

 

5.8. Applications 

Exercice 1: 

Déterminer le moment d’inertie au point O de la plaque mince rectangulaire de masse m, de 

longueur 2a et de largeur 2b de centre d’inertie G (a, b, 0). 

 

En appliquant le théorème de HUYGENS, nous obtenons : 
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Les produits d’inertie sont : 
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Figure 5.8 Théorème de HUYGENS général 
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Exercice 2 : 

Déterminer le moment d’inertie au point G  centre d’inertie d’une plaque mince 

rectangulaire de masse m, de longueur 2a et de largeur 2b et de coordonnées  G (a, b, 0).  

Les plans       et       sont des plans de symétrie, alors tous les produits d’inertie sont nuls 

                ; la matrice d’inertie en G est diagonale.  

Masse de la plaque :             

Nous avons un solide plan :      donc                  
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 ∫      

 

 ∫        
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La masse d’inertie au point G s’écrit : 
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