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Preface

This course on Mathematical Programming provides a comprehensive introduction to
the theory of optimization. Intended for students in applied mathematics and operations
research, it aims to equip them with mathematical tools required to model and solve real
world optimization problems. It allows to prepare students for advanced topics in nonlinear
programming, convex optimization, and numerical analysis.

The content is organized into five chapters. Chapter 1 establishes the mathematical
prerequisites, covering differential calculus in multiple dimensions, quadratic forms with
Sylvester’s criterion, and convex analysis. Chapter 2 develops the theory of unconstrained
optimization, presenting existence results via Weierstrass theorem and characterizing opti-
mal solutions through first and second-order conditions. Chapter 3 introduces numerical
methods. It describes iterative algorithms like gradient descent and conjugate gradient, and
explains how these methods converge to a solution. Chapter 4 extends the framework to con-
strained optimization, deriving the fundamental Karush-Kuhn-Tucker conditions. Finally,
chapter 5 contains practice exercises with solutions covering all course material.
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Chapter 1

Review and Supplements

The scalar product is defined by 〈x, y〉 = x>y =
n∑
i=1

xiyi, x ∈ Rn, y ∈ Rn.

The associated Euclidean norm is defined by ‖x‖ =
√
〈x, x〉 =

√
x>x =

√
n∑
i=1

x2i , x ∈ Rn.

1.1 Introduction

In this course, we are interested in the problem of finding a point x∗ ∈ X, such that a
real function f defined on the set X takes its minimum value. Formally, this optimization
problem is presented as: {

min f(x)
s.t. x ∈ X, (1.1)

where f : X ⊂ Rn → R, a function called the objective function.
X: is the set of feasible solutions and x ∈ X is called a feasible solution.

We have two cases:

1. If X = Rn, we say that (1.1) is an unconstrained optimization problem.

2. If X ⊂ Rn, (1.1) is a constrained optimization problem. In this case, X can have the
general form: X = {x ∈ Rn : hi(x) = 0, gj(x) ≤ 0; i = 1, k, j = 1,m}, where hi and gj
are called constraint functions.

In particular, if f , hi and gj are linear functions, the problem (1.1) is a linear program (LP)
and in this case the set X is a polyhedron.
The formulation (1.1) also encompasses maximization problems. Indeed, we have:

max f(x) = −min(−f)(x),

which allows us to transform a minimization problem into a maximization problem and vice
versa.
The solution of problem (1.1) is called an optimum or extremum (minimum or maximum).
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Definition 1.1 (Global Optimum). A solution of problem (1.1) is a point x∗ ∈ X such that

f(x∗) ≤ f(x), ∀x ∈ X.

In this case, x∗ is said to be a minimum or global optimum.
For a maximization problem, x∗ ∈ X is a global maximum, if

f(x∗) ≥ f(x), ∀x ∈ X.

Definition 1.2 (Local Optimum). x∗ ∈ X is a local optimum of problem (1.1), if there
exists a neighborhood of x∗, V(x∗)1 such that

f(x∗) ≤ f(x), ∀x ∈ X ∩ V(x∗), for a minimum.

f(x∗) ≥ f(x), ∀x ∈ X ∩ V(x∗), for a maximum.

Every global extremum is local. The converse is false.

When the inequalities are strict, we speak of a strict optimum.
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f(x) = cos(x)

Figure 1.1: Function f(x) = cos(x) with infinitely many global minima and maxima.

1.2 Differential Calculus

Definition 1.3. We say that f : Rn → R is differentiable at the point x∗ ∈ Rn, if there
exists a vector ∇f(x∗) ∈ Rn, called the gradient of f at point x∗ such that

f(x) = f(x∗) + (x− x∗)>∇f(x∗) + o(‖x− x∗‖),∀x ∈ Rn,

where lim
x→x∗

o(‖x−x∗‖)
‖x−x∗‖ = 0.

1V(x∗) = B(x∗, ε) = {x ∈ Rn/‖x− x∗‖ ≤ ε}, ε > 0
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Figure 1.2: Function f(x) = x cos(x) with infinitely many local minima and maxima.
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Figure 1.3: Example of a function with a global minimum at x = ±1 and local maxima at
x = 0.

The components of the vector ∇f(x∗) are the partial derivatives of f at x∗, ∂f(x∗)
∂xi

:

∂f(x∗)

∂xi
= lim

h→0

f(x∗1, x
∗
2, . . . , x

∗
i + h, . . . , x∗n)− f(x∗1, x

∗
2, . . . , x

∗
n)

h

= lim
h→0

f(x∗ + hei)− f(x∗)

h

where h ∈ R and x∗ = (x∗1, x
∗
2, . . . , x

∗
n)> ∈ Rn and ei = (0, . . . , 1, . . . , 0)>.

If ∇f(x∗) : Rn → R is continuous, then f is continuously differentiable.

Definition 1.4. We say that f : Rn → R is twice differentiable at the point x∗ ∈ Rn, if
in addition to the gradient, there exists a matrix H(x∗), called the Hessian matrix of f at
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point x∗, such that:

f(x) = f(x∗) + (x− x∗)>∇f(x∗) +
1

2
(x− x∗)>H(x∗)(x− x∗) + o(‖x− x∗‖2), ∀x ∈ Rn,

where lim
x→x∗

o(‖x−x∗‖2)
‖x−x∗‖2 = 0.

If the second-order partial derivatives, ∂2f(x∗)
∂xj∂xi

, i = 1, n; j = 1, n exist and are continuous on

Rn, then we say that f is of class C2. In this case, the Hessian is a symmetric matrix

H(x∗) = ∇2f(x∗) =


∂2f(x∗)
∂x21

∂2f(x∗)
∂x2∂x1

· · · ∂2f(x∗)
∂xn∂x1

∂2f(x∗)
∂x1∂x2

∂2f(x∗)
∂x22

· · · ∂2f(x∗)
∂xn∂x2

...
...

. . .
...

∂2f(x∗)
∂x1∂xn

∂2f(x∗)
∂x2∂xn

· · · ∂2f(x∗)
∂x2n


Exercise 1.1. Compute the gradient and the Hessian of the functions:

1. f(x) = f(x1, x2) = x21 + x22 − 2x1x2 + x1 + x2,

2. g(x) = g(x1, x2, x3) = x21 + x22 + x23 − 2x1 − 2x2 + 1.

Definition 1.5 (Directional Derivative). The directional derivative of a function f at point
x∗, in the direction d ∈ Rn, denoted Df (x

∗, d), is the limit defined by

Df (x
∗, d) = lim

h→0

f(x∗ + hd)− f(x∗)

h
.

The directional derivative gives us information about the slope of the function in the direction
d (just as the derivative gives information about the slope of a single-variable function).
Indeed, if

• Df (x
∗, d) > 0, then d is a direction of increase for f starting from x∗.

• Df (x
∗, d) = 0, nothing can be concluded.

• Df (x
∗, d) < 0, then d is a direction of decrease for f starting from x∗. In this case, d

is called a descent direction of f at x∗. This notion is widely used in optimization to
search for the minimum of a function on Rn.

In the case where f is differentiable, we have the following result.

Proposition 1.1. Let f : Rn → R be differentiable and x∗ ∈ Rn. Then for all d ∈ Rn

Df (x
∗, d) = d>∇f(x∗)
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1.3 Quadratic Forms

Definition 1.6. A quadratic form of n variables x1, x2, . . . , xn is a real-valued function that
can be written as:

F (x) =
n∑
i=1

n∑
j=1

aijxixj (1.2)

Letting x = (x1, x2, . . . , xn)>, A = (aij)i=1,n;j=1,n, (1.2)⇒ F (x) = x>Ax.

Example 1.1. Let x ∈ R3

F (x) =a11x
2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a13x1x3 + a21x2x1 + a23x2x3 + a31x3x1 + a32x3x2

=
(
x1, x2, x3

)>a11 a12 a13
a21 a22 a23
a31 a32 a33

x1x2
x3


=a11x

2
1 + a22x

2
2 + a33x

2
3 + (a12 + a21)x1x2 + (a13 + a31)x1x3 + (a23 + a32)x2x3

Let dij =
aij+aji

2
= dji, ∀1 ≤ i, j ≤ n.

The matrix D = (dij)i=1,n;j=1,n is symmetric and we have

F (x) = xtDx = xtAx, ∀x ∈ Rn.

1.3.1 Definite and Semidefinite Quadratic Forms

Let F (x) = x>Dx be a quadratic form with D symmetric.

• F is positive definite if x>Dx > 0 for all x ∈ Rn, ‖x‖ 6= 0.

• F is positive semidefinite if x>Dx ≥ 0 for all x ∈ Rn, ‖x‖ 6= 0.

• F is negative definite if x>Dx < 0 for all x ∈ Rn, ‖x‖ 6= 0.

• F is negative semidefinite if x>Dx ≤ 0 for all x ∈ Rn, ‖x‖ 6= 0.

• F is indefinite if it is positive for some values of x and negative for others.

1.3.2 Matrix Associated with a Quadratic Form

Let D be a symmetric matrix and F (x) = x>Dx its associated quadratic form. Then

• D is positive definite (D > 0) if its associated quadratic form is positive definite.

• D is positive semidefinite (D ≥ 0) if its associated quadratic form is positive semidef-
inite.

• D is negative definite (D < 0) if its associated quadratic form is negative definite.
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• D is negative semidefinite (D ≤ 0) if its associated quadratic form is negative
semidefinite.

Example 1.2.

1. F (x) = x21 + x22 is positive definite.

F (x) = (x1, x2)

(
1 0
0 1

)(
x1
x2

)
= x>Dx

where D =

(
1 0
0 1

)
> 0.

2. F (x) = x21 − 2x1x2 + x22 is positive semidefinite.

F (x) = (x1 − x2)2 ≥ 0 ∀x ∈ R2

The associated matrix is:

D =

(
1 −1
−1 1

)
≥ 0

3. F (x) = x21 − x22 + 2x1x2 is indefinite.{
F (x) = −x22 < 0 if x1 = 0, x2 6= 0

F (x) = x21 > 0 if x1 6= 0, x2 = 0

The associated matrix is indefinite.

1.3.3 Sylvester’s Criterion for Symmetric Matrices

Let a symmetric matrix D of size n× n:

D =


d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...
dn1 dn2 · · · dnn


Definition 1.7. The minor of order p of the matrix D is given by the determinant of the
submatrix of order p, formed by the rows (i1, i2, . . . , ip) and columns (j1, j2, . . . , jp) of D and
is denoted:

D

(
i1, i2, . . . , ip
j1, j2, . . . , jp

)
=

∣∣∣∣∣∣∣∣∣
di1j1 di1j2 · · · di1jp
di2j1 di2j2 · · · di2jp

...
...

. . .
...

dipj1 dipj2 · · · dipjp

∣∣∣∣∣∣∣∣∣
The minor is called principal if it is formed from rows and columns with the same indices,
i.e., j1 = i1, j2 = i2 . . . jp = ip. If furthermore j1 = i1 = 1, ∀p ≤ n, then the minor is
called leading principal. A matrix of order n has exactly n leading principal minors. They
are denoted ∆1,∆2, . . . ,∆n.
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Example 1.3. Let D be a symmetric matrix. Then the leading principal minors of D are

∆1 = d11, ∆2 =

∣∣∣∣ d11 d12
d21 d22

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣
d11 d12 d13
d21 d22 d23
d31 d32 d33

∣∣∣∣∣∣
Its principal minors are D

(
2
2

)
= d22, D

(
3
3

)
= d33, D

(
2 3
2 3

)
=

∣∣∣∣ d22 d23
d32 d33

∣∣∣∣ and

D

(
1 3
1 3

)
=

∣∣∣∣ d11 d13
d31 d33

∣∣∣∣.
However, the minors D

(
1
2

)
= d12, D

(
2 3
1 2

)
=

∣∣∣∣ d21 d22
d31 d32

∣∣∣∣ are not principal.

Theorem 1.2 (Sylvester’s Criterion). Let D be a symmetric matrix of order n.

1. For D to be positive definite (D > 0), it is necessary and sufficient that all leading
principal minors be positive:

∆1 > 0, ∆2 > 0, . . . , ∆n > 0.

2. For D to be positive semidefinite (D ≥ 0), it is necessary and sufficient that all its
principal minors be non-negative:

D

(
i1 i2 . . . ip
j1 j2 . . . jp

)
≥ 0,

∀1 ≤ i1 < i2 < . . . < ip ≤ n;
j1 = i1, j2 = i2 . . . jp = ip, p = 1, . . . , n.

Remark 1.1. Consider the matrix

D =

(
0 0
0 −1

)
∆1 = 0, ∆2 = 0

The leading principal minors are all non-negative, yet the associated quadratic form F (x) =
x>Dx = −x22 < 0, ∀x ∈ R2 is negative definite. So D is negative definite. Consequently,
the condition ∆1 ≥ 0, ∆2 ≥ 0, . . . ,∆n ≥ 0 is not sufficient for a matrix to be positive
semidefinite. The other principal minors of the matrix must be checked.

Remark 1.2. Sylvester’s criterion also applies to negative definite and negative semidefinite
matrices. For a symmetric matrix D, it is stated as follows:

1. D < 0⇔ (−1)p∆p > 0, ∀p = 1, . . . , n.

2. D ≤ 0⇔ (−1)pD

(
i1 i2 . . . ip
j1 j2 . . . jp

)
≥ 0,

∀1 ≤ i1 < i2 < . . . < ip ≤ n;
j1 = i1, j2 = i2 . . . jp = ip, p = 1, . . . , n.

Example 1.4.

1. A =

6 3 0
3 6 9
0 9 18


∆1 =

∣∣6∣∣ = 6 > 0, ∆2 =

∣∣∣∣6 3
3 6

∣∣∣∣ = 27 > 0, ∆3 =

∣∣∣∣∣∣
6 3 0
3 6 9
0 9 18

∣∣∣∣∣∣ = 0.
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According to Sylvester’s criterion, A is not positive definite. Is it positive semidefinite?
To answer this question, we must compute all principal minors.

Principal minors of order p = 1:

A

(
2
2

)
= 6 > 0, A

(
3
3

)
= 18 > 0.

Principal minors of order p = 2:

A

(
2 3
2 3

)
=

∣∣∣∣ 6 9
9 18

∣∣∣∣ = 27 > 0, A

(
1 3
1 3

)
=

∣∣∣∣ 3 0
0 18

∣∣∣∣ = 108 > 0.

All principal minors are positive or zero. A is therefore positive semidefinite.

2. B =

 5 −1 2
−1 10 −2
2 −2 4



∆1 =
∣∣5∣∣ = 5 > 0, ∆2 =

∣∣∣∣ 5 −1
−1 10

∣∣∣∣ = 50−1 = 49 > 0, ∆3 =

∣∣∣∣∣∣
5 −1 2
−1 10 −2
2 −2 4

∣∣∣∣∣∣ = 144 > 0

∆p > 0, ∀p = 1, 3⇒ B > 0.

3. C =

−1 0 1
0 −1 0
1 0 −2



∆1 =
∣∣−1

∣∣ = −1 < 0, ∆2 =

∣∣∣∣−1 0
0 −1

∣∣∣∣ = 1 > 0, ∆3 =

∣∣∣∣∣∣
−1 0 1
0 −1 0
1 0 −2

∣∣∣∣∣∣ = −1.

We have (−1)1(−1) = 1 > 0, (−1)2(1) = 1 > 0, (−1)1(−1) = 1 > 0. So C < 0
(negative definite).

4. D =

 1 2 −1
2 −1 0
−1 0 1


∆1 =

∣∣1∣∣ = 1 > 0, ∆2 =

∣∣∣∣1 2
2 −1

∣∣∣∣ = −5 > 0.

We can conclude without calculating the other minors that the matrix D is indefinite.
Indeed, for ∆1, we have (−1)1(1) = 1 < 0 (D cannot be negative definite) and since
∆2 < 0, D is not positive definite. If we consider the associated quadratic form
F (x) = x>Dx, x ∈ R3; we have: F (1, 0, 0) = 1 > 0 and F (0, 1, 0) = −1 < 0

Remark 1.3. Sylvester’s criterion is only applicable to symmetric matrices. Indeed, consider

the matrix A =

 −1 −2 −1
2 −1 0
1 0 −1


8



∆1 = | − 1| = −1 < 0, ∆2 =

∣∣∣∣ 1 −2
2 −1

∣∣∣∣ = 5 > 0, ∆3 =

∣∣∣∣∣∣
−1 −2 −1
2 −1 0
1 0 −1

∣∣∣∣∣∣ = −4 < 0

According to remark 1.2, A is negative definite. However, for x = (1, 0,−1), ‖x‖ 6= 0, the
associated quadratic form x>Dx = 0. This incorrect result is due to the non-symmetry of
A.

1.4 Convexity

Definition 1.8 (Convex Set). A set X ⊂ Rn is said to be convex if, for all x, y ∈ X and all
λ ∈ [0, 1], we have:

z = λx+ (1− λ)y ∈ X.

In other words, a set X is convex if every segment joining two points of X is contained in
X.

x
y

A - convex

x y

B - non convex

Figure 1.4: Example of convex and non-convex sets

Example 1.5.

1. Intervals in R (open, closed, or half-open) are convex.

2. Balls in Rn (B(x0, r) = {x ∈ Rn : ‖x− x0‖ ≤ r}) are convex.

3. Spheres in Rn (S(x0, r) = {x ∈ Rn : ‖x− x0‖ = r} are not convex.

Property 1.3.

1. An intersection of convex sets is convex, X =
n⋂
i=1

Xi.

2. The sum of two convex sets, X1 and X2 is convex, X = X1 +X2 = {x+ y;x ∈ X1, y ∈
X2}.

3. The set defined by {λx, x ∈ X,λ ≥ 0} is convex.

9



Definition 1.9 (Convex Function). A function f : X ⊂ Rn → R is said to be convex on the
convex set X, if for all x, y ∈ Rn and all λ ∈ [0, 1], we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

x yz

f(x)

f(y)

f(z)

z = λx+ (1− λ)y

The segment joining the two
points (x, f(x)) and (y, f(y))
is always above the graph of f .

Figure 1.5: Geometric interpretation of convexity

Definition 1.10 (Concave Function). A function f : X ⊂ Rn → R is said to be concave on
the convex set X, if for all x, y ∈ Rn and all λ ∈ [0, 1], we have:

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y).

x yz

f(x)

f(y)

f(z)

z = λx+ (1− λ)y

The segment joining the two
points (x, f(x)) and (y, f(y))
is always below the graph of f .

Figure 1.6: Graph of a concave function
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Remark 1.4.

Affine functions are both convex and concave.

Property 1.4. A function f : X → R is concave on the convex set X if (−f) is convex on
X.

1.4.1 Characterization of Convexity

In general, it is difficult to verify convexity using the definition. The following result gives
criteria for convexity of differentiable functions.

Proposition 1.5. [3] Let X ⊂ Rn be convex and f : X → R a function of class C1. Then:

1. f is convex on X ⇔ f(y) ≥ f(x) + [∇f(x)]>(y − x), ∀x, y ∈ X.

2. f is convex on X ⇔ ∇f(x) is an increasing function on X, i.e.:

[∇f(y)−∇f(x)]>(y − x) ≥ 0,∀x, y ∈ X.

3. If moreover f ∈ C2, then f is convex on X ⇔ ∀x ∈ X, x>∇2f(x)x ≥ 0.

We define below two important concepts for the characterization of convex functions and
sets.

Definition 1.11 (Epigraph). The epigraph of a function f : Rn → R is the set:

epi(f) = {(x, α) ∈ Rn × R | f(x) ≤ α}.

x

α

f(x)
epi(f)

Figure 1.7: Epigraph of a convex function.

Theorem 1.6. [3] A function f : Rn → R is convex if and only if its epigraph epi(f) is a
convex set.

Definition 1.12 (Level Set). For a function f : Rn → R and a constant α ∈ R, the level
set α is defined by:

Lα(f) = {x ∈ Rn | f(x) ≤ α}.
Proposition 1.7. If f : Rn → R is a convex function, then for all α ∈ R, its level set Lα(f)
is either empty or convex.
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1.4.2 Operations preserving Convexity

Let X ⊂ Rn be convex. Let f1, f2, ..., fm : X → R be convex functions on X and α1, ..., αm
strictly positive constants.

• The function f = α1f1 + α2f2 + ... + αmfm is convex on X. If at least one of the
functions fi is strictly convex, then f is strictly convex.

• Let g : R→ R be a convex and increasing function. Then the function g ◦ f is convex.
For example, g(x) = ex and f(x) = x2.

1.4.3 Convexity of quadratic forms

Property 1.8. Let a quadratic form be F (x) = x>Dx, where D is symmetric.
Then:

F (x) is convex⇔ D ≥ 0

Proof. ⇒:
Let F be a convex quadratic form and suppose that D � 0. Then ∃x ∈ Rn, ‖x‖ 6= 0 such
that x>Dx < 0.
Therefore for y = −x, we have y>Dy < 0.
Let us take z = 1

2
x+ 1

2
y.

Since F is convex:

F (z) = z>Dz = F

(
1

2
x+

1

2
y

)
≤ 1

2
F (x) +

1

2
F (y) = F (0) = 0 (since y = −x)

On the other hand:
F (z) = x>Dx+ y>Dy < 0

Contradiction. Therefore D ≥ 0.
⇐:
Let D be symmetric with D ≥ 0 and λ ∈ [0, 1], x ∈ Rn, y ∈ Rn. We have:

F (λx+ (1− λ)y) = [λx+ (1− λ)y]>D[λx+ (1− λ)y]

= λ2x>Dx+ (1− λ)2y>Dy + 2λ(1− λ)y>Dx

Since D ≥ 0:

x>Dx ≥ 0

y>Dy ≥ 0

We also have:
(x− y)>D(x− y) ≥ 0

⇒ x>Dx+ y>Dy − 2y>Dx ≥ 0

⇒ 2y>Dx ≤ x>Dx+ y>Dy

12



Therefore:
⇒ 2λ(1− λ)y>Dx ≤ λ(1− λ)[x>Dx+ y>Dy]

Thus:

F (λx+ (1− λ)y) = λ2x>Dx+ (1− λ)2y>Dy + 2λ(1− λ)y>Dx

≤ λ2x>Dx+ (1− λ)2y>Dy + λ(1− λ)[x>Dx+ y>Dy]

= λ2x>Dx+ (1− λ)2y>Dy + λ(1− λ)x>Dx+ λ(1− λ)y>Dy

= x>Dx[λ2 + λ(1− λ)] + y>Dy[(1− λ)2 + λ(1− λ)]

= λx>Dx[λ+ (1− λ)] + (1− λ)y>Dy[λ+ (1− λ)]

= λx>Dx+ (1− λ)y>Dy

= λF (x) + (1− λ)F (y)

Therefore: F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y)⇒ F is convex.

Remark 1.5. By proceeding in a similar way as for property 1.8, we can prove the following
result:

F (x) is strictly convex⇔ D > 0,

where D is a symmetric matrix.
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Chapter 2

Optimization of Nonlinear Functions
in Rn

The problem considered in this chapter is of the form:

min
x∈Rn

f(x),

with f : Rn → R a differentiable function.

Definition 2.1 (Coercive Function). A function f : X ⊆ Rn → R is said to be coercive if:

lim
‖x‖→∞

f(x) = +∞.

x

f(x)

Figure 2.1: Example of a coercive function: f(x) = x2.
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x

f(x)

Figure 2.2: Example of a non-coercive function: f(x) = 2 + sin(x).

2.1 Existence of Optimal Solutions

Theorem 2.1 (Weierstrass). Let X ⊆ Rn be non-empty and closed set, and f : X ⊆ Rn → R
a lower semicontinuous function on X.

1. If X is compact, there exists x∗ ∈ X such that:

f(x∗) = min
x∈X

f(x).

2. If f is coercive, there exists x∗ ∈ X such that:

f(x∗) = min
x∈X

f(x).

Corollary 2.2. Let f : Rn → R be a lower semicontinuous and coercive function. Then
there exists x∗ ∈ Rn such that:

min
x∈Rn

f(x) = f(x∗).

2.2 Characterization of Optimal Solutions

Theorem 2.3 (Necessary Optimality Condition). Let x∗ ∈ Rn be a local minimum point of
f , and suppose that f : Rn → R is continuously differentiable on an open subset S ⊆ Rn
containing x∗. Then:

∇f(x∗) = 0 (First order necessary condition).

If moreover, f is twice continuously differentiable on S, then the Hessian matrix is positive
semidefinite:

∇2f(x∗) ≥ 0 (Second order necessary condition).

15



Proof. Suppose that x∗ is a local minimum point of f . Then, for all d ∈ Rn and α ∈ R
sufficiently small, we have:

f(x∗ + αd) ≥ f(x∗).

Using the first order Taylor expansion around x∗, we obtain:

f(x∗ + αd) = f(x∗) + αd>∇f(x∗) + o(α).

Thus, for α sufficiently small, we have:

f(x∗ + αd)− f(x∗) = αd>∇f(x∗) + o(α) ≥ 0.

Dividing by α and taking the limit α→ 0+, we obtain:

d>∇f(x∗) ≥ 0 ∀d ∈ Rn.

Similarly, considering α→ 0−, we obtain:

d>∇f(x∗) ≤ 0 ∀d ∈ Rn.

Therefore, we have:
d>∇f(x∗) = 0 ∀d ∈ Rn,

which implies:
∇f(x∗) = 0.

If f is twice continuously differentiable, we can use the second order Taylor expansion:

f(x∗ + αd) = f(x∗) + αd>∇f(x∗) +
1

2
α2d>∇2f(x∗)d+ o(α2).

Since ∇f(x∗) = 0, we have:

f(x∗ + αd)− f(x∗) =
1

2
α2d>∇2f(x∗)d+ o(α2) ≥ 0.

Dividing by α2 and taking the limit α→ 0, we obtain:

d>∇2f(x∗)d ≥ 0 ∀d ∈ Rn,

which means that ∇2f(x∗) is positive semidefinite.

Definition 2.2. A point x∗ ∈ Rn satisfying the first order necessary condition (∇f(x∗) = 0)
is called a critical or stationary point.

Remark 2.1. The first and second order necessary conditions are not sufficient for optimal-
ity.

Example 2.1. Consider the function f : R→ R defined by:

f(x) = x3.

The gradient of f is given by:f ′(x) = 3x2. Solving f ′(x) = 0, we find a critical point at x = 0.

The second derivative of f is:f ′′(x) = 6x. At the critical point x = 0, we have: f ′′(0) = 0.
Thus, x = 0 satisfies the first and second order necessary conditions, yet it is neither a local
minimum nor a local maximum. Indeed:
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For x > 0, f(x) > 0.

For x < 0, f(x) < 0.

Consequently, x = 0 is a saddle point (see figure 2.3).

x

f(x)

Figure 2.3: Graph of f(x) = x3 with a critical point at x = 0.

2.3 Sufficient Optimality Conditions

Theorem 2.4 (Sufficient Optimality Condition). Let f : Rn → R be a twice continuously
differentiable function on an open set S ⊆ Rn. If x∗ ∈ S satisfies:

1) ∇f(x∗) = 0,
2) ∇2f(x∗) > 0 (the Hessian is positive definite),
then x∗ is a strict local minimum point.

Proof. Using the second order Taylor expansion, for d ∈ Rn and α > 0 small enough:

f(x∗ + αd) = f(x∗) + αd>∇f(x∗) +
1

2
α2d>∇2f(x∗)d+ o(α2).

Since ∇f(x∗) = 0, we have:

f(x∗ + αd)− f(x∗) =
1

2
α2d>∇2f(x∗)d+ o(α2).

As ∇2f(x∗) > 0, we have:

f(x∗ + αd)− f(x∗) > 0 =⇒ f(x∗) < f(x∗ + αd).

Thus, x∗ is a strict local minimum point.
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2.4 Optimization of Convex Functions

Convexity is of great importance in optimization. First, because in convex optimization,
every local minimum is also global. But also, thanks to convexity, the first-order necessary
condition is sufficient to characterize this global minimum.

Theorem 2.5 (Global Minimum of Convex Functions). Let f : Rn → R be a convex function.
Then every local minimum point is a global minimum point.

Proof. Suppose that x∗ is a local minimum. By contradiction, suppose there exists x such
that f(x) < f(x∗).

Let xλ = λx+ (1− λ)x∗, λ ∈ [0, 1]. Then:

f(x∗) ≤ f(xλ).

Since f is convex, we have:

f(xλ) ≤ λf(x) + (1− λ)f(x∗).

Thus:
f(x∗) ≤ λf(x) + (1− λ)f(x∗) =⇒ f(x∗) ≤ f(x),

which is a contradiction.

Theorem 2.6 (Uniqueness of the Global Minimum). If f : Rn → R is a strictly convex
function, then it admits a unique global minimum point.

Proof. Suppose that f admits two global minimum points x∗ and x. Then:

f(x∗) = f(x) = min
x∈Rn

f(x).

Let λ ∈ [0, 1], xλ = λx∗ + (1− λ)x. Since f is strictly convex, we have:

f(xλ) < λf(x∗) + (1− λ)f(x) = f(x∗).

Then

f(xλ) < f(x∗),

which is a contradiction.

Theorem 2.7 (Necessary and Sufficient Condition). Let f : Rn → R be convex and contin-
uously differentiable. Then: x∗ is a global minimum point if and only if

∇f(x∗) = 0.

Proof.
• ⇒ (see Theorem 2.3).
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• ⇐
Let x∗ ∈ Rn such that ∇f(x∗) = 0 and let x ∈ Rn be arbitrary.
Since f is convex, we have:

f(x)− f(x∗) ≥ (x− x∗)>����
�:0∇f(x∗)

⇒ f(x)− f(x∗) ≥ 0

⇒ f(x) ≥ f(x∗)⇒ x∗ global minimum point

Remark 2.2. Theorems 2.5, 2.6 and 2.7 remain valid when restricting the domain of f to
a convex set X ⊂ Rn.
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Chapter 3

Numerical Methods for Minimizing a
Differentiable Function in Rn

3.1 Introduction

Consider the problem
min
x∈Rn

f(x) = f(x∗), (3.1)

where f : Rn → R is a differentiable function. The solutions of this problem are critical
points satisfying:

∇f(x∗) = 0

.
Numerical methods for finding solutions to problem (3.1) are iterative algorithms follow-

ing the scheme:

• Generate a sequence of points {xk}k∈N such that f(xk+1) ≤ f(xk)

• Choose a direction dk at each iteration k.

• Choose a step size θk > 0.

The choice of the direction dk and the step size θk depends on the point xk and determines
the next iteration:

xk+1 = xk + θkdk (3.2)

At each iteration of this iterative process, dk must satisfy the descent condition

[∇f(xk)]>d < 0

If ∇f(xk) = 0, then the iterative process stops and xk is a candidate to be an extremum.

Remark 3.1 (Geometric interpretation).
For f : Rn → R, x∗ ∈ Rn, d ∈ Rn, define:

x(θ) = x∗ + θd, θ > 0
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where x(θ) represents the point reached after moving a step θ in the direction d.
Consider the first order Taylor expansion around x∗:

f(x∗ + θd)− f(x∗) = ∇f(x∗)>(θd) + o(θ) (3.3)

where lim
θ→0

o(θ)
θ

= 0.

(3.3)⇒ f(x∗ + θd)− f(x∗) = θ

(
∇f(x∗)>d+

o(θ)

θ

)
When θ → 0

Sign[f(x∗ + θd)− f(x∗)] = Sign[∇f(x∗)>d]

Therefore, to have f(x∗ + θd) < f(x∗) for θ > 0 sufficiently small, it is necessary to have:

∇f(x∗)>d < 0

This condition implies that the vectors ∇f(x∗) and d must be oriented in opposite directions.

x

f(x) = x2

x∗ Minimum
xk

∇f(xk)

dk

xk+1

∇f(xk+1)

dk+1

Figure 3.1: Gradient descent for f(x) = x2

Definition 3.1 (Descent Direction). A vector d ∈ Rn is called a descent direction at point
x∗ (see figure 3.1) if:

[∇f(x∗)]>d < 0 (3.4)

There are several families of algorithms, each differing in the choice of the direction d and
the step θ. In this course, we present two families of algorithms: gradient methods and
conjugate gradient methods. It should also be noted that there are several rules for choosing
the step size. However, this part will not be covered in this course.
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3.2 Gradient Methods

Gradient methods constitute a class of iterative algorithms for minimizing differentiable
functions. The principle is based on:

• Determining a descent direction d ∈ Rn (with ‖d‖ = 1) that maximizes the local rate
of decrease of the function along this direction. Starting from a point xk, the goal is
to reach xk+1 with f(xk+1) = f(xk + θd) as small as possible (with θ ∈ R).

• Since d is a descent direction at xk, we have ∇f(xk)>d < 0. We then seek d ∈ Rn that
minimizes this expression.

• Let α be the angle between ∇f(xk) and d. We have:

∇f(xk)>d = ‖∇f(xk)‖ · cosα (‖d‖ = 1)

• This expression is minimized when cosα = −1, i.e., when the direction d is exactly
opposite to the gradient:

d = −∇f(xk)

or (normalized direction):

d = − ∇f(xk)

‖∇f(xk)‖
(since ‖d‖ = 1)

This direction, called the steepest descent direction, guarantees the maximum local decrease
of the function at each iteration. The direction being fixed, the difference between the
variants of these algorithms lies in the choice of the step size θ. It can be fixed to a constant
or calculated optimally.

Algorithm 1 Gradient Descent with Fixed Step Size

Require: Initial point x0, step size θ > 0, tolerance ε
1: k ← 0
2: while ‖∇f(xk)‖ > ε do
3: dk ← −∇f(xk)
4: xk+1 ← xk + θdk
5: k ← k + 1
6: end while
7: return xk
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Algorithm 2 Gradient Descent with Optimal Step Size

Require: Initial point x0, tolerance ε
1: k ← 0
2: while ‖∇f(xk)‖ > ε do
3: dk ← −∇f(xk)
4: Compute θk such that:

f(xk + θkdk) = min
θ≥0

f(xk + θdk)

5: xk+1 ← xk + θkdk
6: k ← k + 1
7: end while
8: return xk

3.3 Conjugate Gradient Method

The idea of the Conjugate Gradient Method is to iteratively construct mutually conjugate
directions that guarantee convergence in a finite number of iterations. Initially designed
for convex quadratic functions, it avoids the problem encountered when applying the sim-
ple gradient method, which can oscillate without much progress in the case of functions
with narrow, elongated valleys. By ensuring that each new search direction is conjugate to
the previous ones, the method effectively accelerates convergence compared to the simple
gradient approach.

Definition 3.2 (Conjugate Directions). Let A be a symmetric positive definite matrix. Two
non-zero vectors di and dj are said to be conjugate with respect to A (or A-conjugate), if:

d>i Adj = 0 for i 6= j

Definition 3.3. A family of vectors {d0, d2 . . . , dn−1} is said to be Q-conjugate, if:

d>i Adj = 0 ∀i 6= j

3.3.1 Construction of conjugate directions: Quadratic case

Let the quadratic function

F (x) =
1

2
x>Ax− b>x,

with A symmetric positive definite of dimension n× n.
The gradient is written ∇F (x) = Ax− b. We define the residual by r = ∇F (x) = Ax− b.

The conjugate gradient minimizes F in n steps, following n directions d0, d2, . . . , dn−1 mutu-
ally conjugate with respect to A. Starting with d0 = −∇F (x0), the method chooses the new
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direction as a linear combination of the current gradient and the direction from the previous
iteration. We then have the following formula:

dk+1 = −rk+1 + βkdk,

where the coefficient βk is calculated by imposing the conjugacy condition and is given by

βk =
r>k+1Adk

d>k dk

At each iteration, the optimal step θk is calculated to minimize the function F (xk+1), with
xk+1 = xk + θdk. The function F being convex (since A > 0), the optimality condition gives

d

dθ
F (xk + θdk) = d>k A(xk + θdk)− b>dk = 0

Expanding, we obtain:

θk = −d
>
k (Axk − b)
d>k Adk

= − d>k rk
d>k Adk

,

where rk = Axk − b.

The conjugate gradient algorithm for a quadratic function is stated as Algorithm 3.

Algorithm 3 Conjugate Gradient - Quadratic Case

Require: Initial point x0, k ← 0
1: r0 ← −∇F (x0)
2: d0 ← r0
3: while ‖rk‖ > ε do

4: θk ← −
d>k rk
d>k Adk

5: xk+1 ← xk + θkdk
6: rk+1 ← −∇F (xk+1)

7: βk ←
r>k+1Adk

d>k Adk

8: dk+1 ← rk+1 + βkdk
9: k ← k + 1
10: end while

A more practical and less expensive version of this algorithm can be obtained by replacing
in the previous algorithm:

• The coefficient βk by the Fletcher-Reeves formula

βk =
r>k rk

r>k−1rk−1

• The step θk by

θk = − r>k rk
d>k Adk
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Remark 3.2. These two formulas can be obtained using the property of orthogonality of
gradients in the conjugate gradient method.

Case of a general function

The conjugate gradient algorithm for quadratic functions can be generalized to general func-
tions. This gives us the Fletcher-Reeves algorithm presented below:

Algorithm 4 Conjugate Gradient - Fletcher-Reeves

1: Choose x0, k ← 0
2: d0 ← −∇f(x0)
3: while ‖∇f(xk)‖ > ε do
4: Find optimal θk: min

θ≥0
f(xk + θdk)

5: xk+1 ← xk + θkdk
6: βk ← ‖∇f(xk+1)‖2

‖∇f(xk)‖2

7: dk+1 ← −∇f(xk+1) + βkdk
8: k ← k + 1
9: end while
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Chapter 4

Optimization of Nonlinear Functions
under Constraints

The objective of this chapter is to minimize a function f on a set X of feasible solutions.
This optimization problem is written in the general form:{

min f(x)

x ∈ X
(4.1)

where X = {x ∈ Rn/hi(x) = 0, i = 1, . . . , k; gj(x) ≤ 0, j = 1, . . . ,m}.

When the functions f , hi, i = 1, k and gj, j = 1,m are linear, the problem (4.1) is a
linear programming (LP) problem. In this case, the optimal solution is an extreme point of
the polyhedron of feasible solutions. This is no longer true in the nonlinear case where the
optimal solution can also be inside or on the boundary of the set X. The following example
provides a concrete illustration of this property.

Example 4.1. Let the set X of R2 defined by

X = {x = (x1, x2) ∈ R2 / x1 + x2 ≥ 1, 2x1 + 3x2 ≤ 12, x1 ≥ 0, x2 ≥ 0}.

Consider the minimization problems of the functions f1, f2 and f3 on the polyhedron X, with

f1(x) = (x1 − 4)2 + (x2 − 6)2

f2(x) = (x1 − 8)2 + x22
f3(x) = (x1 − 4)2 + (x2 − 1)2

As shown in figure 4.1, the minimum x∗1 of f1 lies on the boundary of X, the minimum x∗2
of f2 is an extreme point of X and the minimum x∗3 of f3 is an interior point of X.

4.1 Necessary optimality conditions

Consider the general form optimization problem (4.1). Before presenting the optimality
conditions in this case, let’s start by presenting some definitions.
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x1

x2

(1, 0)

(0, 1)

(0, 4)

x∗3 = (4, 1)

x∗2 = (6, 0)

x∗1 =
(
24
13
, 36

13

)

Figure 4.1: Optimal solutions

Definition 4.1. A feasible solution x∗ ∈ X is said to be an optimal solution (minimum
point) of problem (4.1), if

f(x∗) = min
x∈X

f(x), i.e. f(x∗) ≤ f(x), ∀x ∈ X.

Remark 4.1. Such a solution is said to be global, as opposed to local minima which satisfy
this definition only in a neighborhood of x∗. Formally, x∗ ∈ X is a local optimal solution of
problem (4.1), if

∃ε > 0, f(x∗) ≤ f(x), ∀x ∈ X ∩ B(x∗, ε),

where B(x∗, ε) = {x ∈ Rn/‖x− x∗‖ ≤ ε}.

Definition 4.2. Let x ∈ X. A vector d ∈ Rn is said to be a feasible direction at x, if there
exists a number ᾱ > 0 such that

x+ αd ∈ X, ∀α ∈ [0, ᾱ].

If x is an interior point of X, any direction d is feasible.

4.2 Writing the optimality conditions

In unconstrained optimization (X = Rn), we looked for descent directions that allowed us
to decrease the function f until reaching its minimum. In the framework of constrained
optimization, we look for feasible directions that allow us to minimize f while remaining
within the domain of feasible solutions.
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x1

x2

X

xbound

d1

d2

xint

For the point xint, all directions
are feasible.
For the point xbound:
• d1 is a feasible direction.
• d2 is a non-feasible direction.

Figure 4.2: Feasible directions

Let’s now return to optimality conditions and consider the following optimization prob-
lem.

Example 4.2. {
min f(x) = x2,

s.t. x ≥ 1

x = 1

x∗

x

f(x)

The function f(x) = x2 reaches its
minimum at x∗ = 1, with f(x∗) =
1. However, the gradient of f does
not vanish at x∗ = 1; ∇f(1) =
f
′
(1) = 2 6= 0.

Consequently, the condition ∇f(x) = 0 is no longer valid to characterize optimality in the
constrained case. However, the formulation of the optimality conditions is based on the same
principle through the introduction of a function called the Lagrangian (or Lagrange function).
This function is the combination of the objective function f and the constraint functions hi
and gj. The search for extrema of f on X is then reduced to the search for unconstrained
extrema of this same Lagrange function. Theorem 4.1 states a generic necessary optimality
condition for any form of the feasible solution set X.

Theorem 4.1. Let f : Rn → R, of class C1. If x∗ is a local minimum point of problem
(4.1), then for every feasible direction d ∈ Rn at x∗, we have

[∇f(x∗)]>d ≥ 0
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This condition means that at a minimum point, no direction can decrease the value of the
function f while maintaining feasibility (staying in the set X). For constrained problems, this
condition is equivalent to the first-order Karush–Kuhn–Tucker (KKT) optimality condition
which will be studied in the following sections.

4.3 Optimization of nonlinear functions under equality

constraints

Consider the optimization problem under equality constraints:{
min f(x)

s.t. h(x) = 0,
(4.2)

where:

h : Rn → Rk, h(x) =

h1(x)
...

hk(x)


The Lagrange function associated with problem (4.2)

L(x, µ) = f(x) + µ>h(x) = f(x) +
k∑
i=1

µihi(x)

where µ = (µ1, . . . , µ
k)> is the vector of Lagrange multipliers.

4.3.1 Necessary optimality conditions

Assume that f and hi, i = 1, k are of class C1.

Theorem 4.2 (First order necessary condition). Let x∗ ∈ X be a minimum point of problem
(4.2) and assume that

the vectors ∇h1(x∗),∇h2(x∗), . . . ,∇hk(x∗) are linearly independent. (4.3)

Then, there exists a Lagrange multiplier vector µ∗ such that:

∇xL(x∗, µ∗) =
∂L
∂x

(x∗, µ∗) = 0 (4.4)

∇µL(x∗, µ∗) =
∂L
∂µ

(x∗, µ∗) = 0. (4.5)

Remark 4.2.

1. The relations (4.4) are called the Lagrange stationarity conditions.

2. The condition (4.3) is called the constraint qualification condition.
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Remark 4.3. The constraint qualification condition (4.3) holds, in particular, if constraints
are affine.

Definition 4.3. A vector x∗ ∈ X is a stationary point of problem (4.2), if there exists a
vector µ∗ such that the pair (x∗, µ∗) satisfies the relations (4.4).

Thus, the search for stationary points of problem (4.2) is reduced to solving the system (4.4).

Theorem 4.3 (Second order necessary condition). Assume that the functions f and hi
for i = 1, . . . , k are of class C2. If x∗ ∈ X is a solution of problem (4.2) satisfying the
qualification condition (4.3) and µ∗ is the corresponding Lagrange multiplier vector, then:

d>
∂2L

∂x2
(x∗, µ∗)d ≥ 0, (4.6)

∀d ∈ Rn such that d>∇hi(x∗) = 0, i = 1, k.

Definition 4.4. A solution x∗ ∈ X of problem (4.2) is said to be regular if it satisfies the
constraint qualification (4.3).

4.3.2 Sufficient optimality condition

Assume that the functions f and hi for i = 1, . . . , k are of class C2.

Theorem 4.4. A stationary point x∗ of problem (4.2) is a locally optimal solution, if there
exists a Lagrange multiplier vector µ∗ such that

d>
∂2L

∂x2
(x∗, µ∗)d > 0, (4.7)

∀d ∈ Rn, ‖d‖ 6= 0 such that d>∇hi(x∗) = 0, i = 1, k.

4.4 Optimization of nonlinear functions under inequal-

ity constraints

Consider the optimization problem under inequality constraints:{
min f(x)

g(x) ≤ 0,
(4.8)

where:

g : Rn → Rm, g(x) =

g1(x)
...

gm(x)


We will denote I = {1, . . . ,m}.
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Definition 4.5 (Active/passive constraint).
A constraint gj(x) ≤ 0 is:

• Active at point x if gj(x) = 0

• Passive at point x if gj(x) < 0

We will denote by Ia(x) = {j ∈ I | gj(x) = 0} the set of indices of active constraints.

Definition 4.6. A vector d ∈ Rn is said to be a feasible direction at point x∗ with respect
to the constraint gj(x) ≤ 0, if:{

d>∇gj(x∗) < 0 for gj(x
∗) = 0

d arbitrary for gj(x
∗) < 0

Definition 4.7. A vector d ∈ Rn is a feasible direction at point x∗ with respect to the
constraints gj(x

∗) ≤ 0, j = 1, . . . ,m if it is a feasible direction with respect to each of these
constraints.

Remark 4.4. To find the feasible directions with respect to the constraints of problem (4.8),
it suffices to solve the system:

d>∇gj(x∗) < 0, for j ∈ Ia(x∗)

4.4.1 Necessary optimality conditions

Based on the notions of feasible direction and descent direction (see chapter 1) for the
function f , we give the following necessary optimality condition.

Theorem 4.5. Suppose that x∗ is an optimal solution of problem (4.8). Then, there exists
no vector d ∈ Rn satisfying the following system:{

d>∇f(x∗) < 0,

d>∇gj(x∗) < 0 for all j ∈ Ia(x∗)

This theorem characterizes optimality using the notions of feasible and descent directions:
at the optimum no direction can improve the value of f without violating the (active)
constraints. If such a direction existed, it would contradict optimality. This optimality
condition is none other than the geometric formulation of the Karush-Kuhn-Tucker (KKT)
optimality conditions which we will present below.

Let us first introduce the Lagrange function associated with problem (4.8):

L(x, λ) = f(x) + λ>g(x) = f(x) +
k∑
j=1

λjgj(x)

where 0 ≤ λ = (λ1, . . . , λm)> is the vector of Lagrange multipliers.
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Theorem 4.6 (Karush-Kuhn-Tucker necessary conditions). Let x∗ be a minimum of problem
(4.8) such that the vectors ∇gj(x∗) for j ∈ Ia(x∗) are linearly independent. Then there exists
a unique vector λ∗ such that:

∇xL(x∗, λ∗) = ∇f(x∗) +
k∑
j=1

λ∗j∇gj(x∗)0 (4.9)

(λ∗)>g(x∗) = 0 (4.10)

λ∗ ≥ 0 (4.11)

The relations (4.10) are called complementarity conditions and the relation (4.11) is the
positivity condition of the Lagrange multipliers.

Definition 4.8. A feasible solution x∗ ∈ X is said to be regular if the vectors ∇gj(x∗) for
i ∈ Ia(x∗) are linearly independent.

Definition 4.9 (Strong/weak constraint). A constraint gj(x
∗) ≤ 0 is said to be strongly

active at point x∗ if λ∗j > 0 and weakly active if λ∗j = 0.

Define the set of indices of strongly active constraints at point x∗ by

I+a (x∗) = {j ∈ I | gj(x) = 0, λ∗ > 0},

and the set of indices of weakly active constraints by

I−a (x∗) = {j ∈ I | gj(x) = 0, λ∗ = 0}

Theorem 4.7 (Second order necessary condition). Assume that the functions f and gj for
j = 1,m are of class C2. If x∗ is a regular minimum point of problem (4.8) and λ∗ is the
corresponding Lagrange multiplier. Then:

y>
∂2L
∂x2

(x∗, λ∗)y ≥ 0

for all y ∈ Rn satisfying: {
y>∇gj(x∗) = 0 ∀i ∈ I+a (x∗)

y>∇gj(x∗) ≤ 0 ∀i ∈ I−a (x∗)

4.4.2 Sufficient optimality condition

Definition 4.10 (Pseudo-stationary solution). A point x∗ ∈ X is said to be a pseudo-
stationary solution of problem (4.8) if there exists a Lagrange multiplier vector λ∗ ≥ 0 such
that

∂L
∂x

(x∗, λ∗) = 0 (4.12)

(λ∗)>g(x∗) = 0 (4.13)

32



Theorem 4.8. Assume that the functions f and gj for j = 1,m are of class C2. For a
pseudo-stationary solution x∗ to be locally optimal, it is sufficient that:

y>
∂2L
∂x2

(x∗, λ∗)y > 0

for all y ∈ Rn, ‖y‖ 6= 0 satisfying:{
y>∇gj(x∗) = 0 ∀i ∈ I+a (x∗)

y>∇gj(x∗) ≤ 0 ∀i ∈ I−a (x∗)

4.5 Optimization of nonlinear functions under mixed

constraints (equality and inequality)

Consider the following optimization problem:
min f(x)

hi(x) = 0 i = 1, . . . , k

gj(x) ≤ 0 j = 1, . . . ,m

(4.14)

where:

f : Rn → R
hi : Rn → R (i = 1, . . . , k)

gj : Rn → R (j = 1, . . . ,m)

The associated Lagrange function is defined by:

L(x, µ, λ) = f(x) +
k∑
i=1

µihi(x) +
m∑
j=1

λjgj(x)

where µ ∈ Rk and λ ∈ Rm are the Lagrange multipliers.

4.5.1 Necessary optimality conditions (KKT)

Theorem 4.9. Let x∗ be a local minimum of problem (4.14). Assume that the gradient
vectors of the active constraints:

{∇hi(x∗) | i = 1, . . . , k} ∪ {∇gj(x∗) | j ∈ Ia(x∗)} are linearly independent.

Then, there exist Lagrange multipliers µ∗ ∈ Rk and λ∗ ∈ Rm such that:

∇xL(x∗, µ∗, λ∗) = 0 (4.15)

hi(x
∗) = 0 ∀i = 1, . . . , k (4.16)

λ∗jgj(x
∗) = 0 ∀j = 1, . . . ,m (4.17)

λ∗j ≥ 0 ∀j = 1, . . . ,m. (4.18)
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Example 4.3. Consider the following optimization problem:

minx2 + y2 + z2

subject to

x+ y + z = 3

2x− y + z ≤ 5

Since the constraints are affine, we can directly apply the (KKT) conditions (see remark 4.3
for constraint qualification condition): at a minimum (x, y, z), ∃µ ∈ R, λ ∈ R+ such that
∇f(x, y, z) + µ∇h(x, y, z) + λ∇g(x, y, z) = 0:

(i)


2x+ µ+ 2λ = 0

2y + µ− λ = 0

2z + µ+ λ = 0

(ii) x+ y + z = 3

(iii) λ(2x− y + z − 5) = 0

(iv) λ ≥ 0

Case 1: Assume that λ 6= 0 =⇒ 2x− y + z = 5

(i) =⇒


x = (−µ− 2λ)/2

y = (−µ+ λ)/2

z = (−µ− λ)/2

(ii) =⇒ −µ− 2λ− µ+ λ− µ− λ = 6 =⇒ 3µ+ 2λ = −6 (a)

2x− y + z = 5 =⇒ 2(−µ− 2λ)− (−µ+ λ) + (−µ− λ) = 10 =⇒ µ+ 3λ = −5 (b)

By computing (a) - 3(b) we obtain 2λ − 9λ = −6 + 15, i.e., λ = −9/7 < 0 which
contradicts (iv)
Case 2: λ = 0. Therefore (i) becomes:


2x+ µ = 0

2y + µ = 0

2z + µ = 0

=⇒ 2(x+ y + z) + 3µ = 0 =⇒ 2× 3 + 3µ = 0 =⇒ µ = −2

=⇒ x = y = z = 1.

We obtain the stationary point (x, y, z) = (1, 1, 1).
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4.5.2 Sufficient optimality condition

Theorem 4.10. Assume that f, hi, gj ∈ C2. If for x∗ ∈ X there exist multipliers µ∗ ∈ Rk
and λ∗ ∈ Rm satisfying the system (4.15) and for all y ∈ Rn, ‖y‖ 6= 0, such that:

y>∇hi(x∗) = 0 ∀i ∈ I+a (x∗),

y>∇hi(x∗) ≤ 0 ∀i ∈ I−a (x∗),

y>∇gj(x∗) = 0 ∀j = 1, . . . ,m,

we have:

y>
∂2L
∂x2

(x∗, µ∗, λ∗)y > 0,

then x∗ is a local minimum of problem (4.14).

4.5.3 Convex Optimization

We refer to convex optimization if, in problem (4.14), we have:

1. f convex,

2. hi affine ∀i = 1, . . . , k,

3. gj convex ∀j = 1, . . . ,m.

In this case, the KKT conditions are also sufficient for optimality. Furthermore, any
solution to the problem is a global minimum.

Theorem 4.11. (KKT, necessary and sufficient condition) If in problem (4.14), we have

1. f is convex and differentiable,

2. hi, ∀i = 1, . . . , k are affine,

3. gj, ∀j = 1, . . . ,m are convex and differentiable,

Then a necessary and sufficient condition for x∗ ∈ X to be a global minimum of the problem
is that there exist Lagrange multipliers µ∗ ∈ Rk and λ∗ ∈ Rm such that

∇f(x∗) + µ∗∇h(x∗) + λ∗∇g(x∗) = 0.

Example 4.4. In example 4.3, the studied problem is convex. Indeed, we have

1. The objective function is strictly convex, since its Hessian defined by

∇2f =

2 0 0
0 2 0
0 0 2


is positive definite on R3.
2. The feasible set X = {(x, y, z) | x+ y + z = 3, 2x− y + z ≤ 5} is also convex, because:

35



• The equality constraint h(x, y, z) = x + y + z − 3 = 0 defines an affine set (hence
convex)

• The inequality constraint g(x, y, z) = 2x − y + z − 5 ≤ 0 defines a half-space (convex
set)

• The intersection of convex sets is convex.

Therefore, according to theorem 4.11, the stationary point found previously is a strict
global minimum
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Chapter 5

Exercises

5.1 Exercises with solutions

Exercise 5.1. Let the set C = {(x, y) ∈ R2 : x2 + y2 ≤ 16}.
Show that C is convex using
a) the definition. b) the properties of convex functions.

Solution 5.1. a) Using the definition of convex sets

A set C is convex if:

∀P1, P2 ∈ C, ∀λ ∈ [0, 1], P = λP1 + (1− λ)P2 ∈ C.

Let P1 = (x1, y1), P2 = (x2, y2) ∈ C and λ ∈ [0, 1].
We have:

P = (u, v) = λ(x1, y1) + (1− λ)(x2, y2)

⇒

{
u = λx1 + (1− λ)x2

v = λy1 + (1− λ)y2

Hence

u2 + v2 = [λx1 + (1− λ)x2]
2 + [λy1 + (1− λ)y2]

2

= λ2x21 + (1− λ)2x22 + 2λ(1− λ)x1x2 + λ2y21 + (1− λ)2y22 + 2λ(1− λ)y1y2

Using (x1 − x2)2 ≥ 0⇒ 2x1x2 ≤ x21 + x22 and similarly (y1 − y2)2 ≥ 0⇒ 2y1y2 ≤ y21 + y22, we
get:

u2 + v2 ≤ λ2x21 + (1− λ)2x22 + λ(1− λ)(x21 + x22) + λ2y21 + (1− λ)2y22 + λ(1− λ)(y21 + y22)

Simplifying the expression yields:

u2 + v2 ≤ λ(x21 + y21) + (1− λ)(x22 + y22)
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Since (x1, y1), (x2, y2) ∈ X, we have x21 + y21 ≤ 16 and x22 + y22 ≤ 16. Therefore:

u2 + v2 ≤ λ · 16 + (1− λ) · 16 = 16

⇒ u2 + v2 ≤ 16⇒ (u, v) ∈ C

It follows that C is convex.

b) Using properties of convex functions

C is convex if it represents the level set of a convex function (see proposition 1.7). We
can write C = {(x, y) ∈ R2 : f(x, y) ≤ 16}. Then C = L16(f) is the level set of the
function defined on R2 by f(x, y) = x2 + y2. Furthermore, the Hessian matrix of f

∇2f(x, y) =

(
2 0
0 2

)
is positive definite on R2. Consequently, C is a convex set.

Exercise 5.2. Study the convexity of f(x) = 1
x
, x > 0.

Solution 5.2. We want to determine whether f is convex on R∗+, i.e., whether:

∀x, y ∈ R∗+, ∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Let x, y ∈ R∗+, λ ∈ [0, 1]. Consider the difference:

α = f(λx+ (1− λ)y)− λf(x)− (1− λ)f(y)

=
1

λx+ (1− λ)y
− λ

x
− 1− λ

y

=
xy − [λx+ (1− λ)y][λy + (1− λ)x]

xy(λx+ (1− λ)y)

=
xy − [λ2xy + λ(1− λ)x2 + λ(1− λ)y2 + (1− λ)2xy]

xy(λx+ (1− λ)y)

=
xy − λ2xy − λ(1− λ)x2 − λ(1− λ)y2 − (1− λ)2xy

xy(λx+ (1− λ)y)

=
[1− λ2 − (1− λ)2]xy − λ(1− λ)(x2 + y2)

xy(λx+ (1− λ)y)

=
2λ(1− λ)xy − λ(1− λ)(x2 + y2)

xy(λx+ (1− λ)y

Thus:

α =
−λ(1− λ)(x− y)2

xy(λx+ (1− λ)y)

For x, y > 0, x 6= y, λ ∈]0, 1[, we have:

• λ(1− λ) > 0
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• (x− y)2 > 0

• xy > 0

• λx+ (1− λ)y > 0

Therefore α < 0,
We conclude that for x, y > 0, x 6= y, λ ∈]0, 1[:

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

The function f(x) = 1
x

is strictly convex on R∗+.

Exercise 5.3. Let f(x) = x21 + 2x22 − 2x1x2 + ex1+x2

(a) Compute the gradient ∇f(x)

(b) Compute the Hessian matrix ∇2f(x)

(c) Verify if ∇2f(0, 0) is positive definite.

Solution 5.3. (a) The gradient is computed as:

∂f

∂x1
= 2x1 − 2x2 + ex1+x2

∂f

∂x2
= 4x2 − 2x1 + ex1+x2

∇f(x) =

(
2x1 − 2x2 + ex1+x2

4x2 − 2x1 + ex1+x2

)
(b) The Hessian matrix is:

∂2f

∂x21
= 2 + ex1+x2

∂2f

∂x22
= 4 + ex1+x2

∂2f

∂x1∂x2
=

∂2f

∂x2∂x1
= −2 + ex1+x2

∇2f(x) =

(
2 + ex1+x2 −2 + ex1+x2

−2 + ex1+x2 4 + ex1+x2

)
(c) At point (0,0):

∇2f(0, 0) =

(
2 + 1 −2 + 1
−2 + 1 4 + 1

)
=

(
3 −1
−1 5

)
Check Sylvester’s criterion:
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• First leading principal minor: ∆1 = 3 > 0

• Second leading principal minor: ∆2 =

∣∣∣∣ 3 −1
−1 5

∣∣∣∣ = 15− 1 = 14 > 0

Since all leading principal minors are positive, ∇2f(0, 0) is positive definite.

Exercise 5.4. Let f(x) = x21 + x22 + x23 + x1x2 + x2x3

(a) Find all stationary points.

(b) Determine the nature of these points.

(c) Does the function have global extrema?

Solution 5.4. (a) Compute the gradient:

∇f(x) =

 2x1 + x2
2x2 + x1 + x3

2x3 + x2


Set ∇f(x) = 0:

2x1 + x2 = 0 (5.1)

x1 + 2x2 + x3 = 0 (5.2)

x2 + 2x3 = 0 (5.3)

From (5.1): x2 = −2x1
From (5.3): 2x3 = −x2 = 2x1 ⇒ x3 = x1
Substitute in (5.2): x1 + 2(−2x1) + x1 = x1 − 4x1 + x1 = −2x1 = 0⇒ x1 = 0
Therefore: x2 = 0, x3 = 0

The only stationary point is x∗ = (0, 0, 0).

(b) Compute the Hessian matrix:

∇2f(x) =

2 1 0
1 2 1
0 1 2


Check leading principal minors:

• ∆1 = 2 > 0

• ∆2 =

∣∣∣∣2 1
1 2

∣∣∣∣ = 4− 1 = 3 > 0
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• ∆3 =

∣∣∣∣∣∣
2 1 0
1 2 1
0 1 2

∣∣∣∣∣∣ = 2(4− 1)− 1(2− 0) + 0 = 6− 2 = 4 > 0

All leading principal minors are positive, so the Hessian is positive definite.
Therefore, x∗ = (0, 0, 0) is a strict local minimum.

(c) Since the Hessian matrix is constant and positive definite everywhere, the function is
strictly convex on R3. Thus, x∗ = (0, 0, 0) is a global minimum.

Exercise 5.5. Apply 3 iterations of the gradient method with optimal step size to minimize:

f(x) = x21 + 2x22

starting from point x0 = (2, 1). Show all calculations.

Solution 5.5. ∇f(x) = (2x1, 4x2)
>

Iteration 1: x0 = (2, 1)>, d0 = −∇f(x0) = (−4,−4)>

x1 = x0 + θ0d0 = (2− 4θ0, 1− 4θ0)
>

φ(θ) = f(x0 + θd0) = (2− 4θ)2 + 2(1− 4θ)2 = 6− 32θ + 48θ2

φ′(θ) = −32 + 96θ = 0⇒ −32 + 96θ0 = 0⇒ θ0 = 1
3

x1 = x0 + θ0d0 = (2
3
,−1

3
)>.

Iteration 2: x1 = (2
3
,−1

3
)>, d1 = −∇f(x1) = (−4

3
, 4
3
)>

x2 = x1 + θ1d1 = (2
3
− 4

3
θ1,−1

3
+ 4

3
θ1)
>

φ(θ) = f(x1 + θd1) = (2
3
− 4

3
θ)2 + 2(−1

3
+ 4

3
θ)2 = 2

3
− 32

9
θ + 16

3
θ2

φ′(θ) = −32
9

+ 96
9
θ = 0⇒ −32

9
+ 96

9
θ1 = 0⇒ θ1 = 1

3

x2 = x1 + θ1d1 = (2
9
, 1
9
)>.

Iteration 3: x2 = (2
9
, 1
9
)>, d2 = −∇f(x2) = (−4

9
,−4

9
)>

x3 = x2 + θ2d2 = (2
9
− 4

9
θ2,

1
9
− 4

9
θ2)
>

φ(θ) = f(x2 + θd2) = (2
9
− 4

9
θ)2 + 2(1

9
− 4

9
θ)2 = 2

27
− 32

81
θ + 16

27
θ2

φ′(θ) = −32
81

+ 96
81
θ = 0⇒ −32

81
+ 96

81
θ2 = 0⇒ θ2 = 1

3

x3 = x2 + θ2d2 = ( 2
27
, 1
27

)>.

Note that for this convex function, the global mimimum is x∗ = (0, 0) with f(x∗) = 0.

Exercise 5.6. Consider the minimization problem of the quadratic form

F (x) = x21 + 4x22 − 4x1 − 8x2 −→ min
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1. Write the first-order optimality conditions. Are these conditions sufficient?

2. Solve these conditions and find the minimum x∗ of F on R2

3. Find the formula of the optimal step size for minimizing a quadratic form.

4. Apply the gradient algorithm with optimal step size to minimize F , starting from the
initial approximation x0 = (1, 1)>.

Solution 5.6.
1. First-order optimality conditions:

The gradient is:

∇F (x) =

(
2x1 − 4
8x2 − 8

)
.

∇F (x) = 0⇒

{
l2x1 − 4 = 0 ⇒ x1 = 2,

8x2 − 8 = 0 ⇒ x2 = 1.
.

So the unique stationary point is x∗ = (2, 1)>.
For sufficiency, the Hessian matrix:

∇2F (x) =

(
2 0
0 8

)
,

is positive definite (Leading principal minors: ∆1 > 0 and ∆2 > 0).

Hence, F is strictly convex, so the first-order conditions are sufficient for a global minimum.

2. Solution of the minimization problem
From question 1., we have: x∗ = (2, 1)> with F ∗ = −8.

3. Optimal step size for a quadratic form
Let F (x) = 1

2
x>Dx− C>x, with

A =

(
2 0
0 8

)
, b =

(
4
8

)
.

Let xk be given and the direction dk = −∇F (xk), then the next point is given by:

xk+1 = xk + θkdk,

where θk is solution of the optimization problem:

min
θ≥0

F (xk + θdk)

Minimize F with respect to θ ⇒ θ cancels its derivative.
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Therefore:
∂F (xk + θdk)

∂θ
= d>k · ∇F (xk + θdk) = 0

⇒ d>k [D(xk + θdk) + C] = 0

⇒ d>kDx
k + θd>kDdk + d>k C = 0

⇒ θ = −d
>
kDx

k + d>k C

d>kDdk

⇒ θk = −d
>
k [Dxk + C]

d>kDdk

⇒ θk =
−d>k∇F (xk)

d>kDdk

4. Gradient with optimal step size for minimizing F :

x0 = (1, 1)T , d0 = −∇F (x0) =

(
2
0

)

θ0 = −d
T
0∇F (x0)

dT0Dd0
= −

(2, 0)

(
2
0

)
(2, 0)

(
2 0
0 8

)(
2
0

) =
4

8
=

1

2

x1 = x0 + θ0d0 =

(
1
1

)
+

1

2

(
2
0

)
=

(
2
1

)

∇F (x1) =

(
0
0

)
⇒ stop

x∗ = (2, 1)T is the unique global minimum of F . Convergence in one iteration.

Exercise 5.7. Consider the optimization problem:{
min f(x) = −3x21x2

s.c. h(x) = 6x21 + 6x1x2 − 12 = 0

1. Prove that the constraints qualification holds.

2. Write the Lagrange conditions.

3. Find the solution of the problem.

43



Solution 5.7. 1. Qualification of constraints:
We have:

∇h(x) =

(
12x1 + 6x2

6x1

)
The constraint is qualified if ∇h(x) 6= 0 (a vector is free if it is not null).

∇h(x) = 0⇒
(

12x1 + 6x2
6x1

)
=

(
0
0

)
⇒ x1 = x2 = 0

Therefore ∇h = 0 for x = (0, 0). However, (0, 0) /∈ X = {x ∈ R2 | 6x21 + 6x1x2 = 12}
Therefore the constraints qualification holds for all x ∈ X, and the Lagrange conditions are
necessary for optimality.

2. The Lagrange function:

L(x, µ) = −3x21x2 + µ(6x21 + 6x2x1 − 12)

∂L

∂x1
= −12x1x2 + 12µx1 + 6µx2 = 0 (5.4)

∂L

∂x2
= −3x21 + 6µx1 = 0 (5.5)

∂L

∂µ
= 6x21 + 6x1x2 − 12 = 0 (5.6)

where µ ∈ R.
From (5.5): x1 = 2µ and from (5.6): µ = ±1.{

µ = 1⇒ x1 = 2, x2 = 4

µ = −1⇒ x1 = −2, x2 = −4

Therefore the stationary points are: (x∗1, x
∗
2, µ

∗) ∈ {(2, 4, 1), (−2,−4,−1)}.
The Hessian of Lagrange function

∂2L

∂x2
=

(
−6x2 + 12µ −6x1 + 6µ
−6x1 + 6µ 0

)

• ∂2L
∂x2

(2, 4, 1) =

(
−12 −6
−6 0

)
, ∆1 = −12 and ∆2 = −36.

Therefore the Hessian at point (2, 4, 1) is not defined on R2.
We then search for its nature on the set defined by:

H =
{
d ∈ R2 | d>∇h(x∗) = 0

}
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We have: ∇h(2, 4) =

(
48
12

)
. Then

H =

{
(d1, d2) ∈ R2 | (d1, d2)>

(
48
12

)
= 0

}
=
{
d = α(1,−4), α ∈ R+

}
Let d ∈ H, ‖d‖ 6= 0, d = α(1,−4), α ∈ R+:

d> ∂
2L
∂x2

(2, 4, 1)·d = α(1,−4)

(
−12 −6
−6 0

)(
1
−4

)
= α2(12,−6)

(
1
−4

)
= 36α2 > 0,∀α ∈ R∗

Therefore d> ∂
2L
∂x2

(2, 4, 1)d > 0⇒ ∂2L
∂x2

(2, 4, 1) is positive definite.

We then conclude that (2, 4) is a local minimum.

Likewise, we conclude that the point (−2,−4) is a local maximum.

Exercise 5.8. Solve the following optimization problem:
min f(x) = −3x1 + x2 − x23
s.t. g(x) = x1 + x2 + x3 ≤ 0

h(x) = −x1 + 2x2 + x23 = 0

Solution 5.8. The Lagrangian function:

L(x, λ, µ) = −3x1 + x2 − x23 + λ(x1 + x2 + x3) + µ(−x1 + 2x2 + x23)

KKT system:
First-order conditions: 

∂L
∂x1

= −3 + λ− µ = 0
∂L
∂x2

= 1 + λ+ 2µ = 0
∂L
∂x3

= −2x3 + λ+ 2µx3 = 0

Complementary slackness and positivity constraints:
λ(x1 + x2 + x3) = 0

−x1 + 2x2 + x23 = 0

λ ≥ 0

Solving the system:
Case 1: λ = 0, then from the first two equations:{

λ = 3

λ = −1

Contradiction.
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Case 2: λ > 0, then from the first two equations:{
λ− µ = 3

λ+ 2µ = −1
⇒

{
λ = 5

3

µ = −4
3

Since λ = 5
3
> 0, the constraint g(x) is active:

x1 + x2 + x3 = 0

From the third derivative:

−2x3 +
5

3
+ 2

(
−4

3

)
x3 = 0⇒ −2x3 +

5

3
− 8

3
x3 = 0⇒ −14

3
x3 +

5

3
= 0⇒ x3 =

5

14

Using the equality constraint:

−x1 + 2x2 +

(
5

14

)2

= 0⇒ −x1 + 2x2 +
25

196
= 0

Using the active inequality constraint:

x1 + x2 +
5

14
= 0

Solving the system: {
x1 + x2 = − 5

14

−x1 + 2x2 = − 25
196

⇒

{
x1 = −115

588

x2 = − 95
588

x1 = −115

588
, x2 = − 95

588
, x3 =

5

14
, λ =

5

3
, µ = −4

3

Hence, the unique stationary point x∗ =
(
−115

588
, −95
588
, 5
14

)
, with (λ∗, µ∗) = (5

3
, 4
3
)

The Hessian Matrix of the Lagrangian

∂2L

∂x2
(x∗, λ∗, µ∗) =

0 0 0
0 0 0
0 0 −2 + 2µ∗


Substituting µ∗ = −4/3,

∂2L

∂x2
(x∗, λ∗, µ∗) =

0 0 0
0 0 0
0 0 −14

3


Following Sylvester criterion, ∂2L

∂x2
(x∗, λ∗, µ∗) ≥ 0, on R3

We then chek its nature on the Hyperplane

H = {y ∈ R3 | y>∇h(x∗) = 0; y>∇g(x∗) = 0(g active)}
We have g(x∗) = 0 and λ∗ > 0, then g is strongly active.
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We calculate

∇g(x∗) =

1
1
1

 and ∇h(x∗) =

−1
2

5/7


Then

H =
{
y = α(−3/7,−4/7, 1)>, α ∈ R

}
Study of the Quadratic Form on H

y>
∂2L

∂x2
(x∗, λ∗, µ∗)y = α2

(
−3

7
−4

7
1
)0 0 0

0 0 0
0 0 −14

3

−3
7

−4
7

1


= α2

(
1 ·
(
−14

3

)
· 1
)

= α2

(
−14

3

)
< 0 (for α 6= 0)

Hence, x∗ is a local maximum of the problem.

5.2 Exercices without solutions

Exercise 5.9. Let m convex functions fi(x), i = 1,m defined on a convex set X ⊂ Rn.
Show that the following functions are convex:

f(x) =
m∑
i=1

αifi(x), αi ≥ 0, i = 1,m

g(x) = max
1≤i≤m

fi(x)

Exercise 5.10. Find the extrema of the following functions
• f(x) = 2x31 − 3x32 − 6x1 + 36x2
• g(x) = x21 + x22 + x23 − 2x1x2x3
• k(x) = x41 + x42 − 2x21 − 2x22 − 4x1x2.

Exercise 5.11. Consider the following quadratic form

F (x) = F (x1, x2, x3) = −x21 − x22 − x23 − 2x1x3

1. Write F in the form 1
2
xTQx+ qTx.

2. What is the nature of the matrix Q?

3. Is the function F convex?

4. Find the stationary points of F .

5. What is the nature of these stationary points?
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Exercise 5.12. Consider the function f : R3 → R defined by

f(x, y, z) = ex−y + ey−x + z2.

1. Determine whether f is convex on R3.

2. Find all critical points of f .

3. Deduce the minimum.

4. Is this minimum global? Justify your answer.

Exercise 5.13. Use the Fletcher-Reeves conjugate gradient algorithm to minimize the func-
tion

f(x) =
1

2
x41 + (x2 − x1)2 + 1

on R2 starting from x0 = (1, 2)t.

Exercise 5.14. Consider the problem:{
min f(x) = x21 + x22
s.t. x21 + x22 − 1 = 0

Find the stationary points and determine their nature.

Exercise 5.15. Solve the following optimization problem:
min f(x) = x21 + x22
s.t. x1 + x2 ≥ 1

x1, x2 ≥ 0,

using KKT conditions.

Exercise 5.16. Solve the problem:
min f(x) = (x1 − 2)2 + (x2 − 1)2

s.t. x21 − x2 ≤ 0

x1 + x2 ≤ 2
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