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Preface

This course on Mathematical Programming provides a comprehensive introduction to
the theory of optimization. Intended for students in applied mathematics and operations
research, it aims to equip them with mathematical tools required to model and solve real
world optimization problems. It allows to prepare students for advanced topics in nonlinear
programming, convex optimization, and numerical analysis.

The content is organized into five chapters. Chapter 1 establishes the mathematical
prerequisites, covering differential calculus in multiple dimensions, quadratic forms with
Sylvester’s criterion, and convex analysis. Chapter 2 develops the theory of unconstrained
optimization, presenting existence results via Weierstrass theorem and characterizing opti-
mal solutions through first and second-order conditions. Chapter 3 introduces numerical
methods. It describes iterative algorithms like gradient descent and conjugate gradient, and
explains how these methods converge to a solution. Chapter 4 extends the framework to con-
strained optimization, deriving the fundamental Karush-Kuhn-Tucker conditions. Finally,
chapter 5 contains practice exercises with solutions covering all course material.
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Chapter 1

Review and Supplements

The scalar product is defined by (v,y) = 2"y =Y x4, = €R", y e R"
i=1

The associated Euclidean norm is defined by ||z|| = \/(z,2) = VaToz = /> 22, z € R™.
i=1

1.1 Introduction

In this course, we are interested in the problem of finding a point z* € X, such that a
real function f defined on the set X takes its minimum value. Formally, this optimization

problem is presented as:
min f(z)
{ st. xelX, (1.1)

where f: X C R® — R, a function called the objective function.
X: is the set of feasible solutions and xz € X is called a feasible solution.

We have two cases:
1. If X =R", we say that (1.1)) is an unconstrained optimization problem.

2. If X CR", (L.1) is a constrained optimization problem. In this case, X can have the
general form: X = {x € R" : h;(z) = 0,g;(x) <0;i =1,k,j = 1,m}, where h; and g;
are called constraint functions.

In particular, if f, h; and g; are linear functions, the problem (1.1)) is a linear program (LP)
and in this case the set X is a polyhedron.
The formulation (L.1]) also encompasses maximization problems. Indeed, we have:

max f(z) = — min(—f)(z),

which allows us to transform a minimization problem into a maximization problem and vice

versa.
The solution of problem (1.1)) is called an optimum or extremum (minimum or maximum).



Definition 1.1 (Global Optimum). A solution of problem (1.1)) is a point z* € X such that
f*) < f(z), VreX.

In this case, x* is said to be a minimum or global optimum.
For a maximization problem, x* € X is a global maximum, if

f(z*) > f(x), Ve X.

Definition 1.2 (Local Optimum). z* € X is a local optimum of problem ([1.1)), if there
exists a neighborhood of z*, V(z* )] such that

f(z*) < f(x), Vze XNV(z"), for a minimum.

f(z®) > f(z), Vexe XNV(z"), for a maximum.

Every global extremum is local. The converse is false.

When the inequalities are strict, we speak of a strict optimum.
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Figure 1.1: Function f(x) = cos(z) with infinitely many global minima and maxima.

1.2 Differential Calculus

Definition 1.3. We say that f : R® — R is differentiable at the point z* € R", if there
exists a vector V f(z*) € R", called the gradient of f at point x* such that

fla) = f(@") + (z = 2") V(") + o||lz — 27|), Vo € R,

where lim 2lz=zlD _
sz llz—z*|

W(a*) =B(a*,e) ={z eR"/|lz —z*| <&}, >0
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Figure 1.2: Function f(z) = x cos(x) with infinitely many local minima and maxima.

— f(z) =2 - 2224+ 0.5

Figure 1.3: Example of a function with a global minimum at x = +1 and local maxima at
x = 0.

f(z").

The components of the vector V f(z*) are the partial derivatives of f at z*, =5=:

of (z*) - flay,as, . oo al+hyooo xk) — fla],oh, .o x))

ox; s h
~ lim f(x* + he;) — f(z¥)
h—0 h

where h € R and z* = (27, 25,...,2%)" € R" and ¢; = (0,...,1,...,0)".

rn

If Vf(z*) : R" — R is continuous, then f is continuously differentiable.

Definition 1.4. We say that f : R® — R is twice differentiable at the point z* € R", if
in addition to the gradient, there exists a matrix H(x*), called the Hessian matrix of f at

3



point x*, such that:

fl@)=fa") + (x—a") Vf(a") + %(:c — ") H(z")(z — 27) + o([lz — 2"*), Yz € R",

where lim 22—z _
r—x* ||$—.T*H2 ’
If the second-order partial derivatives, i (G Ry 1,n;j = 1,n exist and are continuous on

6$J‘8$i )
R", then we say that f is of class C2. In this case, the Hessian is a symmetric matrix

f(@)  2f) . @)
0x3 Ox20x1 Oz, 0x1
Pf*) Pf@=*) . Ef(=Y)
H(I'*) _ v?f(x*) _ 8$1.812 Bmg 8937,'8@
82f'(x*) 32f'($*) . 82]0‘(3»’*)
0r10x,  Ox20Tn o2

Exercise 1.1. Compute the gradient and the Hessian of the functions:
1. f(z) = f(z1,22) = 22 + 22 — 22129 + 71 + To,
2. g(x) = g(x1, 12, 23) = 2% + 23 + 2% — 221 — 25 + 1.

Definition 1.5 (Directional Derivative). The directional derivative of a function f at point
x*, in the direction d € R", denoted Dy(z*,d), is the limit defined by

The directional derivative gives us information about the slope of the function in the direction

d (just as the derivative gives information about the slope of a single-variable function).
Indeed, if

e Ds(x*,d) > 0, then d is a direction of increase for f starting from x*.
e D¢(z*,d) = 0, nothing can be concluded.

o Dy¢(z*,d) <0, then d is a direction of decrease for f starting from x*. In this case, d
is called a descent direction of f at x*. This notion is widely used in optimization to
search for the minimum of a function on R™.

In the case where f is differentiable, we have the following result.

Proposition 1.1. Let f : R" — R be differentiable and z* € R™. Then for all d € R"

Di(z*,d) = d"V f(z*)



1.3 Quadratic Forms

Definition 1.6. A quadratic form of n variables x1, xs, ..., x, is a real-valued function that
can be written as: o
i=1 j=1

Letting = (21,22, ..., 2n) ", A= (4ij)ietmjetm: ([L2) = F(z) = x7 Az
Example 1.1. Let 2 € R3

2 2 2
F(z) =a1127 + 9275 + a3375 + 120102 + 130103 + A1 ToT1 + A23T2T3 + A31T3%1 + A32T3T2

T 11 aiz2 A3 4
= (xh T2, $3) Q21 Q22 d23 L2
a31 az2 a33 xs3

2 2 2
=a1127 + 25 + aszrs + (@12 + a21)2122 + (@13 + as1) 2123 + (a3 + asz2) a3

Let dij = % = djia V1 < Za] <n.

The matrix D = (dij);—17.j=1 is symmetric and we have

F(x) = 2'Dx = 2' Az, Vz € R™

1.3.1 Definite and Semidefinite Quadratic Forms

Let F(z) = 2" Dz be a quadratic form with D symmetric.
e [ is positive definite if 2" Dz > 0 for all x € R", ||z|| # 0.
e [ is positive semidefinite if " Dx > 0 for all z € R, ||z|| # 0.

F is negative definite if 2" Dz < 0 for all z € R", ||z|| # 0.

F is negative semidefinite if 2" Dz < 0 for all x € R, ||z|| # 0.

F' is indefinite if it is positive for some values of x and negative for others.

1.3.2 Matrix Associated with a Quadratic Form

Let D be a symmetric matrix and F(x) = 2" Dz its associated quadratic form. Then
e D is positive definite (D > 0) if its associated quadratic form is positive definite.

e D is positive semidefinite (D > 0) if its associated quadratic form is positive semidef-
inite.

e D is negative definite (D < 0) if its associated quadratic form is negative definite.



e D is negative semidefinite (D < 0) if its associated quadratic form is negative

semidefinite.
Example 1.2.

1. F(x) = x% 4 23 is positive definite.

Flo) = (ansa) (g 1) (52) =a"Da

10
where D = (0 1) > 0.

2. F(x) = 23 — 2w179 + 3 is positive semidefinite.

F(z) = (2, —29)> >0 Vz €R?

1 -1
= >
b (—1 1)—0

3. F(z) = 23 — 23 + 2,7 is indefinite.

The associated matrix is:

Flz)=-22<0 ifz;=0,29#0
Flz)=2?2>0 ifx; #0,29=0

The associated matrix is indefinite.

1.3.3 Sylvester’s Criterion for Symmetric Matrices

Let a symmetric matrix D of size n x n:

. Jp) of D and

diy dip -+ dyy,
dy dy -+ doy
p=|7 "7
dnl dn2 e dnn
Definition 1.7. The minor of order p of the matrix D is given by the determinant of the
submatrix of order p, formed by the rows (iy,s,...,%,) and columns (ji, jo, . . .
is denoted:
divji  dingy -+ dagy,
D (2:1,1"2, . ,i?,> _ | dap digiy e digg,
J1sJ25 -+ -5 Jp : T
iy iy iy

The minor is called principal if it is formed from rows and columns with the same indices,
ie., j1 = i1, Jjo = t2...Jp = %p. If furthermore j; = ¢; = 1, Vp < n, then the minor is
called leading principal. A matrix of order n has exactly n leading principal minors. They

are denoted Ay, Ao, ..., A,.



Example 1.3. Let D be a symmetric matrix. Then the leading principal minors of D are

d d dll d12 d13
Ay =dy, Ag=| " TP A3 = doy dyy dog
dar - 22 dy dsy dsy

Its principal minors are D ( g ) = dyy, D ( 2 ) = dz3, D ( 23 ) = ‘ Aoz dag and

2 3 dsp d33
1 3 B dy1 dis
D(1 3)“(131 ds3

. 1\ 2 3\ | du da
However, the minors D ( 9 ) = dy, D < 1 92 ) - ‘ d31 d3o

are not principal.

Theorem 1.2 (Sylvester’s Criterion). Let D be a symmetric matriz of order n.

1. For D to be positive definite (D > 0), it is necessary and sufficient that all leading
principal minors be positive:

Ay >0, Ay>0, ..., A,>0.

2. For D to be positive semidefinite (D > 0), it is necessary and sufficient that all its
principal minors be non-negative:

1 g ... 0
o( ,

1 >207 VI <iy <ig<...<ip, <
Ji J2 - Jp

jlzil, jgzig...jp:ip, pzl,...,n.

Remark 1.1. Consider the matrix

0 0
D:(O _1> A1:07A2:0

The leading principal minors are all non-negative, yet the associated quadratic form F(z) =
v Dxr = —22 <0, Vx € R? is negative definite. So D is negative definite. Consequently,
the condition Ay > 0, Ay > 0,...,4A, > 0 is not sufficient for a matrix to be positive
semidefinite. The other principal minors of the matrix must be checked.

Remark 1.2. Sylvester’s criterion also applies to negative definite and negative semidefinite
matrices. For a symmetric matrix D, it is stated as follows:

. D<0« (-1)PA, >0, Vp=1,...,n.

2.D§04:>(—1)PD(Z.1 2o Z.p)zo, ish<h<...<dsn
Ji J2 - Jp J1 =11, Ja=12...0p =1y, Pp=1,...,n.
Example 1.4.
6 3 0
1. A=(3 6 9
0 9 18
6 3 6 3 0
Ay = 6] =6>0, A2:’3 6':27>0, Az=1[3 6 9|=0.
0 9 18



According to Sylvester’s criterion, A is not positive definite. Is it positive semidefinite?
To answer this question, we must compute all principal minors.

Principal minors of order p = 1:

2 3
A(2)26>0,A<3):18>0.

Principal minors of order p = 2:

2 3 6 9 1 3 3 0
A 5 3 0 18 —27>O,A(1 3)—‘0 18'—108>0.
All principal minors are positive or zero. A is therefore positive semidefinite.
5 —1 2
2.B=[-1 10 -2
2 -2 4
51 5 —1 2
Ay =[5=5>0, Ay= ’ ‘—50 1=49>0, Az=|-1 10 —2({=144>0
1 10
2 -2 4
A,>0,Vp=1,3=B
3. C=
1 0 -1 0 1
=|-1]=-1<0, AF'O _1’:1>0 Az=|0 -1 0|=-1
1 0 -2

We have (—1)'(=1) =1 >0, (-1)*(1) =1>0, (-1)(-1)=1>0. SoC <0
(negative definite).

1 2

9 _1‘:—5>0.

Ay =|1]=1>0, Azz‘
We can conclude without calculating the other minors that the matrix D is indefinite.
Indeed, for A;, we have (—1)'(1) =1 < 0 (D cannot be negative definite) and since

Ay < 0, D is not positive definite. If we consider the associated quadratic form
F(x) = 2" Dz, z € R* we have: F(1,0,0)=1>0and F(0,1,0) = —-1<0

Remark 1.3. Sylvester’s criterion is only applicable to symmetric matrices. Indeed, consider
-1 -2 -1
the matrix A = 2 -1 0
1 0 -1



1 o -1 -2 -1
9 _1‘:5>0,A3: 2 -1 0 |=-4<0
1 0 -1
According to remark [1.2] A is negative definite. However, for x = (1,0, 1), |jz|| # 0, the
associated quadratic form x" Dx = 0. This incorrect result is due to the non-symmetry of

A.

Ay =|—1=-1<0, AF‘

1.4 Convexity

Definition 1.8 (Convex Set). A set X C R” is said to be convex if, for all z,y € X and all
A € [0, 1], we have:
z=Xr+ (1 - NyeX.

In other words, a set X is convex if every segment joining two points of X is contained in
X.

A - convex B - non convex

Figure 1.4: Example of convex and non-convex sets

Example 1.5.
1. Intervals in R (open, closed, or half-open) are convex.
2. Balls in R" (B(zg,7) = {z € R" : ||z — x| < r}) are convex.
3. Spheres in R™ (S(xg,r) = {x € R™ : ||z — x¢|| = r} are not convex.

Property 1.3.

n
1. An intersection of convex sets is convex, X = [ X;.
i=1

2. The sum of two convex sets, X; and X, is convex, X = X1+ Xo ={zv+y;z € X;,y €
Xo}.

3. The set defined by {\z,z € X, \ > 0} is convex.

9



Definition 1.9 (Convex Function). A function f : X C R® — R is said to be convex on the
convex set X, if for all z,y € R” and all A € [0, 1], we have:

FOz+ (1 =Ny) <Af(z)+ (1 =N F(y).

z=Xr+(1-N)y

The segment joining the two

points (z, f(z)) and (y, f(y))
is always above the graph of f.

~

Figure 1.5: Geometric interpretation of convexity

Definition 1.10 (Concave Function). A function f: X C R" — R is said to be concave on
the convex set X, if for all x,y € R™ and all A € [0, 1], we have:

fOr+ (1 =Ny) 2 Af(x) + (1 =N f(y).

z=Ax+(1-N)y

The segment joining the two

points (z, f(z)) and (y, f(y))
is always below the graph of f.

~

Figure 1.6: Graph of a concave function

10



Remark 1.4.
Affine functions are both convex and concave.

Property 1.4. A function f: X — R is concave on the convex set X if (—f) is convex on
X.

1.4.1 Characterization of Convexity

In general, it is difficult to verify convexity using the definition. The following result gives
criteria for convexity of differentiable functions.

Proposition 1.5. [3] Let X C R" be convex and f : X — R a function of class C'. Then:
1. fisconvex on X & f(y) > f(z) + [Vf(x)]"(y — x), Vo,y € X.
2. fis convex on X < V f(x) is an increasing function on X, i.e.:
Vfy) = V@) (y —x) 2 0,Va,y € X.
3. If moreover f € C?, then f is convex on X < Vo € X,z"V2f(x)xr > 0.

We define below two important concepts for the characterization of convex functions and
sets.

Definition 1.11 (Epigraph). The epigraph of a function f : R™ — R is the set:
epi(f) ={(z,a) e R" xR [ f(z) < a}.

Figure 1.7: Epigraph of a convex function.

Theorem 1.6. [3] A function f : R™ — R is convez if and only if its epigraph epi(f) is a
conver set.

Definition 1.12 (Level Set). For a function f : R" — R and a constant o € R, the level
set « is defined by:

Lo(f) ={z e R" | f(z) < a}.
Proposition 1.7. If f : R" — R is a convex function, then for all a € R, its level set L,(f)
is either empty or convex.

11



1.4.2 Operations preserving Convexity

Let X C R™ be convex. Let fi, fo,..., fn : X — R be convex functions on X and aq, ..., oy,
strictly positive constants.

e The function f = ayf; + asfo + ... + aynfm is convex on X. If at least one of the
functions f; is strictly convex, then f is strictly convex.

e Let g : R — R be a convex and increasing function. Then the function go f is convex.
For example, g(r) = e* and f(x) = 2°.

1.4.3 Convexity of quadratic forms

Property 1.8. Let a quadratic form be F(z) = 2" Dz, where D is symmetric.
Then:
F(z) is convex < D > 0

Proof. =

Let F be a convex quadratic form and suppose that D # 0. Then 3z € R", ||z|| # 0 such
that " Dz < 0.

Therefore for y = —x, we have y' Dy < 0.

Let us take z = %SIZ + %y

Since F'is convex:

F(2)=2"Dz=F (%x + %y) < %F(m) + %F(y) =F(0) =0 (since y=—x)

On the other hand:
F(z)=2"Dz+y ' Dy<0

Contradiction. Therefore D > 0.
~:
Let D be symmetric with D > 0 and X € [0,1], x € R", y € R". We have:

FOz+(1=Ny) =[x+ (1= Ny]" DDz + (1 - Ny
= XN22"Dx+ (1 - N2y Dy +2\1 - \)y' Dz

Since D > 0:

z' Dz >0
y' Dy >0
We also have:
(2 —y) D@ —y) =0
=a'Dx+y' Dy—2y Dz >0
=2y ' Dz <z'Dzx+y' Dy

12



Therefore:
= 2\(1 =Ny Dz < A1 = N[z Dz +y' Dy]

Thus:

Fz+(1—=XNy)=X2"Dr+ (1 - X2y Dy+2\1 - Ny Dx
< N2'Dz+ (1= N2y "Dy + A1 - N[z Dx +y' Dy
= N2 Dz + (1 - X% Dy+ X1 —Nz"Dx+ A1 - Ny Dy
= 2" Dr[A + A1 = N)]+y " Dy[(1 = A)? + A1 = N)]
= Az Dz[A+ (1 = N)] + (1 =Ny " Dy[A+ (1 = \)]
=Ar' Dz + (1 - \)y' Dy
= AF(z) + (1 = N\ F(y)

Therefore: F(Ax 4+ (1 — N)y) < AF(z) 4+ (1 — \)F(y) = F' is convex. O

Remark 1.5. By proceeding in a similar way as for property [I.8 we can prove the following

result:
F(x) is strictly convex < D > 0,

where D is a symmetric matrix.

13



Chapter 2

Optimization of Nonlinear Functions
in R"

The problem considered in this chapter is of the form:

win f(z),

with f: R®™ — R a differentiable function.

Definition 2.1 (Coercive Function). A function f: X C R™ — R is said to be coercive if:

lim f(z) = +oo.

[[]| =00

/()

Figure 2.1: Example of a coercive function: f(z) = 22
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Figure 2.2: Example of a non-coercive function: f(x) = 2+ sin(x).

2.1 Existence of Optimal Solutions

Theorem 2.1 (Weierstrass). Let X C R" be non-empty and closed set, and f : X CR™ — R
a lower semicontinuous function on X.

1. If X is compact, there exists x* € X such that:

f(a*) = min f(x).

zeX
2. If f is coercive, there exists x* € X such that:

f(z*) = min f(z).

zeX

Corollary 2.2. Let f : R® — R be a lower semicontinuous and coercive function. Then
there exists #* € R™ such that:

min f(x) = f(a*).

z€R™

2.2 Characterization of Optimal Solutions

Theorem 2.3 (Necessary Optimality Condition). Let z* € R™ be a local minimum point of
f, and suppose that f : R™ — R is continuously differentiable on an open subset S C R"
containing x*. Then:

Vf(z*) =0 (First order necessary condition).

If moreover, f is twice continuously differentiable on S, then the Hessian matriz is positive
semidefinite:
V2f(x*) >0 (Second order necessary condition).

15



Proof. Suppose that z* is a local minimum point of f. Then, for all d € R® and o € R
sufficiently small, we have:
[+ ad) > f(x7).
Using the first order Taylor expansion around x*, we obtain:
f(@* +ad) = f(*) + ad "V f(z") + o{a).
Thus, for « sufficiently small, we have:
f(z* +ad) — f(z*) = ad"V f(z*) 4+ o(a) > 0.
Dividing by a and taking the limit o« — 0%, we obtain:
d"Vf(z*) >0 VdeR"
Similarly, considering @ — 07, we obtain:
d'Vf(z*) <0 vdeR"

Therefore, we have:
d'Vf(z*)=0 VdecR",

which implies:
Vf(®)=0.
If f is twice continuously differentiable, we can use the second order Taylor expansion:
f(z* +ad) = f(z*) + ad "V f(2*) + %oﬂdTV2f(m*)d + o(a?).
Since Vf(z*) = 0, we have:
flz" 4+ ad) — f(z") = %OszTVQf(ZL‘*)d +o(a®) > 0.
Dividing by a2 and taking the limit o — 0, we obtain:
d"V2f(x*)d >0 VvdeR",

which means that V2 f(z*) is positive semidefinite. [

Definition 2.2. A point z* € R" satisfying the first order necessary condition (V f(z*) = 0)
is called a critical or stationary point.

Remark 2.1. The first and second order necessary conditions are not sufficient for optimal-
ity.
Example 2.1. Consider the function f : R — R defined by:

f(z) = 2°.
The gradient of f is given by: f/(x) = 3z2. Solving f'(x) = 0, we find a critical point at z = 0.
The second derivative of f is:f”(z) = 6z. At the critical point = = 0, we have: f”(0) = 0.

Thus, x = 0 satisfies the first and second order necessary conditions, yet it is neither a local
minimum nor a local maximum. Indeed:
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For z > 0, f(z) > 0.
For x <0, f(z) < 0.

Consequently, z = 0 is a saddle point (see figure [2.3).

()

Figure 2.3: Graph of f(z) = 2* with a critical point at = = 0.

2.3 Sufficient Optimality Conditions

Theorem 2.4 (Sufficient Optimality Condition). Let f : R" — R be a twice continuously
differentiable function on an open set S C R™. If x* € S satisfies:

1) Vf(z*) =0,

2) V2f(z*) > 0 (the Hessian is positive definite),

then x* is a strict local minimum point.

Proof. Using the second order Taylor expansion, for d € R” and « > 0 small enough:
flz* 4+ ad) = f(z*) + ad" Vf(z*) + %aszVQf(x*)d + o(a?).
Since Vf(z*) = 0, we have:
fl@"+ad) — f(z*) = %anTV2f(x*)d + o(a?).
As V2f(z*) > 0, we have:

fla* +ad) — fa*) >0 = f(z*) < f(a* + ad).

Thus, x* is a strict local minimum point. O]
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2.4 Optimization of Convex Functions

Convexity is of great importance in optimization. First, because in convex optimization,
every local minimum is also global. But also, thanks to convexity, the first-order necessary
condition is sufficient to characterize this global minimum.

Theorem 2.5 (Global Minimum of Convex Functions). Let f : R™ — R be a convex function.
Then every local minimum point is a global minimum point.

Proof. Suppose that z* is a local minimum. By contradiction, suppose there exists T such

that f(Z) < f(x*).
Let 2y = AT + (1 — A)z*, A € [0, 1]. Then:

f(@®) < flan).

Since f is convex, we have:

fl@x) S Af(@) + (1= A)f(").

Thus:
f@®) <Af@) + (1 -Nf(2") = f(z") < [(T),

which is a contradiction. ]

Theorem 2.6 (Uniqueness of the Global Minimum). If f : R®™ — R is a strictly convex
function, then it admits a unique global minimum point.

Proof. Suppose that f admits two global minimum points z* and . Then:

f(@*) = f(T) = min f(z).

z€eR™
Let A € [0,1], zy = Az* + (1 — A\)Z. Since f is strictly convex, we have:
fl@x) <Af(@") + (1 =) [f(@) = fz").
Then
flzy) < fz"),
which is a contradiction. O

Theorem 2.7 (Necessary and Sufficient Condition). Let f : R™ — R be convex and contin-
wously differentiable. Then: x* is a global minimum point if and only if

Vf(*)=0.

Proof.
e = (see Theorem .
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o &
Let z* € R™ such that Vf(z*) = 0 and let x € R" be arbitrary.
Since f is convex, we have:

(@) = f() > (@ — 27) LT

= f(z) = f(z") 2 0
= f(x) > f(z*) = 2" global minimum point
[

Remark 2.2. Theorems and 2.7 remain valid when restricting the domain of f to
a convex set X C R".
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Chapter 3

Numerical Methods for Minimizing a
Differentiable Function in R"

3.1 Introduction

Consider the problem
min f(z) = f(z"), (3.1)

r€R™

where f : R” — R is a differentiable function. The solutions of this problem are critical
points satisfying:

Vf(z*)=0
Numerical methods for finding solutions to problem ({3.1)) are iterative algorithms follow-
ing the scheme:
e Generate a sequence of points {2*}.ey such that f(z*t1) < f(aF)
e Choose a direction d;, at each iteration k.
e Choose a step size 0, > 0.

The choice of the direction dj, and the step size 65 depends on the point z* and determines

the next iteration:

At each iteration of this iterative process, d; must satisfy the descent condition
V(")) d <0
If Vf(2*) =0, then the iterative process stops and z* is a candidate to be an extremum.

Remark 3.1 (Geometric interpretation).
For f:R" —» R, " € R", d € R", define:

2(0) =2" +6d, 0>0
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where z(6) represents the point reached after moving a step ¢ in the direction d.
Consider the first order Taylor expansion around z*:

f(x* +0d) — f(z*) = Vf(2*) " (0d) + o(0) (3.3)
where lim % = 0.
@m:>ﬂﬁ+ﬂ®—f@ﬂ=9<Vﬂﬁfd+%?)
When 6 — 0

Sign[f(z* + 0d) — f(z*)] = Sign[V f(z*)"d]
Therefore, to have f(z* + 0d) < f(x*) for 6 > 0 sufficiently small, it is necessary to have:

Vix)'d<0

This condition implies that the vectors V f(z*) and d must be oriented in opposite directions.

Y f(akh) Vf(at)

i1 v
[ * Minimum

x x T

Figure 3.1: Gradient descent for f(z) = z?

Definition 3.1 (Descent Direction). A vector d € R” is called a descent direction at point

x* (see figure if:
V(")) d <0 (3.4)

There are several families of algorithms, each differing in the choice of the direction d and
the step 0. In this course, we present two families of algorithms: gradient methods and
conjugate gradient methods. It should also be noted that there are several rules for choosing
the step size. However, this part will not be covered in this course.

21



3.2 Gradient Methods

Gradient methods constitute a class of iterative algorithms for minimizing differentiable
functions. The principle is based on:

e Determining a descent direction d € R™ (with ||d|| = 1) that maximizes the local rate

of decrease of the function along this direction. Starting from a point z*, the goal is
to reach 2! with f(z**1) = f(2* + 6d) as small as possible (with § € R).

e Since d is a descent direction at z¥, we have V f(2*)"d < 0. We then seek d € R™ that
minimizes this expression.

e Let a be the angle between V f(z¥) and d. We have:

V" d= IVl cosa ([ld] =1)

e This expression is minimized when cosa = —1, i.e., when the direction d is exactly
opposite to the gradient:
d= V(")
or (normalized direction):
WG
d=——=——— (since ||d|| =1)
IV f (5]

This direction, called the steepest descent direction, guarantees the maximum local decrease
of the function at each iteration. The direction being fixed, the difference between the
variants of these algorithms lies in the choice of the step size 6. It can be fixed to a constant
or calculated optimally.

Algorithm 1 Gradient Descent with Fixed Step Size

Require: Initial point z°, step size 6 > 0, tolerance ¢
k<0
while ||V f(z")|| > ¢ do
okt — ok + 0d,
k+—k+1
end while
return z*
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Algorithm 2 Gradient Descent with Optimal Step Size

Require: Initial point 2%, tolerance €
k<0
while |V f(2*)|| > ¢ do

Compute 6, such that:

W

f® + 0pdy) = ren>iglf(a:k + 0dy,)

5: aktl ok + 0i.dy,
6: k+—k+1

7: end while

8: return =¥

3.3 Conjugate Gradient Method

The idea of the Conjugate Gradient Method is to iteratively construct mutually conjugate
directions that guarantee convergence in a finite number of iterations. Initially designed
for convex quadratic functions, it avoids the problem encountered when applying the sim-
ple gradient method, which can oscillate without much progress in the case of functions
with narrow, elongated valleys. By ensuring that each new search direction is conjugate to
the previous ones, the method effectively accelerates convergence compared to the simple
gradient approach.

Definition 3.2 (Conjugate Directions). Let A be a symmetric positive definite matrix. Two
non-zero vectors d; and d; are said to be conjugate with respect to A (or A-conjugate), if:

d/ Ad; =0 fori#j
Definition 3.3. A family of vectors {dy,ds...,d,_1} is said to be Q-conjugate, if:

d]Ad; =0 Vi#j

3.3.1 Construction of conjugate directions: Quadratic case

Let the quadratic function
1
F(x) = §I'TA$ —b'z,

with A symmetric positive definite of dimension n x n.
The gradient is written VF(x) = Az — b. We define the residual by r = VF(z) = Az — .

The conjugate gradient minimizes F' in n steps, following n directions dy, ds, . . ., d,,_1 mutu-
ally conjugate with respect to A. Starting with dy = —V F(2°), the method chooses the new
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direction as a linear combination of the current gradient and the direction from the previous
iteration. We then have the following formula:

dry1 = —Try1 + Brdy,
where the coefficient 3 is calculated by imposing the conjugacy condition and is given by
By, = M
dy dy
At each iteration, the optimal step 6y is calculated to minimize the function F(x**!), with

¥+l = 2F 4+ 0d,.. The function F' being convex (since A > 0), the optimality condition gives

d%F(xk +0d;,) = d} A(z" +0dy) —b"d, =0

Expanding, we obtain:

Cdg(Azt—b)  din

0. = —
g T Adj, d Ady,’

where r, = Az* —b.

The conjugate gradient algorithm for a quadratic function is stated as Algorithm 3.

Algorithm 3 Conjugate Gradient - Quadratic Case

Require: Initial point 2°, k < 0
1: 1o + —VF(2°)

2: dy + 19
3: while ||| > ¢ do
4 0 i 1

: k T d] Ady

.Z‘k—H — l’k + ‘dek
Tey1 < —VF (2
T;—+1Adk

Br T Ady

: g1 Trg1 + Brdy
9: kE—kLk+1
10: end while

5
6:
7
8

A more practical and less expensive version of this algorithm can be obtained by replacing
in the previous algorithm:

e The coefficient §; by the Fletcher-Reeves formula

-
T Tk
/616 = 7 a
T 1Tk—1
e The step 6, by
0, — _ T;—Tk
" dl Ady,
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Remark 3.2. These two formulas can be obtained using the property of orthogonality of
gradients in the conjugate gradient method.
Case of a general function

The conjugate gradient algorithm for quadratic functions can be generalized to general func-
tions. This gives us the Fletcher-Reeves algorithm presented below:

Algorithm 4 Conjugate Gradient - Fletcher-Reeves

Choose 2°, k + 0
d[) < —Vf(l’o)
while |V f(2*)|| > ¢ do
Find optimal 6j: ren>161f(xk + 6dy,)

Q3k+1 — x’“ + dek
17 £ (4 +)])2
B < eiEhR

dis1 =V [ (") + Brde
k+—k+1
end while
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Chapter 4

Optimization of Nonlinear Functions
under Constraints

The objective of this chapter is to minimize a function f on a set X of feasible solutions.
This optimization problem is written in the general form:

min f(x)
{x cX (4.1)

where X = {x € R"/h;(z) =0,i=1,...,k;g9;(z) <0,j=1,...,m}.

When the functions f, h;, i = 1,k and gj, j = 1,m are linear, the problem is a
linear programming (LP) problem. In this case, the optimal solution is an extreme point of
the polyhedron of feasible solutions. This is no longer true in the nonlinear case where the
optimal solution can also be inside or on the boundary of the set X. The following example
provides a concrete illustration of this property.

Example 4.1. Let the set X of R? defined by
X ={x=(v1,72) €ER* [ 21 + 29 > 1, 201 + 32, < 12, 77 > 0, 75 > 0}.
Consider the minimization problems of the functions f;, f, and f3 on the polyhedron X, with
filz) = (21— 4)* + (22 — 6)?

fo(x) = (21— 8)° + 23
fa(@) = (21 = 4)° + (22 — 1)?

As shown in figure 4.1, the minimum z7 of f; lies on the boundary of X, the minimum z3
of fy is an extreme point of X and the minimum x3 of f5 is an interior point of X.

4.1 Necessary optimality conditions

Consider the general form optimization problem (4.1)). Before presenting the optimality
conditions in this case, let’s start by presenting some definitions.

26



(0,4)e
i = (3 3)
(0, 1)@ 5= (4,1)
® w—16-03 T1
(17 0) 2 \ Y

Figure 4.1: Optimal solutions

Definition 4.1. A feasible solution z* € X is said to be an optimal solution (minimum
point) of problem (4.1)), if

f(z*) =min f(z), ie f(z*) < f(x), Vx € X.

zeX

Remark 4.1. Such a solution is said to be global, as opposed to local minima which satisfy
this definition only in a neighborhood of x*. Formally, * € X is a local optimal solution of

problem (4.1, if
de >0, f(z") < f(z), Ve € X NB(xz",¢),

where B(z*,e) = {x € R"/|[|z — 2*|| < e}

Definition 4.2. Let z € X. A vector d € R" is said to be a feasible direction at x, if there
exists a number & > 0 such that

r+ade X, Va € |0,al.

If x is an interior point of X, any direction d is feasible.

4.2 Writing the optimality conditions

In unconstrained optimization (X = R"), we looked for descent directions that allowed us
to decrease the function f until reaching its minimum. In the framework of constrained
optimization, we look for feasible directions that allow us to minimize f while remaining
within the domain of feasible solutions.
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X2

For the point z;,¢, all directions
are feasible.
For the point Zpoyng:

X e d; is a feasible direction.

d e d5 is a non-feasible direction.
1
Lhoud /

> L1
Figure 4.2: Feasible directions

Let’s now return to optimality conditions and consider the following optimization prob-
lem.

Example 4.2.

st. x>1

{minf(x) = 2?2

=
5
S~—

The function f(x) = 2 reaches its
minimum at z* = 1, with f(z*) =
1. However, the gradient of f does
not vanish at z* = 1; Vf(1) =
ffay=24+o.

=

Consequently, the condition V f(z) = 0 is no longer valid to characterize optimality in the
constrained case. However, the formulation of the optimality conditions is based on the same
principle through the introduction of a function called the Lagrangian (or Lagrange function).
This function is the combination of the objective function f and the constraint functions h;
and g;. The search for extrema of f on X is then reduced to the search for unconstrained
extrema of this same Lagrange function. Theorem states a generic necessary optimality
condition for any form of the feasible solution set X.

Theorem 4.1. Let f : R — R, of class C'. If z* is a local minimum point of problem
(4.1)), then for every feasible direction d € R™ at z*, we have

[Vf(z")]"d =0
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This condition means that at a minimum point, no direction can decrease the value of the
function f while maintaining feasibility (staying in the set X'). For constrained problems, this
condition is equivalent to the first-order Karush-Kuhn-Tucker (KKT) optimality condition
which will be studied in the following sections.

4.3 Optimization of nonlinear functions under equality
constraints

Consider the optimization problem under equality constraints:

min f(x)
{ s.t. h(x) =0, (4.2)

where:

hi(x)
h:R" = RF hz)= :
hy ()

The Lagrange function associated with problem ({4.2])

k
L(w,p) = f(x) + p h(x) = f(2) + ) pihi(z)
i=1
where p = (1, ..., u*)7" is the vector of Lagrange multipliers.

4.3.1 Necessary optimality conditions

Assume that f and h;, i =1,k are of class C*.

Theorem 4.2 (First order necessary condition). Let x* € X be a minimum point of problem

(4.2) and assume that

the vectors Vhy(z*), Vha(z*),..., Vhi(x*) are linearly independent. (4.3)

Then, there exists a Lagrange multiplier vector pu* such that:

oL

V.L(z" ") = %(x*,,u*) =0 (4.4)
oL
V. L(x", 1) = 8—M(x*,,u*) = 0. (4.5)

Remark 4.2.

1. The relations (4.4)) are called the Lagrange stationarity conditions.

2. The condition (4.3) is called the constraint qualification condition.
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Remark 4.3. The constraint qualification condition (4.3)) holds, in particular, if constraints
are affine.

Definition 4.3. A vector z* € X is a stationary point of problem (4.2)), if there exists a
vector p* such that the pair (z*, u*) satisfies the relations (4.4)).

Thus, the search for stationary points of problem (4.2)) is reduced to solving the system (4.4]).

Theorem 4.3 (Second order necessary condition). Assume that the functions f and h;
fori =1,....k are of class C*. If z* € X 1is a solution of problem (4.2)) satisfying the
qualification condition (4.3)) and u* is the corresponding Lagrange multiplier vector, then:

dTw(I ,1)d >0, (4.6)

Vd € R" such that d" Vhi(z*) =0, i = 1,k.

Definition 4.4. A solution z* € X of problem (4.2)) is said to be regular if it satisfies the
constraint qualification (4.3)).

4.3.2 Sufficient optimality condition
Assume that the functions f and h; for i = 1,...,k are of class C?.

Theorem 4.4. A stationary point x* of problem (4.2)) is a locally optimal solution, if there
exists a Lagrange multiplier vector u* such that

o’L, ., .

Vd € R™, ||d|| # 0 such that d' Vh;(z*) =0, i =1, k.

4.4 Optimization of nonlinear functions under inequal-
ity constraints

Consider the optimization problem under inequality constraints:

{min f(x) (4.8)

g(x) <0,

where:
g:R" - R™ g(x) =

We will denote I = {1,...,m}.
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Definition 4.5 (Active/passive constraint).
A constraint g;(z) <0 is:

e Active at point z if g;(z) =0
e Passive at point z if g;(z) <0
We will denote by I,(x) = {j € I | g;(x) = 0} the set of indices of active constraints.

Definition 4.6. A vector d € R” is said to be a feasible direction at point z* with respect
to the constraint g;(z) <0, if:

d"Vg;(z*) <0 for g;(z*) =0
d arbitrary for g;(z*) <0

Definition 4.7. A vector d € R" is a feasible direction at point x* with respect to the
constraints g;(z*) <0, j=1,...,mif it is a feasible direction with respect to each of these
constraints.

Remark 4.4. To find the feasible directions with respect to the constraints of problem (4.8)),
it suffices to solve the system:

d'Vg;(x*) <0, forje I,(z*)

4.4.1 Necessary optimality conditions

Based on the notions of feasible direction and descent direction (see chapter [1)) for the
function f, we give the following necessary optimality condition.

Theorem 4.5. Suppose that x* is an optimal solution of problem (4.8). Then, there exists
no vector d € R" satisfying the following system:

d"Vf(z*) <0,

d"Vg;(z*) <0 for all j € I,(z*)
This theorem characterizes optimality using the notions of feasible and descent directions:
at the optimum no direction can improve the value of f without violating the (active)
constraints. If such a direction existed, it would contradict optimality. This optimality
condition is none other than the geometric formulation of the Karush-Kuhn-Tucker (KKT)

optimality conditions which we will present below.

Let us first introduce the Lagrange function associated with problem (4.8]):
k
L(w,\) = f(2) + ATg(x) = f(2) + D Nig;(x)
j=1

where 0 < X\ = (A,...,\y)" is the vector of Lagrange multipliers.
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Theorem 4.6 (Karush-Kuhn-Tucker necessary conditions). Let x* be a minimum of problem
(4.8) such that the vectors Vg;(z*) for j € I,(x*) are linearly independent. Then there exists
a unique vector X\* such that:

k
V.L(z* \) = Vf(x*>+ZA;fvgj(x*>o (4.9)

() Tg() = 0 (4.10)

>

*
Vv
=~
—_
—_

The relations (4.10) are called complementarity conditions and the relation (4.11)) is the
positivity condition of the Lagrange multipliers.

Definition 4.8. A feasible solution z* € X is said to be regular if the vectors Vg;(z*) for
i € I,(x*) are linearly independent.

Definition 4.9 (Strong/weak constraint). A constraint g;(z*) < 0 is said to be strongly
active at point * if AT > 0 and weakly active if A7 = 0.

Define the set of indices of strongly active constraints at point x* by

I; (") ={j € I|gj(x) =0, A >0},

a

and the set of indices of weakly active constraints by
I (z")={jel]gi(zr)=0, \*=0}

Theorem 4.7 (Second order necessary condition). Assume that the functions f and g; for
Jj = 1,m are of class C%. If x* is a reqular minimum point of problem (4.8) and X\* is the
corresponding Lagrange multiplier. Then:

0L

T * *

Y 52 @A)y 20

for all y € R™ satisfying:
y'Vg;(z*) =0 Viel (z")
y'Vg;(z*) <0 Viel, (z%)

4.4.2 Sufficient optimality condition

Definition 4.10 (Pseudo-stationary solution). A point z* € X is said to be a pseudo-
stationary solution of problem (4.8]) if there exists a Lagrange multiplier vector A* > 0 such
that

g—i(:@*,m = 0 (4.12)
(A)Tg(a) = 0 (4.13)
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Theorem 4.8. Assume that the functions f and g; for j = 1,m are of class C*. For a
pseudo-stationary solution x* to be locally optimal, it is sufficient that:

0?L
—l—_
Y a2
for ally € R™ ||ly|| # 0 satisfying:

{yTVgx:c*) =0 Vielf(«)

(", A" )y >0

y'Vg(z*) <0 Viel (z)

4.5 Optimization of nonlinear functions under mixed
constraints (equality and inequality)

Consider the following optimization problem:

min f(x)
hi(x)=0 i=1,...,k (4.14)
G(r) <0 j=1..m

where:

fR"—=>R
hi:R*" >R (i=1,...,k)
gi:R"—=R (j=1,...,m)

The associated Lagrange function is defined by:

E(I Iy A + Z,uz i + ZAJQJ(J’)
j=1

where ;1 € R¥ and A € R™ are the Lagrange multipliers.

4.5.1 Necessary optimality conditions (KKT)

Theorem 4.9. Let x* be a local minimum of problem (4.14). Assume that the gradient
vectors of the active constraints:

{Vhi(z") |i=1,...,k} U{Vyg;(z") | j € I,(z")} are linearly independent.

Then, there exist Lagrange multipliers p* € R* and \* € R™ such that:

V. L(z*, 1 \) =0 (4.15)
hi(z) =0 Vi=1,....k (4.16)

Ajgi(z*) =0 Vji=1,...,m (4.17)
AN>0 Vi=1,...,m (4.18)



Example 4.3. Consider the following optimization problem:

min 2% + % + 22

subject to
r+y+z=3
20 —y+2<9H

Since the constraints are affine, we can directly apply the (KKT) conditions (see remark
for constraint qualification condition): at a minimum (z,y,z), 3u € R, A € R, such that
Vf(x,y,2) + uVh(z,y,2) + AVg(z,y,z) = 0:

20+ p+2X=0
(1) 20+ p—A=0

22+ p+A=0
(i) z+y+2=3
(iii) A2z —y+2—5)=0
(i) A>0

Case 1: Assume that A\ #0 — 2x —y+2=5

= (—p—2))/2
() = {y=(—n+N/2
= (—p=N)/2

(1) = —p—22A—pu+A—pu—A=6 = 3u+2\A=—-6 (a)
2t —y+z2=5 = 2(—p—2\) —(—p+AN)+(—p—A) =10 = pu+3x=-5 (b)

By computing (a) - 3(b) we obtain 2\ — 9\ = —6 + 15, i.e., A = —9/7 < 0 which
contradicts (iv)
Case 2: A = 0. Therefore (i) becomes:

20 +p =0
20+ pu=0 = 2(r+y+2)+3u=0 = 2x3+3u=0 = p=-2
224+ =0

— r=y=z=1.

We obtain the stationary point (z,y,z) = (1,1,1).
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4.5.2 Sufficient optimality condition

Theorem 4.10. Assume that f,h;,g; € C*. If for x* € X there exist multipliers p* € R*
and \* € R™ satisfying the system (4.15)) and for all y € R™, ||y|| # 0, such that:

y ' Vhi(z*) =0 Vie I ("),

y ' Vhy(z*) <0 Vil (x%),

y'Vgi(z) =0 Vi=1,...,m,
we have: )

Yy @(‘r*uﬂ*v )‘*)y > O)

then x* is a local minimum of problem (4.14]).

4.5.3 Convex Optimization

We refer to convex optimization if, in problem (4.14), we have:
1. f convex,
2. h; affine Vi =1,... k,
3. gj convex Vj =1,...,m.

In this case, the KKT conditions are also sufficient for optimality. Furthermore, any
solution to the problem is a global minimum.

Theorem 4.11. (KKT, necessary and sufficient condition) If in problem , we have
1. f is convex and differentiable,
2. hy, Yi=1,...,k are affine,
3. g5, Y3 =1,...,m are convex and differentiable,

Then a necessary and sufficient condition for x* € X to be a global minimum of the problem
is that there exist Lagrange multipliers u* € R¥ and \* € R™ such that

V(@) + p*Vh(z*) + X*Vg(z*) = 0.
Example 4.4. In example [4.3] the studied problem is convex. Indeed, we have

1. The objective function is strictly convex, since its Hessian defined by
200
Vif=10 2 0
00 2

is positive definite on R3.
2. The feasible set X = {(x,y,2) | +y+ 2 = 3,22 — y + z < 5} is also convex, because:

35



e The equality constraint h(z,y,z) = x +y + 2 — 3 = 0 defines an affine set (hence
convex)

e The inequality constraint g(z,y,2) = 2x —y + z — 5 < 0 defines a half-space (convex
set)

e The intersection of convex sets is convex.

Therefore, according to theorem [£.11], the stationary point found previously is a strict
global minimum
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Chapter 5

Exercises

5.1 Exercises with solutions

Exercise 5.1. Let the set C'= {(z,y) € R?*: 22 + y* < 16}.
Show that C' is convex using
a) the definition. b) the properties of convex functions.

Solution 5.1. a) Using the definition of convex sets

A set C is convex if:
VPl,PQGC,‘v’)\G[O,l], P:)\Pl—F(l—)\)PzEC

Let P = (x1,y1), Py = (22,y2) € C and X € [0, 1].

We have:
P = (u,v) = XMz, y1) + (1 = A)(22, y2)
=\ 1—A
L z1 + ( )2
v=Ay+ (1 =N
Hence

w4 v* = [Azy + (1= Nao)? + yr + (1= Vo)
= N2x] + (1 = A)%25 + 2A(1 — Naze + Ny7 + (1= N)%0s + 201 — N yaye

Using (21 — 22)? > 0 = 27125 < 22 + 23 and similarly (y; — y2)? > 0 = 2y190 < y? + y3, we
get:

w? +v? < N+ (1= N2 + M1 = N) (2] +23) + Ny + (1= N5 + A1 =\ (yi +v3)
Simplifying the expression yields:

u? +v? < Mot +yd) + (1= M) (23 +93)

37



Since (z1,v1), (T2, y2) € X, we have 2% + y} < 16 and 22 + y5 < 16. Therefore:

W+ < A-16+(1—))-16 =16

= u? +12 <16 = (u,v) € C

It follows that C'is convex.
b) Using properties of convex functions

C' is convex if it represents the level set of a convex function (see proposition . We
can write C' = {(z,y) € R? : f(z,y) < 16}. Then C = Lys(f) is the level set of the
function defined on R? by f(x,y) = 2% + y?. Furthermore, the Hessian matrix of f

Vif(z,y) = (g g) is positive definite on R%. Consequently, C' is a convex set.

Exercise 5.2. Study the convexity of f(z) =1, 2> 0.

Solution 5.2. We want to determine whether f is convex on R, i.e., whether:
Va,y €RY, VA€ 0,1, Fx+ (1—Ny) < Af(2) + (1 — V()
Let z,y € R%, A € [0,1]. Consider the difference:

a=fAr+(1=Ny) = Af(z) = (1=XNf(y)
B 1 Ao1-2
R Y A
ey Dt (1= Ayl + (1 Xl
zy(Az + (1 = N)y)
zy — Nay 4+ A1 = N)a? + M1 = N)y* + (1 — \)?zy]
zy(Az + (1 = N)y)
y — Moy — M1 = Nz? = A1 = N)y? — (1 = Ny
zy(Ar + (1 = N)y)
[1— A= (1= Aoy — ML= N (@ +y?)
zy(Az + (1 —N)y)
C 201 = Ny — M1 = A)(2? + y?)
zy(Ax + (1 =Ny

Thus:
e e G

ay(Axr 4 (1= N)y)
For z,y > 0, = # y, A €]0, 1], we have:

e \N(1-X)>0
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e (x—y)*>0
o xy >0
e \Mx+(1-XNy>0

Therefore o < 0,
We conclude that for x,y > 0, x # y, A €]0,1][:

fOz+ (1 =Ny) <Af(x) + (1 =N f(y)
The function f(z) = 1 is strictly convex on R7.
Exercise 5.3. Let f(z) = 7 + 2235 — 2z139 + €™17%2
(a) Compute the gradient V f(x)
(b) Compute the Hessian matrix V2 f(z)

(c) Verify if V2f(0,0) is positive definite.

Solution 5.3. (a) The gradient is computed as:

0

_f — 21:1 _ 2£U2 + e$1+$2
8ZE1

0

oF _ dxy — 221 + 1172
8352

(23 — 2my 4 M2
Vf(l') - (4ZL'2 - 21‘1 + €x1+x2)

(b) The Hessian matrix is:

82
a_;;:2+€$1+m2
82f r1+x2
a—x%:4+€ +
o*f B 0 f

—24 6$1+$2

(91‘181‘2 N 6@(‘%1 B
2 + ew1+m2 -9 + eﬂ?1+x2
2
V f(f[,') — <_2+e$1+1‘2 4+€Z‘1+$2 )

(c) At point (0,0):

) (241 —2+1\ (3 -1
eran- (3 20 -

Check Sylvester’s criterion:
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e First leading principal minor: A; =3 >0
3 -1

o 5':15—1:14>0

e Second leading principal minor: Ay = ‘

Since all leading principal minors are positive, V2 (0,0) is positive definite.

Exercise 5.4. Let f(z) = 2] + 23 + 23 4+ 129 + T23
(a) Find all stationary points.
(b) Determine the nature of these points.

(c¢) Does the function have global extrema?

Solution 5.4. (a) Compute the gradient:

211 + 29
Vf(x) = 2$2 + 21 + 23
2[E3 —I— T2

Set Vf(z) =0:

2£L'1—|—.I‘2:0
$1+2$2+LL’3:0
$2+2$3:0

From : Ty = —2T

From Z 203 = —T9 = 221 = T3 = T
Substitute in (5.2)): @1 +2(—2x1) + 21 =21 — 4w+ 21 = 227 =0= 27 =0
Therefore: x5 =0, x3=0

The only stationary point is z* = (0,0, 0).

(b) Compute the Hessian matrix:

210
Vif(z)=|(1 2 1
01 2
Check leading principal minors:
e A1 =2>0
2 1
.AQI‘l 2’:4—1:3>0
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.Agz

S =N

10

2 1|=24-1)-12-04+0=6—-2=4>0

1 2

All leading principal minors are positive, so the Hessian is positive definite.
Therefore, z* = (0,0,0) is a strict local minimum.

(c) Since the Hessian matrix is constant and positive definite everywhere, the function is
strictly convex on R3. Thus, z* = (0,0,0) is a global minimum.

Exercise 5.5. Apply 3 iterations of the gradient method with optimal step size to minimize:
f(@) = o + 223

starting from point z° = (2,1). Show all calculations.

Solution 5.5. V f(x) = (22, 4x,)"

Iteration 1: 2° = (2,1)7, dy = =V f(2°) = (-4, —-4)"

xl = 2% + Oydy = (2 — 46,1 — 46,) T

d(0) = f(2° + 0dy) = (2 — 40)* +2(1 — 40)? = 6 — 320 + 48067
§/(0) = —32+ 960 = 0 = —32 + 960y = 0 = O = L

l’l = fL’O + 00d0 = (%, —%)T

[—
o+
@
=
V)
=+
—
o
=
b
8

=
I

—~

it

|

ol

$2:$1+01d1:(§—
¢(0) = f(z' +0dy) = (
¢/(9):—%+99769:O:>—% 9691:O:>91:
$2:$1+91d1 = (%,%) .

)
iy

O DO |~

4|

Note that for this convex function, the global mimimum is 2* = (0,0) with f(z*) = 0.

Exercise 5.6. Consider the minimization problem of the quadratic form

F(z) = 2% + 422 — 42, — 8x5 — min
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1. Write the first-order optimality conditions. Are these conditions sufficient?
2. Solve these conditions and find the minimum z* of F on R?
3. Find the formula of the optimal step size for minimizing a quadratic form.

4. Apply the gradient algorithm with optimal step size to minimize F', starting from the
initial approximation x° = (1,1)".

Solution 5.6.
1. First-order optimality conditions:
The gradient is:
o 21’1 —4
VFE(z) = (831:2 _ 8) :
Rr;—4=0 = x1=2,
8£C2 —8=0 = To =— 1.

VF(JU):O:>{

So the unique stationary point is 2* = (2,1).
For sufficiency, the Hessian matrix:
2 0
2 _
V°F(z) = <O 8) ,

is positive definite (Leading principal minors: A; > 0 and Ay > 0).
Hence, F' is strictly convex, so the first-order conditions are sufficient for a global minimum.

2. Solution of the minimization problem
From question 1., we have: z* = (2,1)"T with F* = -8.

3. Optimal step size for a quadratic form
Let F(z) = i2"Dx — CTx, with

=8 =)
Let z* be given and the direction dj, = —V F(2*), then the next point is given by:
oF T = 2% 4 0,dy,
where 6}, is solution of the optimization problem:
%121(1)1 F(2* + 0dy,)
Minimize F' with respect to # = 6 cancels its derivative.
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Therefore:

OF (z* + 0dy,)

5 =d} -VF(z" +0dy) =0

= dj [D(a* + 0dy) + C] =0
= d, Dz* +0d} Ddy +d, C =0

Lo _d;ka +d} C

d Dd,
dy [Dx* + C]
g, — k17 =~
= O 4T Dd,
—d} VF(z")
=g = —
g dJ Ddj,

4. Gradient with optimal step size for minimizing F"

= (1,1)7, do=—VF(z") = (3)

oy @00)

Oy =

1
dTDdy 2 0\ /2 8 2
20 (5 5) ()

10 (1 12_2
v +0°d°_(1 500/ 1

VE(z) = (8) = stop

r* = (2,1)7 is the unique global minimum of F. Convergence in one iteration.

Exercise 5.7. Consider the optimization problem:

min f(z) = —3ziz,
s.c. h(z) =622+ 6x109 —12=0

1. Prove that the constraints qualification holds.
2. Write the Lagrange conditions.

3. Find the solution of the problem.

43



Solution 5.7. 1. Qualification of constraints:

We have:
121‘1 —+ 633'2)

6371

Vh(z) = (

The constraint is qualified if VAi(z) # 0 (a vector is free if it is not null).

. 121’1 + 6$2 i 0 . -
Vh(x)—0:>( 62 )—(0):>:v1—:v2—0

Therefore Vh = 0 for z = (0,0). However, (0,0) ¢ X = {z € R? | 622 + 6z,75 = 12}
Therefore the constraints qualification holds for all x € X, and the Lagrange conditions are
necessary for optimality.

2. The Lagrange function:

L(z, p) = —3xTwe + (627 + 62971 — 12)

oL
— = — 122129 + 12p21 + 6pxs =0 (5.4)
8:1:1
oL
s = —32} + 6uz =0 (5.5)
oL
_aM = 627 + 6z129 — 12 =0 (5.6)

where 1 € R.
From (5.5): z1 = 2u and from (5.6): p = +1.

p=1l=x=2 =4
p=—-1=x=-2 2,=—-4

Therefore the stationary points are: (a3, x5, u*) € {(2,4,1), (=2, —4,—1)}.
The Hessian of Lagrange function

PL <—6:r;2 +12p —6x1 + 6u>

ox2  \ —6x1 + 6u 0

Therefore the Hessian at point (2,4, 1) is not defined on R2.
We then search for its nature on the set defined by:

H={deR?|d"Vh(z*) =0}
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We have: Vh(2,4) = (ﬁ) Then

H= {(dl,dg) € R? | (dy,dy)" (g) = 0}
={d=0o(1,-4),a e R"}
Let d € H, ||d|] #0,d=«a(l,—4), a« € R*:
dT2L(2,4,1)-d = a(1,—4) <__162 _06) <_14) = a?(12, —6) (_14) = 3602 > 0,Va € R*
Therefore dT%(Q, 4,1)d > 0= 327’;“(2, 4,1) is positive definite.

We then conclude that (2,4) is a local minimum.

Likewise, we conclude that the point (—2, —4) is a local maximum.

Exercise 5.8. Solve the following optimization problem:

min f(l") = —3[E1 + o — $§
st. glx)=x14+22+23<0
h(:c) = —x + 2:L’2 +$§ =0

Solution 5.8. The Lagrangian function:

L(.T7 )\, ,u) = —31’1 + Ty — ZE§ + )\(ZEl + o + ZE3) + ,U(—Il + 21’2 + xg)

KKT system:
First-order conditions:
OL — 34+ A—p=0

oz

OL =14+ X+2u=0
2

Complementary slackness and positivity constraints:

/\(I’1+ZE2+I’3):O
—x1 4 215 + 23 =0
A>0

Solving the system:
Case 1: A =0, then from the first two equations:

A=3
A=-—1
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Case 2: A > 0, then from the first two equations:

A—p=3 A=
=
A2u=—1 o= —

Since A = 2 > 0, the constraint g(z) is active:

wlot

ST

$1+$2+$3:O

From the third derivative:

b} 4 5 8 14 5
23+ -+2|—z)a3=0= 223+ - —-13=0=> ——a3+-=0= a3 =

3 3 3 3 3 3

Using the equality constraint:

+ 229 + L 2—O:> +2 +25—0
et T\ ) T T A2 T 196

Using the active inequality constraint:

)
J]1+ZL‘2+—:O

14
Solving the system:
SL’1+.T2:—15—4 xlz—%
DS T DV
R R T T2 = ~5s8
115 95 5 \ 5) 4
a = —— To — ——— €T — —_— — — —_— ——
DT URss TPT TRsy T I 3 1773
Hence, the unique stationary point 2* = (—12, 298, %), with (A*, u*) = (3, 3)

The Hessian Matrix of the Lagrangian

0 0 0
G2 @A) =100 0
00 —242u
Substituting px = —4/3,
00 O
w(m,)\,u): 0 0 O14
00 -4
Following Sylvester criterion, %(az*, A p*) >0, on R3

We then chek its nature on the Hyperplane

H={yecR®|y"Vh(z*)=0; y' Vg(z*) = 0(g active)}
We have g(z*) = 0 and A* > 0, then g is strongly active.
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We calculate

1 —1
Vg(z*)=11] and Vh(z*)=| 2
1 5/7

Then

H={y=a(-3/7,-4/7,1)",a € R}
Study of the Quadratic Form on H

00 0 -2

0*L 7
T * * * 2 3 4 4
——(z* )\ = -2 42 1100 0 —1
y a332(567 Wy =a’ (-2 -2 1) 00N K

:a2(1-(—%)-1):a2(—1§4) <0 (for a#0)

Hence, x* is a local maximum of the problem.

5.2 Exercices without solutions

Exercise 5.9. Let m convex functions f;(z), i = 1,m defined on a convex set X C R™.
Show that the following functions are convex:

0, t=1,m

f(x) = Z@ifi(x>7 Q;

IV

Exercise 5.10. Find the extrema of the following functions
° f({lj) = 21‘? — 3$g — 6331 + 36$2

o g(x) = 2% + 23 + 23 — 2w 7973

o k(z) = o + 13 — 222 — 223 — 4w 25,

Exercise 5.11. Consider the following quadratic form
F(x) = F(x1,79,73) = —2% — 25 — 73 — 21,73
1. Write F in the form {27Qz + ¢"z.
2. What is the nature of the matrix Q)7
3. Is the function F' convex?

4. Find the stationary points of F.

5. What is the nature of these stationary points?
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Exercise 5.12. Consider the function f : R* — R defined by
flz, oy, 2) =" Y 4 ev=" + 22
1. Determine whether f is convex on R3.
2. Find all critical points of f.
3. Deduce the minimum.

4. Is this minimum global? Justify your answer.

Exercise 5.13. Use the Fletcher-Reeves conjugate gradient algorithm to minimize the func-
tion X
f(ilf) = 5513111 + (LUQ — 1'1)2 +1

on R? starting from z° = (1, 2)".

Exercise 5.14. Consider the problem:

{minf(x) = 2% + 13

st. 2?4+ 25 —-1=0

Find the stationary points and determine their nature.

Exercise 5.15. Solve the following optimization problem:

min f(z) = 2?3 + 23
s.t. 1+ T2 Z 1
1,22 2 0,

using KKT conditions.

Exercise 5.16. Solve the problem:

min f(z) = (21 —2)* + (z2 — 1)°
s.t. x% —x9 <0

xp+ g <2
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