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"I— Série de TD numéro 2—X

Exercice 1 :
a. Déterminer la limite éventuelle de chacune des suites numériques suivantes :

nsinn 3w ontl 4 gntl L B
n2 +1 : n on 4 3n : 3n :
L n

Lo ou,=vntl—yn, 2 v,=

b. Soit « la suite définie par : = —_
1 (un)nEN ul nie par : Un kiz:l 3+ k

Mountrer, & laide du théoréme d’encadrement, que (u,,) converge et déterminer sa limite.

Exercice 2 : On considere la suite (u,,)nen définie par : { uo =0
Unt1 = Uy + 2

1. Montrer que 0 < u,, < 2, Vn € N.
2. En déduire la monotonie de (uy,).
3. On considere la suite (v, )nen définie par v, = 2 — u,.

a. Quel est le signe de (v,)?

b. Montrer que pout tout n € N, on a UZ—H < %

n

c. En utilisant un raisonnement par récurrence montrer que :
* 1 n—1
Vn € N* v, < (5)

d. En déduire la limite de la suite (v,), puis celle de (u,).

n N
: . Qi : 46 Ca (=1kH!
Exercice 3 : Soit (uy)nen+ une suite définie par : u,, = kzl —
On considere deux suites v, et w,, définies par v, = ug, et w, = Uzpt1-
1. Montrer que (v,) et (w,) sont adjacentes.

2. En déduire que (u,) converge.

Exercice 4 : Soient (u,)nen €t (vn)nen deux suites définies par :

Uy, + Up, Uy, + 20,

T et Un+1 = T

1. Montrer que (wy,)nen définie par w, = v,-u, est une suite géométrique de raison %.
2. Montrer que (u,) et (v,) sont adjacentes.

3. On consideére la suite t,, = 2u,, + 3v,,. Montrer que (¢,) est constante.

Ug = 03 Vo = 127 Un+1 =

Exercice 5 : Soient (up)nen €t (Un)nen deux suites définies par :

2uy, + vy, Up + 20,
ug et vg tels que ug < vg, Up41 = T et vpy1 = ———

1. Exprimer que u, — v, en fonction de u,_; — v,—1 et en déduire la limite de (u,, — v,).
2. Montrer que (uy,) et (vy,) sont adjacentes et calculer leur limite.
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