Limites de quelques fonctions
trigonométriques

1 Limites fondamentales

1.1 Limite de référence

lim 20— 1 (1)
z—0 X
1.2 Limites dérivées
im PR 2)
x—0 x
. 1—cosz 1
M T ®)
1 —
lim — 2% _ g (4)
x—0 x

Remarque : Les limites 1,2 et 4 peuvent étre obtenu par la regle de I’'Hopital ou bien en

- f(0
utilisant la définition de limite lin%) L(J)C() = f’(0). Par contre la limite 3 peut étre calculer avec ’'Hépital ou bien en
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2 Limites avec combinaisons linéaires
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Exemple :
tan4x

im
z—0 tan 2z




2.4 Type:

Méthode :
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3 Limites avec cosinus

3.1 Forme avec 1 — coszx

Exemples :
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Exemple :
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4 Quotients combinés

4.1 Type:
Exemple :
4.2 Type:

asinx +btanx
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5 Limites en un point zj # 0

5.1 Limites directes (par continuité)

lim sinz = sinx
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5.2 Formes 2 en z, (dérivées)
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. COST — COS T .
lim ————— = —sinxg
T—To Tr — X

Exemples :

sinx — 1
- i —_ = 2)=0
i, g = cos(n/2)
—1
- lim%:fsinO:O
x—0 X

6 Limites a ’infini

6.1 Cas ou la Limite n’existent pas

lim sinz n’existe pas (Compris entre -1 et 1)
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lim cosx n’existe pas
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lim tanx n’existe pas
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6.2 Quotients avec polynomes

. sinx
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Démonstration de la derniére :

Posons ©u = —, quand x — 400, u — 0
x

6.3 Produits bornés
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Méthode : Encadrement .
. 1 sinx
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Par le théoreme des gendarmes : limite = 0
7 Exemples
7.1 Exemple 1
3sin2x + 4 tan 3x
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Solution :
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7.2 Exemple 2

. sinbz —sin3x
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Solution avec formule de Simpson : (Cette méthode est donnée a titre d’information seulement)
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sin bx — sin 3z = 2 cos(4x) sin(x)
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7.3 Exemple 4

Solution :

7.4 Exemple 5
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8 Résumé

Limite Résultat
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9 Remarques

9.1 Meéthodes de résolution

1. Factorisation : Utiliser les formules trigonométriques

2. Regle de L’Hopital : En dernier recours



9.2

Formules trigonométriques

sin(a + b) = sinacosb + cosasinb

sin(a — b) = sina cosb — cosasinb
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cosp — cosq = —2sin S sin 5



