Limites-Continuité-Dérivabilité

Exercices

Exercice 1. Déterminer pour chaque fonction f ci-dessous le
domaine de définition :

1) f(z) = In(v/1 — 22?), 2) f(x)
3) flw) = (—— )=, 4) f(x) = \/cos(2x),

r+1

1
5) f(z) =In(In(1 +x)),  6) f(z) = { — =20

Exercice 2. Calculer les limites suivantes, en utilisant si né-
cessaire les fonctions équivalentes (pas de régle de I’'Hopital) :

—32% + 5z — 10
1) lim oL T 9) lim x— V1t a?

r—+00 2;132 —+ 10 r—+00

1
3) lim zln 4) lim x? cos(—)
z—>400 241 z—0 T



. 1 —cos?(x)
5) :Clﬂzosm(x) In(z) 6) lim ——————

e—0  tg(27)
In(1 2 In(1+ 2 2

7) fim 2LET) 8) fim UL F 22+ 27)

z—0 €T z—0 X

) 1—x . 1 —tg(w)
9) lim ———— 10)
) N E =29 ) Zmz sin(x) — cos(x)
4
116 Va2 =2z +1

11) lim™ 19) fim Y —20H 2

—2 T — 2 z—1 r—1

Exercice 3. Etudier la continuité des fonctions suivantes sur
leurs domaines de définition et indiquer si elles peuvent étre
prolongées par continuité en certains points :

) i) = 2P ) ) = a2sin( )
sin(mx) sin(mx)
) fe) = T gy - L
(2% — 4 siz <0
V
5) fs(z) =< sin(3z) si0<az<m
V

—1+4cos(2r) six>m7

( sin(Qx)_l
S — six #0
6) fﬁ(x) =9 vV *
2 stz =0

\

Exercice 4. Déterminer le réel a pour que la fonction f soit
continue sur son domaine de définition :

e — 1
_— 1 —rm<xz<0
f(z) = sin(22?) SLoTsT

r—a-+1 six >0



Exercice 5.

1) Montrer que I'équation ze” = 1 admet au moins une solution
dans 10, 1.

1
2) Montrer que I'équation 4x3 — 3z + 3= 0 admet exactement

trois solutions dans | — 1, 1].

3) Montrer que 'équation 23 + 3z + 1 = 0 admet au moins une
solution entre —1 et 0. La solution est-elle unique ?

Exercice 6. Etudier la dérivabilité des fonctions suivantes sur
le domaine de définition et déterminer leurs dérivées :

4 1 B
22 cos (—) siz#0 o
Lo\ ) f() = { v

L0 siz=0 0

(41 siz < -—1
vV
cos? (E) siz>—1

\ 2

Exercice 7 :
a) En utilisant la régle de I'Hopital, calculer les limites

suivantes :
T
_ sin(2z — =)
1) Bim EEOS@ g T2
2=0 x — sin(z) T V2
4 cos(z) — >
( : )
3) fim LSy 5\

z—too 2 + sin(x) a—4

six #0

stz =20



b) En utilisant le théoréme des accroissements finis (TAF),

Montrer que :

b— b, b—
1) Pour 0 < a <0, - ¢

2Q)Vx eR, e*>x+1

Exercice 8. Déterminer le domaine de définition des fonctions
suivantes, les limites aux bornes des intervalles et leurs fonctions
dérivées :

1) f(z) = arcsin (i i— 1) 2) f(x) = arccos(In(z))
3) f(z) = argsh (%) 4) f(x) = argch(2z + 1)
5) f(x) = argth(e”) 6) f(x) = argcoth(2z + 2)

Solutions

Exercice 1. On détermine le domaine de définition, D; des
fonctions :

L. f(z) =In(v/1—2?).

On a:
VvV1—22>0
— 1—-22>0
T —00 —1 1 +o00
signe de 1 — z* — 0+ 0 —

Par suite Dy = |—1,1].



signe de x - 0 + +

signe de (2 — ) + + 0 —

Par suite Dy = [0, 2].

w21n< v >
3. f($)=($i1)12=e zH+ 1/
On a:

signe de z(x + 1) + 0 -0 +

Par suite Dy = |—o00, —1[U]0, +o0].
4. f(x) = \/cos(2x).

On a:

r € Dy <= cos(2z) >0,

<:>2€_7T7T
x —_— —
272

I
@$ — —
44

|\




Comme la fonction x — cos est périodique, de période 2.7,
alors

—7 T

D=/ {T+2k7r,z+2k:7r :
keZ

. f(z) =In(In(1 + 2)).

On a:

1+2>0
€Dy <
In(x+1) >0

z+1>0

r+1>1
1+x2>0

x>0

T —00 —1 0 400
signe de = + 1 = 0 + +
signe de z — - 0 +

Par suite Dy = |0, +00.

- flx) =
On a,

l1—=x

1
s xr>0— Dy
1, r<0— Dy

D; = Dy U Dy,

est défini si x # 1, donc,

1
Pour z > 0,
1—=z

Dy = [0,1[U]1, +oo].
Pour z < 0, f(z) =1 est défini, donc,
DQ = ]—O0,0[

Par suite,
Dy =]—00,1[U]1, +o0|.



- rz>0— Dy
— 2—x’ —
v f($)_{m3+x, r<—1— D,

Df = D1 UD2

est défini si x # 2, donc,

1
Pour =z > 0, 5

Dy =[0,2[U]2, +-00].
Pour z < —1, 2 + x est défini, donc,
Dy =]—o00,—1].
Par suite,

Dy =]—00,—1[U0,2[ U ]2, +00].

x+1
On a
r—1 .
r €Dy < est définie
r+1
— x# —1
alors
Dy =R—-{-1}.
Exercice 2. Calcul de limites
L L —3x2 4+ 5x — 10 o =3z =3
) = lim = —.
e e 222+ 10 rteo 222 2
2. On a,

) ) (x —vV1+2?)(r+V1+ 2?)
lim z—V1+22= lim ,
T—r 400 T—r 400 r+V1+ x2

. 2P —1—2a?
= lim ,
z—tooy + /1 + a2
-1



3.

4.

D.

6.

On a,

. x '
i wln e = lim ooy 5

z—34002 172 -+ 1

lim 2° cos(;) = 0 car 7—0 ,
o0 cos(=) est bornée

sin(x)

sin () lim

lim sin(z)In(z) = lim x2ln(z) =0car { z—0 =z =1
z—0 e—0 T limox In(z) =0
rT—>

On a,

b L—cos?(@) (1= cos(x))(1 + cos(x))
z—0 tg(Q:L‘) z—0 tg(Qx) ’

0 T (?)(1 + cos(z))
z—0 2x
~ im (x(1 + cos(z))

z—0 4

=0

Y

I



7. lim ~= lim — = limz =
x—0 X x—0 z—0
In(1+2 2 2 2
8. lim n(l+ x—i—x)_o lim x—i—x)zgo lim2+2=2
z—0 X z—0 x z—0

, l—oz lim (1 —z)(v/b—a2+2)
15— 22 -2 =—1(\/5—22 = 2)(v/5—22+2)
(1—2)(Vb—2a%2+2)

= lim ,
r—1 ]_ — :[,’2
. Vb—a2+2
= lim ,
r—>1 1 + x
& =2
10. On a,
1 sin(z)
_ 1 — tan(z) _ cos(x)
lim — = lim - ;
7 sin(z) — cos() 7 sin(z) — cos()
cos(x) — sin(x)
— lim cos(z)
7 sin(z) — cos(z)’
r——
4
~ im —(sm(.x) — cos(x)) 7
T cos(x)(sin(z) — cos(z))
4
: —1 :
= hmﬂ cos(a) (carsin(z) — cos(z) # 0)
LE*}Z

__



11. On a,

4_ 2 _ 2
lim 16 = lim (2" ="+ 4),
r—2 I — r—2 xr — 2
— lim (z —2)(z +2)(a® + 4)7
r—2 €r — 2
_ 1 2
= Jim (v +2)(a? + 4),
= 32.
12. On a,
. x?2 —2x+1 _ (x —1)?
lim =1l ,
T—>1 x—1 z—1 1 —1
-1
= lim |2 |
z—1 x —1
x —00 1 +00
signe de z — 1 - 0 +
alors on obtient,
-1 -1
T il T el Y
> - > r—1
z—>1 rz—1
-1 —(z—1
lim |2 | =1l (@ ) —1.
< - < rx—1
z—1 r—1
Exercice 3.
1 — cos(x)
L fi(z) = -

e Domaine de définition :
Dy = ]—00,0[U]0, +00].

e Continuité sur Dy, :



La fonction f; est le rapport des fonctions
r — 1 —cos(x), v — 2
qui sont continues sur R, en particulier sur chacun des

intervalles de R*, par conséquent f; est continue sur Dy,

e Prolongement par continuité :

La fonction f; n’est pas définie en 0, on peut alors étudier
son prolongement par continuité en 0.

2

T
.1 —cos(z Y 1
lim —() ~Y lim 2 _ - < 0.
z—0 xr2 r—0 12 2

On déduit alors que f; admet un prolongement par conti-
nuité en 0, noté par f; et défini par :

1 —
[l g
5, xr = 0

2. fo(x) = 2%sin (%)

e Domaine de définition :
Il est clair que :

Dy, =]—00,0[U 0, 400].

e Continuité sur Dy, :

La fonction f; est le produit et la composée des fonctions

) 1
r — 2%, r — sin(z), * — —

x

qui sont continues sur chacun des intervalles de R*, par

conséquent fo est continue en tout point de Dy, .



e Prolongement par continuité :

La fonction f, n’est pas définie en 0, on peut alors étudier
son prolongement par continuité en 0.

lim 22 = 0,
x—0

1
lim 2? sin — | =0 < oo car . 1 )
z—0 T sin | — est borné
T

On déduit alors que f; admet un prolongement par conti-
nuité en 0, noté par f, et défini par :

1
, 2?sin | —= |, =z €R*
folz) = <1’2>
0, x =0

sin(mx)
x—1

e Domaine de définition : Il est clair que :

Dy, = ]—00,1[U]1, +oo].

e Continuité sur Dy, :
La fonction f3 est le rapport et la composée des fonctions
r— mxr, r — sin(z), r — . — 1

qui sont continues sur chacun des intervalles de R — {1},
par conséquent f3 est continue en tout point de Dy,.

e Prolongement par continuité :

La fonction f3 n’est pas définie en 1, on peut alors étudier
son prolongement par continuité en 1.



sin(mx) .

r—1  — ]_
Si on pose g(z) = sin(mx), g(1) = sin(r) = 0, alors

lim sin(m) lim 9(x) =9l) _ g'(1),

r—1 1 — 1 - r—>1 xr — 1
or ¢'(x) = weos(mx), donc ¢'(1) = wcos(nz) = —.
Ainsi ‘
. sin(mx)
lim = —7 < 00.
r—1 1 —

On déduit alors que f3 admet un prolongement par conti-
nuité en 1, noté par f3 et défini par :

. sin(mx)
fs(z) = r—1" veR—{1}
—T, r=1
4. fu(z) = —S‘I::iﬂfi

e Domaine de définition :
Il est clair que :

Dy, = ]—00,1[U]1, +o0[.
e Continuité sur Dy, :
La fonction f4 est le rapport et la composée des fonctions

r—r mx, v — sin(x), r — o — 1, . — |z

qui sont continues sur chacun des intervalles de R — {1},
par conséquent fy est continue en tout point de Dy,.

e Prolongement par continuité :

La fonction f; n’est pas définie en 1, on peut alors étudier
son prolongement par continuité en 1.



sin(mx)

=7
r—1  — ]_
. sin(7x . sin(mx
On a, lim (m2) = —m, lim g =7
> X — <, x—1
r—>1 r—>1

Ainsi

lim sin(mx) _3
z—1 1 —1
On déduit alors que f; n’admet pas un prolongement par

continuité au point 1.

® — 4z, <0
V

5. fs(z) = ¢ sin(3z), O<z<m
V

—1+4cos(2z), z>m

e Domaine de définition :
Il est clair que

Vo € |—00,0], f5(z)

Vo €10, 7], f5(x) = sin(3x) est définie,
Vo € |, +oo[, fs(x) = —1 + cos(2z) est définie,

x> — 4z est définie,

par suite,
Dy, =]—00,0]U]0, 7] U]m, 400 =R

e Continuité sur Dy, :
Il est clair que

Vo € |—00,0[, fs(z) =2 — 42 est continue,
Vo €10, 7[, f5(x)=sin(3z) est continue,
Vo € ]m, +oo[, fs(x) =—1+4 cos(2z) est continue,

alors, f5 est continue en tout point de R — {0, 7} .



- On étudie la continuité en O :

On a f5(0) =02+ 0= 0.

lim f5(x) = lim sin(3z) =0 = f;(0) = f; est continue a droite de 0.

:ELO zi>0

lim f5(x) = lim 2®—42 = 0 = f5(0) = f5 est continue a gauche de 0.
< <

z—0 z—0

On déduit que f5 est contionue en 0.
- On étudie la continuité en 7 :

On a f5(m) = sin(37) = 0.
liln f5(z) = 1i£11 —1+cos(2z) = 0 = fi(n) =

T z—0
f5 est continue a droite de 7.

lim f5(z) = lim sin(3z) = 0 = f5(r) = f5 est continue a gauche de 7.
xéo a:i>0

On déduit que f5 est continue en 7.

Ainsi, la fonction f5 est continue en tout point de Dy, .

sin(2x) 1
¢ , T#0
6 f@(l’) = V. x
2 x=0

e Domaine de définition :

Il est clair que

D =R
e Continuité sur Dy, :
esin(2x) _
- Sur R*, fs(x) = ————— est le rapport, la composée
x

et la somme des fonctions

r—2x, r — sin(x), v — ¥, . — z,x — —1



qui sont continues sur R, en particulier sur R*, alors, fq
est continue en tout point de R*.

- On étudie la continuité en 0O :

’ ’ esin(2:p) -1 )
Jim fo(r) = Jim, ——— =

Pour calculer cette limite, on distingue deux méthodes :
Meéthode 1 :

Si on pose g(x) = e g(0) = ™20 = 1, alors

sin(2z) __ 1 _

e _ oo ge) —g(0)
xlglo xT - :(:1211 x—0 —9 (0)7
or ¢'(x) = 2cos(2x)es™?*) donc ¢'(0) = 2.
Ainsi (o)
. eSin(2z) _ q
xlinoT =2 = f5(0).
Méthode 2 :
On a limo sin(2x) = 0, alors e —1 ~0 sin(2z) ~° 2u,
r—r
d’ou
. 2z
zhm fo(x) = JE}O? = 2= fs(0)

On déduit que fg est continue en 0.

Ainsi, la fonction fs est continue en tout point de Dy,.

Exercice 4. On considére la fonction f définie par :

e” —1
f(x) =14 sin(222)

r—a+1 , x>0

,—m<x <0



e Domaine de définition :
Il est clair que
e —1
Vo e ]-m0[, f(zx) = Sn(227) est définie car sin(22?) # 0,

Vo € [0,00[, f(z) =2 —a+ 1 est définie car c’est un polynome,

par suite,
Dy = |—m,+o0l.
e Continuité sur Dy
e” — 1
-5 —,0 = — estl t, 1 é
ur |-, 0[, f(z) Sin(222) est le rapport, la composée

est la somme des fonctions
v — 2%, v —>sin(z), v — €, x — 2w, x — —1

qui sont continues sur R, en particulier sur |-, 0], alors f est
continue en tout point de |—m, 0.

- Sur |0, +o00[, f(z) =2 —a+1 est continue sur R, en parti-
culier sur |0, +00[ car ¢’est un polynome, alors f est continue
en tout point de |0, +oo.

- On étudie la continuité en O :
li =7

Ona: f(0) = —a+1,

2
e —1 x?
. R T R VI I e
fimn J(@) = i sin(2x2) fim 222 2
x—0 x—0 x—0

et,

lim f(z) = limz—a+1=—a+1.
> >

rz—0 rz—0



Pour que f soit continue au point 0, il faut et il suffit que

1
lim f(z) = lim f(z) = f(0), donc —a+ 1 = 5 ce qui donne

r—0 r—0
a = —.
2

o . . . 1
Ainsi, f est continue sur Dy si et seulement si a = 3

Exercice 5.

1. I'équation ze® =1 <= ze* —1=0.

On considére la fonction f(x) = ze” —1 définie sur I'intervalle
[0,1].

La fonction f est continue sur [0,1] car ¢’est la somme et le
produit des fonctions x — z,x — €” et + — —1 qui sont
continues sur [0, 1].

De plus, on a f(0) = =1 < 0 et f(1) = e—1 > 0, donc
par le théoréme des valeurs intermédiaires il existe au moins
c € ]0, 1] tel que f(c) = 0.

On déduit alors que I’équation xe” = 1 admet au moins une
solution ¢ € ]0,1].

2. On considére la fonction f définie par f(z) = 4a® — 3z + %
sur [—1,1] .

La fonction f est continue sur [—1, 1] car c¢’est un polynome.
-1 3
f(—1) = -5 < Oet f(1) = 5> 0, alors par le théoréme des

des valeurs intermédiaires il existe au moins ¢ € |—1, 1] tel
que f(c) = 0.

Pour montrer 'existence de trois solutions exactement, on
étudie la monotonie de f sur [—1,1].

Vo e [-1,1], f/(z) = 1222 — 3 = 3(2z — 1)(2z + 1).



1 L ! +1
x — —_—— —
2 2
signe de f’ + 0O — 0 +
3 3
2 2
variations de f a ¢ a
1 1
2 )

e Sur [—1, —5], la fonction f est continue, strictement

croissante et f(—1).f (—5) < 0 alors il existe une valeur
1
unique ¢; € 1 -1, 5 { telle que f(c;) = 0.

1 1 ) . .
e Sur —3 73| la fonction f est continue, strictement

décroissante et f (—5) f (5) < 0 alors il existe une valeur

11
unique ¢y € 1 ~55 [ telle que f(c2) = 0.

1 : . 0
e Sur {5, 1|, on suit le méme raisonnement, il existe une

1
valeur unique ¢3 € } 2 1 [ telle que f(c3) = 0.

On déduit alors que l'équation f(z) = 0 admet exactement
trois solutions comprises entre —1 et 1.

3. On considére la fonction f définie par f(x) = 2° + 3z + 1 sur
[—1,0] .

e La fonction f est continue sur [—1,0] car ¢’est un poly-
nome.
f(0) =1>0et f(—1) = =3 < 0, alors par le théo-
reme des des valeurs intermédiaires il existe au moins



c € |—1,0] tel que f(c) = 0.

e La solution ¢, est-elle unique?
on étudie la monotonie de f sur [—1,0].

Vz € [-1,0], f/(z) = 32> + 3 > 0.

x —1 0
signe de f’ +
1
variations de f ya
-3

La fonction f est strictement croissante sur [—1, 0] alors
il existe une valeur unique ¢ € |—1,0[ telle que f(c) = 0.

On déduit alors que léquation 22 + 3z +1 = 0 admet une
solution unique comprise entre —1 et 0.

1
22 cos (—>, x#0
T

0, x =0

Exercice 6.

e Domaine de définition : Il est clair que
Dy =R.

e Dérivabilité sur R* :
1
Pour tout z # 0, f(r) = *cos (—); la fonction f
x

est le produit et la composée des fonctions élémentaires
suivantes :

9 1
r—z°, T — —, x — cos(x),
x



qui sont dérivables sur R*, alors f est dérivable sur R*.
En utilisant les régles de dérivation d’un produit et d'une
composition de fonctions, on obtient que

f'(x) = 2w cos (%) + sin (i) .

e Dérivabilité au point O :

oo (5

. ) 1
lim ————~ = lim —— = limzcos [ — | =0 < o0,
2—0 r—0 x—0 €T z—0 T
r — 0,
car

1 )
cos | — | est bornée,
x

donc f est dérivable en 0 et f/(0) = 0.

Par conséquent, f est dérivable sur R et sa dérivée est donnée

par
1 i 1
21 cos (—)—f—sm (—), x#0
! - X X
0, =0
—1
ez, x#0
2. f(z)=4¢ Vv
0, z=0

e Domaine de définition : Il est clair que
Dy =R.

e Dérivabilité sur R* :
Pour tout z # 0, f(z) = 2 ; la fonction f est la com-
posée des fonctions élémentaires suivantes :

2 1 T
r—x, rT— ——, T —> €,
X



qui sont dérivables sur R*, alors f est dérivable sur R*.
En utilisant les régles de dérivation d'une composition
de fonctions, on obtient que

2 -1
. :
e Dérivabilité au point O :

1

. x)— f(0 . ea? . -1\ =1
lim M = lim = lim (—z) | — ) e =0 < oo,
z—0 x—0 z+—0 I z—0 2
—x — 0,
-1
car lim =te=? = lim we® = 0,avec u = =%,
z—07% u—>—00 x

donc f est dérivable en 0 et f/(0) = 0.

Par conséquent, f est dérivable sur R et sa dérivée est donnée
par

2
;eﬁ, x#0
f(x) = v
0, z=0
x4+ 1, r < —1
3. fla)y=2V
cos? (7>, x> —1

e Domaine de définition :
Pour z < —1, f(x) = x 4 1 est bien définie.
Pour x > —1, f(x) = cos? (71'2_1:) est bien définie.
Alors,
Dy =]—00,-1]U]—-1,400[ =R.
e Dérivabilité sur |—oo, —1] :

Pour z < —1, f est dérivable car f(z) = z + 1 est un
polynome et on a

f(x)=1.



e Dérivabilité sur |—1, +oo] :
Pour z > —1, f(x) = cos? <7r_23:> ; la fonction f est le

produit et la composée des fonctions élémentaires sui-

vantes ;
T
T— o, T cos(x),

qui sont dérivables sur R, en particulier sur |—1, +o0],
alors f est dérivable. En utilisant les régles de dériva-
tion d'un produit et d’'une composition de fonctions, on
obtient que

f'(x) =2cos <7r—2x> <—g> sin (%) = (—%) sin(7z).

e Dérivabilité au point -1 :

Ona :
f(=)=—-1+1=0.
limM: lim m+1:1<c><>,
r——1 T + 1 r——1x + 1
< <

donc f est dérivable a gauche de —1 et f;(—1) = 1.

lim —f(x) — /=) lim —0082 (7;_x> =7

z——1 r+1 z—-1 x+1

> <
On pose u(z) = cos? <7T2—I>, u(—1) = cos? (—g) =0,
alors,

cos? (Wx)

> ~ (-1
lim ——27 — Jim @) —u(=1) _ u'(—1).
e——-1 x+1 z——1 x+1
< <

On a u/(z) = (—g) sin(mz), alors u/(—1) = 0,
d’ou
)~ ()

z——1 x+1
>

=0,



donc f est dérivable & droite de —1 et fj(—1) = 0.

Comme
fo(=1) # fa(=1),

On déduit que f n’est pas dérivable au point —1

Par conséquent, f est dérivable sur R — {—1} et sa dérivée
est donnée par

Exercice 7.

a) Calcul de limites par la régle de I’'Hopital :

1. lim LCOS(I) FI <9>

=0z — sin(x) 0

Les fonctions © — x —x cos(z) et © — = —sin(z) sont

dérivables. On a

(z — x cos(w))’ 1 — cos(z) + zsin(z) Pl (O)
- :

0

li = li
:L‘IE}%] (;)j — S]n(x)) xli% 1-— COS(I)

Les fonctions © — 1 — cos(x) + zsin(x) et v — 1 —
cos(z) sont dérivables. On a

(1 — cos(x) + zsin(x))’ 2sin(x) 4 x cos(x)

= lim

lim

20 (1 — cos(x))’ 20 sin(z) ’
= ilg(l) 2+ smxm cos(x), (car sin(x) # 0)
—241=3
puisque hmsm(:c) = 1 et limcos(z) = 1. Par consé-
z—0 x x—0

quent, en appliquant la régle de 'Hopital deux fois, on
en déduit que

x — z cos(x)

i iz e weose)
glc—>0 x — sin(x) :lc—>0 (z — sin(z))’ i—>0 (z — sin(z))"



sin(2x — E)
2. lim —

+7 cos(x) - @ - <8>

2
Les fonctions x — sin(2z — z) et v — cos(x) — V2
sont dérivables. On a

2
(sin(Qx — z)>/

5 2 cos(2z — E)

N T
z—0 \/§ ! z—0 —sin(:p) \/5
cos(x) — 5

Par conséquent, en appliquant la régle de I’Hopital une
fois, on en déduit que

us T/
sin(2x — —) sin(2x — —)
1in71T — 2 _lim ( 2 )

v cos(z) — \/—5

z—0 \/5 7= _E
5 cos(z) — >
3 qim L Sn@)

O
2 osile) ooy
z—+oo 21 + Sin(ac)

o

Les fonctions © — = — sin(z) et * — 2z + sin(x) sont
dérivables. On a

(x — si‘n(x))’, ~ lim 1 — cos(x) 2
g—+oo (2 + sin(z))  @—>+002 + cos(x)
Les fonctions + — 1 — cos(x) et x — 2 4 cos(x) sont
dérivables. On a

(1 — cos(z)(x))’ ~ lim sin(z)
a—+o0 (24 cos(w))’ s—too — sin(z)

A car sin(x)peut étre nul,
donc la régle de I’Hopital ne peut étre appliquée.



On détermine cette limite autrement :

5 — sin(z) (1 — sin(z) ) sin(z)
. . x . x
hgl 2 + sin(x) a hgl sin(x) - hrf sin(x)
T—+00 LI Sinlax T—r+00 T—r+00
r(24+ —) 2+
x x
puisque lim sin(z) =0.
T—+00 €T
( 1 ) In(5 —x)
4. lim (5 — ) T=4) _fime -4
x—4 z—4
. In(b—2x) 0
@) lim ———=F.I - |.
e (0)
Les fonctions © — In(5 — x) et © — = — 4 sont déri-
vables et
In(5 — z))’ -1
lim O =2) — 1.
z—4 (ZE — 4) z—4hH — g

En appliquant la régle de I’'Hopital une fois, on en déduit
que

n(—a) . (In0G-2)
od 71— 4 =1 (x—4)

Par conséquent,

( 1 ) In(5 — )
lim (5 — x) T=4) _lime -4 =¢!

r—4 r—4

b) Applications du théoréme des accroissements finis :

1. On montre que :

b—a b b—a
Pour0<a<b, ——<In|—) < .
b a a

Soit f la fonction définie dans |0, 400 par f(x) = In(z).
Pour tous réels a et b tels que 0 < a < b, la fonction f est




continue sur [a, b] et dérivable sur |a, b[; par le théoréme
des accroissements finis, on a

3 Ja, o[, f(b) = f(a) = f'(c)(b—a),

ce qui s’écrit
(b) b—a
In(-) = .
a c

Or
1 1 1
O<a<ce<b <— 0<-<-<-—
b c a
b— b — b —
ba< Ca< aa(carb—a>0)
b—a (b) b—a
— < In|—-| <
b a a

. On montre que : Ve € R, e* > x + 1.
Soit f la fonction définie dans R par f(z) = e”. On
distingue trois cas :

e Pour x > 0, la fonction f est continue sur [0, z] et
dérivable sur |0, z[; par le théoréme des accroisse-
ments finis, on a

de 10, z[, f(x) — f(0) = f'(c)(x — 0),
ce qui s’écrit
e’ —1 = xe.

Or

O<c<z <= " <e“<e”
= x <we® <xe® (car x > 0)
— r<e’—1
— e">r+1

e Pour < 0, la fonction f est continue sur [z, 0] et
dérivable sur |z,0[; par le théoréme des accroisse-
ments finis, on a

Je ], 0[, f(0) = f(z) = f(c)(0 — =),



ce qui s’écrit
1—¢e" = —xet.

Or

r<c<) < " <ef<e
— —we® < —ze® < —x (car —x > 0)
= 1 —-e"< —x
= " >z+1

e Pour x = 0,0n ae’=12>0+ 1 donc l'iégalité est
vérifiée pour z = 0.

Par conséquent, on obtient

VreR, e >x+1.

Exercice 8.

1. f(z) = arcsin (x i 1)

r—1

e Domaine de définition :

On a
PRl
r € D <= “r—1-
r—1#0
_1<x+1
“x—1
= z+l (3.1)
r—1—
x#1
On a
1 1 2
<t x+1+120 — = >

r—1 T — x—1 "

L’ensemble des solutions est S; = ]—o0, 0] U |1, +oo|



De méme

1 2
SR S PR <0
r—1 T —
L’ensemble des solutions est Sy = |—o0, 1]

Ainsi
szslﬂSQ:]—oo, O]

Calcul de Limites

On sait que

Vy € [—g, g] , Vo e [-1,1], y = arcsin(z) <= = = sin(y)

1 lim =1
- lim arcsin (:c + ) _T car { @——eox — 1 T
e -1 arcsin(1) = B

- f(0) = arcsin(—1) = —g car sin(—g) = 1.
Dérivée

On sait que : Pour tout x € Dy tel que u(x) # £1

(arcsin(u(x))) =



alors, Vo € |—00,0] ,

—2
_ (@—1)°
B —4dx
(z = 1)
2 " |z — 1|
C(r—-1)2 7 2=z
=2 " —(x—1)
(x —1)2 2/ —x

1

C(z—-1)/—z
2. f(x) = arccos(In(z))
e Domaine de définition :
On a
—1<In(z) <1
reDy <~ { >0

el<z<e

— { 250 (3.2)
Ainsi
1
_Df = 276 .

e Calcul de Limites

On sait que

Vy € [0,7], Vx € [-1,1], y = arccos(x) <= z = cos(y)



f(g) = arccos(ln(g)) = arccos(—1) = 7 car cos(m) = —1

f(e) = arccos(In(e)) = arccos(1) = 0 car cos(0) =1

e Dérivée
On sait que : Pour tout € Dy tel que u(z) # %1

arccos(u(x = —Lx)
(arecos(ue))) =~

1
alors, Vo E]—,e[ ,
e

3. f(x) = argsh (i)

e Domaine de définition :
On a
r€D; < x#0

Ainsi
Dy =R* =]—00,0[U]0, +o0[.



e Calcul de Limites
On sait que

Vy € R, Vx € R, y = argsh(z) <= x = sh(y)

1 li L_ 0
- lim argsh (—) —0car { sbioor
el z argsh(0) =0
1

lim — = —o0
= —00 car z—0" T
lim argsh(z) = —c0
Tr—>—00

1
- lim argsh (—
x

r—0~

= foocar { z—0tT
lim argsh(z) = +o00

r—>+00

z—07F

o1
) lim — =+

1
- lim argsh (—
x

1
. 1 lim — =0

- lim argsh| —) =0car ¢ z2—+ooz
rhee z argsh(0) = 0

e Dérivée
On sait que :

Vr € Dy, (argsh(u(z))) =

alors, Vo € R* |

4. f(z) = argch(2z + 1)



e Domaine de définition :

On a
r€D; <= 20+1>1#0
<— >0
Ainsi
Df:[0,+00[

e Calcul de Limites
On sait que

Ve > 1,Vy >0, y = argch(z) <= z = ch(y)

- lim argch(2z+1) = +oo car

Tr—>—+00

lim 2z +1=+4o00
r—>+00
lim argch(z) = +o0

Tr—>—+00

- f(0) = argch(1) = 0 car ch(0) =1

e Dérivée
On sait que :

Va € Dy, tel queu(z) # 1, (argch(u(z))) = )2

alors, Vx € ]0, +00] ,

5. f(z) = argth (e”)

e Domaine de définition :
On a

reDy <= —1<e’"<1

{—1<ez
<
et <1



On a
VreR, -1 <¢e”

L’ensemble des solutions est S} = R

et,

e <1l <= <0
L’ensemble des solutions est Sy = ]—o0, 0]
Ainsi

szslﬂng]—oo, O[

e Calcul de Limites

On sait que

Vy e R, Vo € |-1,1], y = argth(z) < x = th(y)

Iim e* =0
- lim argth(e®) =0 car { *——
TTee argth(0) =0

lim e* =17
- lim argth (e*) = 400 car ¢ *7.70°
z—0~

lim argth(z) = +oo

r—1~

e Dérivée

On sait que : Pour tout x € Dy
r_ u' ()

alors, Vr € |—00,0[ ,

1=

6. f(z) = argcoth (2z + 2)



e Domaine de définition :

On a

re€Dy <= 2r+2<-1)V(2r+2>1)

On a 3
2r+2< -1 <= x<—§
. 3
L’ensemble des solutions est S| = | —oo, 5
et,
1
20 +2>1 <= x> 5
: 1
L’ensemble des solutions est Sy = —5 —i—oo{

Ainsi

1

e Calcul de Limites

On sait que

Vy € R*, Vo € |—o0, —1[U]1, +0], y = argeoth(z) <= = = coth(y)

lim 2z +2=—o0
T—>—00
lim argcoth(z) =0~

r—>—00
(

- lim argcoth (2x +2) =0~ car

r—r—00

lim 2z +2= -1
3

- lim argcoth (2z +2) = —occar { *—75
e \ xlir&largcoth(x) = —00
[ lim Jet2=1

- 1im1argcoth (22 +2) = toocar ¢ *75

= lim argcoth(z) = 400
2 \ z—1



Tr—>—+00

- 1 = +
lim argcoth (2 + 2) = 07 car lirE argeoth(z) = OF
T—>1+00

Tr—>+00

{ lim 2z +2 =400

e Dérivée
On sait que : Pour tout x € Dy

(rgth(ue))) = =7

lors, Vx € 3U1+
alors, Vx 00,2 2,00,

(2z +2)
1— (22 +2)?
2
—422 — 8x — 3

f'(x) =




