
Limites-Continuité-Dérivabilité

Exercices

Exercice 1. Déterminer pour chaque fonction f ci-dessous le
domaine de définition :

1) f(x) = ln(
√
1− x2), 2) f(x) =

1√
x+

√
2− x

,

3) f(x) = (
x

x+ 1
)x

2 , 4) f(x) =
√
cos(2x),

5) f(x) = ln(ln(1 + x)), 6) f(x) =

{ 1

1− x
, x ≥ 0

1 , x < 0
,

7) f(x) =

{ 1

2− x
, x ≥ 0

x3 + x , x < −1
8) f(x) = arctan

(
x− 1

x+ 1

)

Exercice 2. Calculer les limites suivantes, en utilisant si né-
cessaire les fonctions équivalentes (pas de règle de l’Hopital) :

1) lim
x−→+∞

−3x2 + 5x− 10

2x2 + 10
2) lim

x−→+∞
x−√1 + x2

3) lim
x−→+∞

x ln
x√

x2 + 1
4) lim

x−→0
x2 cos(

1

x
)



5) lim
x−→0

sin(x) ln(x) 6) lim
x−→0

1− cos2(x)

tg(2x)

7) lim
x−→0

ln(1 + x2)

x
8) lim

x−→0

ln(1 + 2x+ x2)

x

9) lim
x−→1

1− x√
5− x2 − 2

10) lim

x−→
π

4

1− tg(x)

sin(x)− cos(x)

11) lim
x−→2

x4 − 16

x− 2
12) lim

x−→1

√
x2 − 2x+ 1

x− 1

Exercice 3. Etudier la continuité des fonctions suivantes sur
leurs domaines de définition et indiquer si elles peuvent être
prolongées par continuité en certains points :

1) f1(x) =
1− cos(x)

x2
2) f2(x) = x2 sin(

1

x2
)

3) f3(x) =
sin(πx)

x− 1
4) f4(x) =

sin(πx)

|x− 1|

5) f5(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x3 − 4x si x ≤ 0
∨
sin(3x) si 0 < x ≤ π
∨
−1 + cos(2x) si x > π

6) f6(x) =

⎧⎪⎪⎨
⎪⎪⎩

esin(2x) − 1

x
si x �= 0

∨
2 si x = 0

Exercice 4. Déterminer le réel a pour que la fonction f soit
continue sur son domaine de définition :

f(x) =

⎧⎨
⎩

ex
2 − 1

sin(2x2)
si − π < x < 0

x− a+ 1 si x ≥ 0



Exercice 5.

1) Montrer que l’équation xex = 1 admet au moins une solution
dans ]0, 1[.

2) Montrer que l’équation 4x3 − 3x+
1

2
= 0 admet exactement

trois solutions dans ]− 1, 1[.

3) Montrer que l’équation x3 + 3x+ 1 = 0 admet au moins une
solution entre −1 et 0. La solution est-elle unique ?

Exercice 6. Etudier la dérivabilité des fonctions suivantes sur
le domaine de définition et déterminer leurs dérivées :

1) f(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2 cos

(
1

x

)
si x �= 0

∨
0 si x = 0

2) f(x) =

⎧⎨
⎩

e
−1

x2 si x �= 0
∨
0 si x = 0

3) f(x) =

⎧⎪⎨
⎪⎩

x+ 1 si x ≤ −1
∨
cos2

(πx
2

)
si x > −1

Exercice 7 :
a) En utilisant la règle de l’Hopital, calculer les limites
suivantes :

1) lim
x→0

x− x cos(x)

x− sin(x)
2) lim

x→
π

4

sin(2x− π

2
)

cos(x)−
√
2

2

3) lim
x→+∞

x− sin(x)

2x+ sin(x)
4) lim

x→4
(5− x)

⎛
⎝ 1

x− 4

⎞
⎠



b) En utilisant le théorème des accroissements finis (TAF),

Montrer que :

1) Pour 0 < a < b,
b− a

b
< ln(

b

a
) <

b− a

a
.

2) ∀x ∈ R, ex ≥ x+ 1

Exercice 8. Déterminer le domaine de définition des fonctions
suivantes, les limites aux bornes des intervalles et leurs fonctions
dérivées :

1) f(x) = arcsin

(
x+ 1

x− 1

)
2) f(x) = arccos(ln(x))

3) f(x) = argsh

(
1

x

)
4) f(x) = argch(2x+ 1)

5) f(x) = argth(ex) 6) f(x) = argcoth(2x+ 2)

Solutions
Exercice 1. On détermine le domaine de définition, Df des

fonctions :

1. f(x) = ln(
√
1− x2).

On a :

x ∈ Df ⇐⇒
{ √

1− x2 > 0
1− x2 ≥ 0

⇐⇒ 1− x2 > 0

x −∞ −1 1 +∞
signe de 1− x2 − 0 + 0 −

Par suite Df = ]−1, 1[.



2. f(x) =
1√

x+
√
2− x

.

On a :

x ∈ Df ⇐⇒
⎧⎨
⎩

x ≥ 0
∧

2− x ≥ 0

x −∞ 0 2 +∞
signe de x − 0 + +

signe de (2− x) + + 0 −
Par suite Df = [0, 2].

3. f(x) = (
x

x+ 1
)x

2
= e

x2 ln

( x

x+ 1

)
.

On a :

x ∈ Df ⇐⇒

⎧⎪⎨
⎪⎩

x

x+ 1
> 0

∧
x+ 1 �= 0

⇐⇒ x(x+ 1) > 0

x −∞ −1 0 +∞
signe de x(x+ 1) + 0 − 0 +

Par suite Df = ]−∞,−1[ ∪ ]0,+∞[.

4. f(x) =
√

cos(2x).

On a :

x ∈ Df ⇐⇒ cos(2x) ≥ 0,

⇐⇒ 2x ∈
[−π

2
,
π

2

]
,

⇐⇒ x ∈
[−π

4
,
π

4

]
.



Comme la fonction x −→ cos est périodique, de période 2.π,
alors

Df =
⋃
k∈Z

[−π
4

+ 2kπ,
π

4
+ 2kπ

]
.

5. f(x) = ln(ln(1 + x)).

On a :

x ∈ Df ⇐⇒
⎧⎨
⎩

1 + x > 0

ln(x+ 1) > 0

⇐⇒
⎧⎨
⎩

x+ 1 > 0

x+ 1 > 1

⇐⇒
⎧⎨
⎩

1 + x > 0

x > 0

x −∞ −1 0 +∞
signe de x+ 1 − 0 + +
signe de x − − 0 +

Par suite Df = ]0,+∞[.

6. f(x) =

{ 1

1− x
, x ≥ 0 −→ D1

1, x < 0 −→ D2

.

On a,
Df = D1 ∪D2.

Pour x ≥ 0,
1

1− x
est défini si x �= 1, donc,

D1 = [0, 1[ ∪ ]1,+∞[ .

Pour x < 0, f(x) = 1 est défini, donc,

D2 = ]−∞, 0[ .

Par suite,
Df = ]−∞, 1[ ∪ ]1,+∞[ .



7. f(x) =

{
1

2−x , x ≥ 0 −→ D1

x3 + x, x < −1 −→ D2

On a,
Df = D1 ∪D2.

Pour x ≥ 0,
1

2− x
est défini si x �= 2, donc,

D1 = [0, 2[ ∪ ]2,+∞[ .

Pour x < −1, x3 + x est défini, donc,

D2 = ]−∞,−1[ .
Par suite,

Df = ]−∞,−1[ ∪ [0, 2[ ∪ ]2,+∞[ .

8. f(x) = arctan

(
x− 1

x+ 1

)

On a

x ∈ Df ⇐⇒ x− 1

x+ 1
est définie

⇐⇒ x �= −1
alors

Df = R− {−1} .
Exercice 2. Calcul de limites

1. lim
x−→+∞

−3x2 + 5x− 10

2x2 + 10
= lim

x−→+∞
−3x2

2x2
=
−3
2

.

2. On a,

lim
x−→+∞

x−
√
1 + x2 = lim

x−→+∞
(x−√1 + x2)(x+

√
1 + x2)

x+
√
1 + x2

,

= lim
x−→+∞

x2 − 1− x2

x+
√
1 + x2

,

= lim
x−→+∞

−1
x+

√
1 + x2

,

= 0.



3. On a,

lim
x−→+∞

x ln
x√

x2 + 1
= lim

x−→+∞
x ln

√
x2

x2 + 1
,

= lim
x−→+∞

1

2
x ln

⎛
⎜⎝ 1

x2 + 1

x2

⎞
⎟⎠ ,

= lim
x−→+∞

1

2
x ln

⎛
⎜⎝ 1

1 +
1

x2

⎞
⎟⎠ ,

= lim
x−→+∞

− 1

2
x ln

(
1 +

1

x2

)
,

�+∞ lim
x−→+∞

− 1

2
x.

1

x2
,

= lim
x−→+∞

− 1

2
.
1

x
,

= 0.

4. lim
x−→0

x2 cos( 1
x
) = 0 car

{
lim
x−→0

x2 = 0

cos( 1
x
) est bornée

5. lim
x−→0

sin(x) ln(x) = lim
x−→0

sin(x)

x
.x ln(x) = 0 car

⎧⎨
⎩ lim

x−→0

sin(x)

x
= 1

lim
x−→0

x ln(x) = 0

6. On a,

lim
x−→0

1− cos2(x)

tg(2x)
= lim

x−→0

(1− cos(x))(1 + cos(x))

tg(2x)
,

�0 lim
x−→0

(
x2

2
)(1 + cos(x))

2x
,

= lim
x−→0

(x(1 + cos(x))

4
,

= 0



7. lim
x−→0

ln(1 + x2)

x
�0= lim

x−→0

x2

x
= lim

x−→0
x = 0

8. lim
x−→0

ln(1 + 2x+ x2)

x
�0 lim

x−→0

2x+ x2)

x
=�0 lim

x−→0
2 + x = 2

9. On a,

lim
x−→1

1− x√
5− x2 − 2

= lim
x−→1

(1− x)(
√
5− x2 + 2)

(
√
5− x2 − 2)(

√
5− x2 + 2)

,

= lim
x−→1

(1− x)(
√
5− x2 + 2)

1− x2
,

= lim
x−→1

√
5− x2 + 2

1 + x
,

& = 2.

10. On a,

lim

x−→
π

4

1− tan(x)

sin(x)− cos(x)
= lim

x−→
π

4

1− sin(x)

cos(x)

sin(x)− cos(x)
,

= lim

x−→
π

4

cos(x)− sin(x)

cos(x)

sin(x)− cos(x)
,

= lim

x−→
π

4

−(sin(x)− cos(x))

cos(x)(sin(x)− cos(x))
,

= lim

x−→
π

4

−1
cos(x)

, (car sin(x)− cos(x) �= 0)

= −
√
2.



11. On a,

lim
x−→2

x4 − 16

x− 2
= lim

x−→2

(x2 − 4)(x2 + 4)

x− 2
,

= lim
x−→2

(x− 2)(x+ 2)(x2 + 4)

x− 2
,

= lim
x−→2

(x+ 2)(x2 + 4),

= 32.

12. On a,

lim
x−→1

√
x2 − 2x+ 1

x− 1
= lim

x−→1

√
(x− 1)2

x− 1
,

= lim
x−→1

|x− 1|
x− 1

x −∞ 1 +∞
signe de x− 1 − 0 +

alors on obtient,

lim
>

x−→1

|x− 1|
x− 1

= lim
>

x−→1

x− 1

x− 1
= 1,

lim
<

x−→1

|x− 1|
x− 1

= lim
<

x−→1

−(x− 1)

x− 1
= −1.

Exercice 3.

1. f1(x) =
1− cos(x)

x2
.

• Domaine de définition :

Df1 = ]−∞, 0[ ∪ ]0,+∞[ .

• Continuité sur Df1 :



La fonction f1 est le rapport des fonctions

x −→ 1− cos(x), x −→ x2

qui sont continues sur R, en particulier sur chacun des
intervalles de R∗, par conséquent f1 est continue sur Df1 .

• Prolongement par continuité :

La fonctionf1 n’est pas définie en 0, on peut alors étudier
son prolongement par continuité en 0.

lim
x−→0

1− cos(x)

x2
�0 lim

x−→0

x2

2
x2

=
1

2
<∞.

On déduit alors que f1 admet un prolongement par conti-
nuité en 0, noté par f̃1 et défini par :

f̃1(x) =

⎧⎪⎨
⎪⎩

1− cos(x)

x2
, x ∈ R∗

1

2
, x = 0

2. f2(x) = x2 sin

(
1

x2

)
.

• Domaine de définition :
Il est clair que :

Df2 = ]−∞, 0[ ∪ ]0,+∞[ .

• Continuité sur Df2 :

La fonction f2 est le produit et la composée des fonctions

x −→ x2, x −→ sin(x), x −→ 1

x

qui sont continues sur chacun des intervalles de R∗, par
conséquent f2 est continue en tout point de Df2 .



• Prolongement par continuité :

La fonctionf2 n’est pas définie en 0, on peut alors étudier
son prolongement par continuité en 0.

lim
x−→0

x2 sin

(
1

x2

)
= 0 <∞ car

⎧⎨
⎩

lim
x−→0

x2 = 0,

sin

(
1

x2

)
est borné

On déduit alors que f2 admet un prolongement par conti-
nuité en 0, noté par f̃2 et défini par :

f̃2(x) =

⎧⎨
⎩ x2 sin

(
1

x2

)
, x ∈ R∗

0, x = 0

3. f3(x) =
sin(πx)

x− 1

• Domaine de définition : Il est clair que :

Df3 = ]−∞, 1[ ∪ ]1,+∞[ .

• Continuité sur Df3 :

La fonction f3 est le rapport et la composée des fonctions

x −→ πx, x −→ sin(x), x −→ x− 1

qui sont continues sur chacun des intervalles de R−{1},
par conséquent f3 est continue en tout point de Df3 .

• Prolongement par continuité :

La fonctionf3 n’est pas définie en 1, on peut alors étudier
son prolongement par continuité en 1.



lim
x−→1

sin(πx)

x− 1
=?

Si on pose g(x) = sin(πx), g(1) = sin(π) = 0, alors

lim
x−→1

sin(πx)

x− 1
= lim

x−→1

g(x)− g(1)

x− 1
= g′(1),

or g′(x) = π cos(πx), donc g′(1) = π cos(πx) = −π.
Ainsi

lim
x−→1

sin(πx)

x− 1
= −π <∞.

On déduit alors que f3 admet un prolongement par conti-
nuité en 1, noté par f̃3 et défini par :

f̃3(x) =

⎧⎨
⎩

sin(πx)

x− 1
, x ∈ R− {1}

−π, x = 1

4. f4(x) =
sin(πx)

|x− 1|
• Domaine de définition :

Il est clair que :

Df4 = ]−∞, 1[ ∪ ]1,+∞[ .

• Continuité sur Df4 :

La fonction f4 est le rapport et la composée des fonctions

x −→ πx, x −→ sin(x), x −→ x− 1, x −→ |x|
qui sont continues sur chacun des intervalles de R−{1},
par conséquent f4 est continue en tout point de Df4 .

• Prolongement par continuité :

La fonctionf4 n’est pas définie en 1, on peut alors étudier
son prolongement par continuité en 1.



lim
x−→1

sin(πx)

x− 1
=?

On a, lim
>

x−→1

sin(πx)

x− 1
= −π, lim

<
x−→1

sin(πx)

x− 1
= π

Ainsi

lim
x−→1

sin(πx)

x− 1
= �.

On déduit alors que f4 n’admet pas un prolongement par
continuité au point 1.

5. f5(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x3 − 4x, x ≤ 0
∨
sin(3x), 0 < x ≤ π
∨
−1 + cos(2x), x > π

• Domaine de définition :
Il est clair que

∀x ∈ ]−∞, 0] , f5(x) = x3 − 4x est définie,
∀x ∈ ]0, π] , f5(x) = sin(3x) est définie,

∀x ∈ ]π,+∞[ , f5(x) = −1 + cos(2x) est définie,

par suite,

Df5 = ]−∞, 0] ∪ ]0, π] ∪ ]π,+∞[ = R

• Continuité sur Df5 :
Il est clair que

∀x ∈ ]−∞, 0[ , f5(x) = x3 − 4x est continue,
∀x ∈ ]0, π[ , f5(x) = sin(3x) est continue,

∀x ∈ ]π,+∞[ , f5(x) = −1 + cos(2x) est continue,

alors, f5 est continue en tout point de R− {0, π} .



- On étudie la continuité en 0 :

On a f5(0) = 02 + 0 = 0.
lim
>

x−→0

f5(x) = lim
>

x−→0

sin(3x) = 0 = f5(0) =⇒ f5 est continue à droite de 0.

lim
<

x−→0

f5(x) = lim
<

x−→0

x3−4x = 0 = f5(0) =⇒ f5 est continue à gauche de 0.

On déduit que f5 est contionue en 0.

- On étudie la continuité en π :

On a f5(π) = sin(3π) = 0.
lim
>

x−→π

f5(x) = lim
>

x−→0

− 1 + cos(2x) = 0 = f5(π) =⇒
f5 est continue à droite de π.
lim
<

x−→0

f5(x) = lim
<

x−→0

sin(3x) = 0 = f5(π) =⇒ f5 est continue à gauche de π.

On déduit que f5 est continue en π.

Ainsi, la fonction f5 est continue en tout point de Df5 .

6. f6(x) =

⎧⎪⎪⎨
⎪⎪⎩

esin(2x) − 1

x
, x �= 0

∨
2, x = 0

• Domaine de définition :
Il est clair que

Df6 = R

• Continuité sur Df6 :

- Sur R∗, f6(x) =
esin(2x) − 1

x
est le rapport, la composée

et la somme des fonctions

x −→ 2x, x −→ sin(x), x −→ ex, x −→ x, x −→ −1



qui sont continues sur R, en particulier sur R∗, alors, f6
est continue en tout point de R∗.

- On étudie la continuité en 0 :

lim
x−→0

f6(x) = lim
x−→0

esin(2x) − 1

x
=?

Pour calculer cette limite, on distingue deux méthodes :
Méthode 1 :
Si on pose g(x) = esin(2x), g(0) = esin(2.0) = 1, alors

lim
x−→0

esin(2x) − 1

x
= lim

x−→1

g(x)− g(0)

x− 0
= g′(0),

or g′(x) = 2 cos(2x)esin(2x), donc g′(0) = 2.

Ainsi

lim
x−→0

esin(2x) − 1

x
= 2 = f6(0).

Méthode 2 :
On a lim

x−→0
sin(2x) = 0, alors esin(2x)−1 ∼0 sin(2x) ∼0 2x,

d’où

lim
x−→0

f6(x) = lim
x−→0

2x

x
= 2 = f6(0)

On déduit que f6 est continue en 0.

Ainsi, la fonction f6 est continue en tout point de Df6 .

Exercice 4. On considère la fonction f définie par :

f(x) =

⎧⎨
⎩

ex
2 − 1

sin(2x2)
,−π < x < 0

x− a+ 1 , x ≥ 0



• Domaine de définition :

Il est clair que

∀x ∈ ]−π, 0[ , f(x) = ex
2 − 1

sin(2x2)
est définie car sin(2x2) �= 0,

∀x ∈ [0,∞[ , f(x) = x− a+ 1 est définie car c’est un polynôme,

par suite,
Df = ]−π,+∞[ .

• Continuité sur Df

- Sur ]−π, 0[ , f(x) =
ex

2 − 1

sin(2x2)
est le rapport, la composée

est la somme des fonctions

x −→ x2, x −→ sin(x), x −→ ex, x −→ 2x, x −→ −1

qui sont continues sur R, en particulier sur ]−π, 0[, alors f est
continue en tout point de ]−π, 0[.

- Sur ]0,+∞[ , f(x) = x− a+ 1 est continue sur R, en parti-
culier sur ]0,+∞[ car c’est un polynôme, alors f est continue
en tout point de ]0,+∞[.

- On étudie la continuité en 0 :

lim
x−→0

f(x) =?

On a : f(0) = −a+ 1,

lim
<

x−→0

f(x) = lim
<

x−→0

ex
2 − 1

sin(2x2)
�0 lim

<
x−→0

x2

2x2
=

1

2
,

et,

lim
>

x−→0

f(x) = lim
>

x−→0

x− a+ 1 = −a+ 1.



Pour que f soit continue au point 0, il faut et il suffit que

lim
<

x−→0

f(x) = lim
>

x−→0

f(x) = f(0), donc −a+ 1 =
1

2
, ce qui donne

a =
1

2
.

Ainsi, f est continue sur Df si et seulement si a =
1

2
.

Exercice 5.

1. l’équation xex = 1 ⇐⇒ xex − 1 = 0.

On considère la fonction f(x) = xex−1 définie sur l’intervalle
[0, 1].

La fonction f est continue sur [0, 1] car c’est la somme et le
produit des fonctions x −→ x, x −→ ex et x −→ −1 qui sont
continues sur [0, 1].

De plus, on a f(0) = −1 < 0 et f(1) = e − 1 > 0, donc
par le théorème des valeurs intermédiaires il existe au moins
c ∈ ]0, 1[ tel que f(c) = 0.

On déduit alors que l’équation xex = 1 admet au moins une
solution c ∈ ]0, 1[.

2. On considère la fonction f définie par f(x) = 4x3 − 3x + 1
2

sur [−1, 1] .

La fonction f est continue sur [−1, 1] car c’est un polynôme.

f(−1) = −1
2

< 0 et f(1) =
3

2
> 0, alors par le théorème des

des valeurs intermédiaires il existe au moins c ∈ ]−1, 1[ tel
que f(c) = 0.

Pour montrer l’existence de trois solutions exactement, on
étudie la monotonie de f sur [−1, 1].

∀x ∈ [−1, 1] , f ′(x) = 12x2 − 3 = 3(2x− 1)(2x+ 1).



x −1 −1

2

1

2
+1

signe de f ′ + 0 − 0 +
3

2

3

2
variations de f ↗ ↘ ↗

−1

2
−1

2

• Sur
[
−1,−1

2

]
, la fonction f est continue, strictement

croissante et f(−1).f(−1

2
) < 0 alors il existe une valeur

unique c1 ∈
]
−1,−1

2

[
telle que f(c1) = 0.

• Sur
[
−1

2
,−1

2

]
, la fonction f est continue, strictement

décroissante et f(−1

2
).f(

1

2
) < 0 alors il existe une valeur

unique c2 ∈
]
−1

2
,
1

2

[
telle que f(c2) = 0.

• Sur
[
1

2
, 1

]
, on suit le même raisonnement, il existe une

valeur unique c3 ∈
]
1

2
, 1

[
telle que f(c3) = 0.

On déduit alors que l’équation f(x) = 0 admet exactement
trois solutions comprises entre −1 et 1.

3. On considère la fonction f définie par f(x) = x3 + 3x+ 1 sur
[−1, 0] .

• La fonction f est continue sur [−1, 0] car c’est un poly-
nôme.
f(0) = 1 > 0 et f(−1) = −3 < 0, alors par le théo-
rème des des valeurs intermédiaires il existe au moins



c ∈ ]−1, 0[ tel que f(c) = 0.

• La solution c, est-elle unique ?
on étudie la monotonie de f sur [−1, 0].

∀x ∈ [−1, 0] , f ′(x) = 3x2 + 3 > 0.

x −1 0
signe de f ′ +

1
variations de f ↗

−3
La fonction f est strictement croissante sur [−1, 0] alors
il existe une valeur unique c ∈ ]−1, 0[ telle que f(c) = 0.

On déduit alors que léquation x3+3x+1 = 0 admet une
solution unique comprise entre −1 et 0.

Exercice 6.

1. f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 cos

(
1

x

)
, x �= 0

∨

0, x = 0

• Domaine de définition : Il est clair que

Df = R.

• Dérivabilité sur R∗ :

Pour tout x �= 0, f(x) = x2 cos

(
1

x

)
; la fonction f

est le produit et la composée des fonctions élémentaires
suivantes :

x −→ x2, x −→ 1

x
, x −→ cos(x),



qui sont dérivables sur R∗, alors f est dérivable sur R∗.
En utilisant les règles de dérivation d’un produit et d’une
composition de fonctions, on obtient que

f ′(x) = 2x cos

(
1

x

)
+ sin

(
1

x

)
.

• Dérivabilité au point 0 :

lim
x←→0

f(x)− f(0)

x− 0
= lim

x←→0

x2 cos

(
1

x

)
x

= lim
x−→0

x cos

(
1

x

)
= 0 <∞,

car

⎧⎨
⎩

x −→ 0,

cos

(
1

x

)
est bornée,

donc f est dérivable en 0 et f ′(0) = 0.

Par conséquent, f est dérivable sur R et sa dérivée est donnée
par

f ′(x) =

⎧⎪⎪⎨
⎪⎪⎩

2x cos

(
1

x

)
+ sin

(
1

x

)
, x �= 0

∨
0, x = 0

2. f(x) =

⎧⎨
⎩

e
−1

x2 , x �= 0
∨
0, x = 0

• Domaine de définition : Il est clair que

Df = R.

• Dérivabilité sur R∗ :
Pour tout x �= 0, f(x) = e

−1

x2 ; la fonction f est la com-
posée des fonctions élémentaires suivantes :

x −→ x2, x −→ −1

x
, x −→ ex,



qui sont dérivables sur R∗, alors f est dérivable sur R∗.
En utilisant les règles de dérivation d’une composition
de fonctions, on obtient que

f ′(x) =
2

x3
e
−1

x2 .

• Dérivabilité au point 0 :

lim
x−→0

f(x)− f(0)

x− 0
= lim

x←→0

e
−1

x2

x
= lim

x−→0
(−x)

(−1
x2

)
e
−1

x2 = 0 <∞,

car

{ −x −→ 0,

lim
x−→0

−1
x2 e

−1

x2 = lim
u−→−∞

ueu = 0, avec u = −1
x2 ,

donc f est dérivable en 0 et f ′(0) = 0.

Par conséquent, f est dérivable sur R et sa dérivée est donnée
par

f ′(x) =

⎧⎪⎨
⎪⎩

2

x3
e
−1

x2 , x �= 0

∨
0, x = 0

3. f(x) =

⎧⎪⎨
⎪⎩

x+ 1, x ≤ −1
∨
cos2

(πx
2

)
, x > −1

• Domaine de définition :
Pour x ≤ −1, f(x) = x+ 1 est bien définie.

Pour x > −1, f(x) = cos2
(πx

2

)
est bien définie.

Alors,
Df = ]−∞,−1] ∪ ]−1,+∞[ = R.

• Dérivabilité sur ]−∞,−1[ :
Pour x < −1, f est dérivable car f(x) = x + 1 est un
polynôme et on a

f ′(x) = 1.



• Dérivabilité sur ]−1,+∞[ :

Pour x > −1, f(x) = cos2
(πx

2

)
; la fonction f est le

produit et la composée des fonctions élémentaires sui-
vantes ;

x −→ πx

2
, x −→ cos(x),

qui sont dérivables sur R, en particulier sur ]−1,+∞[,
alors f est dérivable. En utilisant les règles de dériva-
tion d’un produit et d’une composition de fonctions, on
obtient que

f ′(x) = 2 cos
(πx

2

)(
−π

2

)
sin
(πx

2

)
=
(
−π

2

)
sin(πx).

• Dérivabilité au point -1 :
Ona :
f(−1) = −1 + 1 = 0.

lim
x−→−1

<

f(x)− f(−1)
x+ 1

= lim
x−→−1

<

x+ 1

x+ 1
= 1 <∞,

donc f est dérivable à gauche de −1 et f ′g(−1) = 1.

lim
x−→−1

>

f(x)− f(−1)
x+ 1

= lim
x−→−1

<

cos2
(πx

2

)
x+ 1

=?

On pose u(x) = cos2
(πx

2

)
, u(−1) = cos2

(
−π

2

)
= 0,

alors,

lim
x−→−1

<

cos2
(πx

2

)
x+ 1

= lim
x−→−1

<

u(x)− u(−1)
x+ 1

= u′(−1).

On a u′(x) =
(
−π

2

)
sin(πx), alors u′(−1) = 0,

d’où
lim

x−→−1
>

f(x)− f(−1)
x+ 1

= 0,



donc f est dérivable à droite de −1 et f ′d(−1) = 0.
Comme

f ′g(−1) �= f ′d(−1),
On déduit que f n’est pas dérivable au point −1

Par conséquent, f est dérivable sur R − {−1} et sa dérivée
est donnée par

f ′(x) =
(
−π

2

)
sin(πx).

Exercice 7.

a) Calcul de limites par la règle de l’Hopital :

1. lim
x→0

x− x cos(x)

x− sin(x)
F.I

(
0

0

)
Les fonctions x −→ x−x cos(x) et x −→ x− sin(x) sont
dérivables. On a

lim
x→0

(x− x cos(x))′

(x− sin(x))′
= lim

x→0

1− cos(x) + x sin(x)

1− cos(x)
F.I

(
0

0

)

Les fonctions x −→ 1 − cos(x) + x sin(x) et x −→ 1 −
cos(x) sont dérivables. On a

lim
x→0

(1− cos(x) + x sin(x))′

(1− cos(x))′
= lim

x→0

2 sin(x) + x cos(x)

sin(x)
,

= lim
x→0

2 +
x

sin(x)
cos(x), (car sin(x) �= 0)

= 2 + 1 = 3,

puisque lim
x→0

sin(x)

x
= 1 et lim

x→0
cos(x) = 1. Par consé-

quent, en appliquant la règle de l’Hopital deux fois, on
en déduit que

lim
x→0

x− x cos(x)

x− sin(x)
= lim

x→0

(x− x cos(x))′

(x− sin(x))′
= lim

x→0

(x− x cos(x))′′

(x− sin(x))′′
= 3.



2. lim

x→
π

4

sin(2x− π

2
)

cos(x)−
√
2

2

F.I

(
0

0

)

Les fonctions x −→ sin(2x − π

2
) et x −→ cos(x) −

√
2

2
sont dérivables. On a

lim
x→0

(
sin(2x− π

2
)
)′

(
cos(x)−

√
2

2

)′ = lim
x→0

2 cos(2x− π

2
)

− sin(x)
= − 4√

2
.

Par conséquent, en appliquant la règle de l’Hopital une
fois, on en déduit que

lim

x→
π

4

sin(2x− π

2
)

cos(x)−
√
2

2

= lim
x→0

(
sin(2x− π

2
)
)′

(
cos(x)−

√
2

2

)′ = − 4√
2
.

3. lim
x→+∞

x− sin(x)

2x+ sin(x)
F.I
(∞
∞
)

Les fonctions x −→ x− sin(x) et x −→ 2x+ sin(x) sont
dérivables. On a

lim
x→+∞

(x− sin(x))′

(2x+ sin(x))′
= lim

x→+∞
1− cos(x)

2 + cos(x)
� ∃.

Les fonctions x −→ 1 − cos(x) et x −→ 2 + cos(x) sont
dérivables. On a

lim
x→+∞

(1− cos(x)(x))′

(2 + cos(x))′
= lim

x→+∞
sin(x)

− sin(x)
� ∃ car sin(x)peut être nul,

donc la règle de l’Hopital ne peut être appliquée.



On détermine cette limite autrement :

lim
x→+∞

x− sin(x)

2x+ sin(x)
= lim

x→+∞

x(1− sin(x)

x
)

x(2 +
sin(x)

x
)

= lim
x→+∞

1− sin(x)

x

2 +
sin(x)

x

=
1

2

puisque lim
x→+∞

sin(x)

x
= 0.

4. lim
x→4

(5− x)

⎛
⎝ 1

x− 4

⎞
⎠
= lim

x→4
e

ln(5− x)

x− 4 .

On a lim
x→4

ln(5− x)

x− 4
F.I

(
0

0

)
.

Les fonctions x −→ ln(5 − x) et x −→ x − 4 sont déri-
vables et

lim
x→4

(ln(5− x))′

(x− 4)′
= lim

x→4

−1
5− x

= −1.

En appliquant la règle de l’Hopital une fois, on en déduit
que

lim
x→4

ln(5− x)

x− 4
= lim

x→4

(ln(5− x))′

(x− 4)′
= −1,

Par conséquent,

lim
x→4

(5− x)

⎛
⎝ 1

x− 4

⎞
⎠
= lim

x→4
e

ln(5− x)

x− 4 = e−1

b) Applications du théorème des accroissements finis :

1. On montre que :

Pour 0 < a < b,
b− a

b
< ln

(
b

a

)
<

b− a

a
.

Soit f la fonction définie dans ]0,+∞[ par f(x) = ln(x).
Pour tous réels a et b tels que 0 < a < b, la fonction f est



continue sur [a, b] et dérivable sur ]a, b[ ; par le théorème
des accroissements finis, on a

∃c ]a, b[ , f(b)− f(a) = f ′(c)(b− a),

ce qui s’écrit

ln

(
b

a

)
=

b− a

c
.

Or

0 < a < c < b ⇐⇒ 0 <
1

b
<

1

c
<

1

a

=⇒ b− a

b
<

b− a

c
<

b− a

a
(car b− a > 0)

=⇒ b− a

b
< ln

(
b

a

)
<

b− a

a

2. On montre que : ∀x ∈ R, ex ≥ x + 1 .
Soit f la fonction définie dans R par f(x) = ex. On
distingue trois cas :
• Pour x > 0, la fonction f est continue sur [0, x] et

dérivable sur ]0, x[ ; par le théorème des accroisse-
ments finis, on a

∃c ]0, x[ , f(x)− f(0) = f ′(c)(x− 0),

ce qui s’écrit
ex − 1 = xec.

Or

0 < c < x ⇐⇒ e0 < ec < ex

⇐⇒ x < xec < xex (car x > 0)

=⇒ x < ex − 1

=⇒ ex > x+ 1

• Pour x < 0, la fonction f est continue sur [x, 0] et
dérivable sur ]x, 0[ ; par le théorème des accroisse-
ments finis, on a

∃c ]x, 0[ , f(0)− f(x) = f ′(c)(0− x),



ce qui s’écrit
1− ex = −xec.

Or

x < c < 0 ⇐⇒ ex < ec < e0

⇐⇒ −xex < −xec < −x (car − x > 0)

=⇒ 1− ex < −x
=⇒ ex > x+ 1

• Pour x = 0, on a e0 = 1 ≥ 0 + 1 donc l’iégalité est
vérifiée pour x = 0.

Par conséquent, on obtient

∀x ∈ R, ex ≥ x+ 1.

Exercice 8.

1. f(x) = arcsin

(
x+ 1

x− 1

)

• Domaine de définition :
On a

x ∈ Df ⇐⇒
{
−1 ≤ x+ 1

x− 1
≤ 1

x− 1 �= 0

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 ≤ x+ 1

x− 1
x+ 1

x− 1
≤ 1

x �= 1

(3.1)

On a

−1 ≤ x+ 1

x− 1
⇐⇒ x+ 1

x− 1
+ 1 ≥ 0 ⇐⇒ 2x

x− 1
≥ 0

L’ensemble des solutions est S1 = ]−∞, 0] ∪ ]1, +∞[



De même
x+ 1

x− 1
≤ 1 ⇐⇒ 2

x− 1
≤ 0

L’ensemble des solutions est S2 = ]−∞, 1[

Ainsi
Df = S1 ∩ S2 = ]−∞, 0] .

• Calcul de Limites

On sait que

∀y ∈
[
−π

2
,
π

2

]
, ∀x ∈ [−1, 1] , y = arcsin(x) ⇐⇒ x = sin(y)

- lim
x−→−∞

arcsin

(
x+ 1

x− 1

)
=

π

2
car

⎧⎨
⎩

lim
x−→−∞

x+ 1

x− 1
= 1

arcsin(1) =
π

2

- f(0) = arcsin(−1) = −π

2
car sin(−π

2
) = −1.

• Dérivée

On sait que : Pour tout x ∈ Df tel que u(x) �= ±1

(arcsin(u(x)))′ =
u′(x)√

1− (u(x))2



alors, ∀x ∈ ]−∞, 0[ ,

f ′(x) =

(
x+ 1

x− 1

)′
√

1−
(
x+ 1

x− 1

)2

=

−2
(x− 1)2√ −4x
(x− 1)2

=
−2

(x− 1)2
× |x− 1|

2
√−x

=
−2

(x− 1)2
× −(x− 1)

2
√−x

=
1

(x− 1)
√−x

2. f(x) = arccos(ln(x))

• Domaine de définition :
On a

x ∈ Df ⇐⇒
{ −1 ≤ ln(x) ≤ 1

x > 0

⇐⇒
{

e−1 ≤ x ≤ e
x > 0

(3.2)

Ainsi
Df =

[
1

e
, e

]
.

• Calcul de Limites

On sait que

∀y ∈ [0, π] , ∀x ∈ [−1, 1] , y = arccos(x) ⇐⇒ x = cos(y)



f(
1

e
) = arccos(ln(

1

e
)) = arccos(−1) = π car cos(π) = −1

f(e) = arccos(ln(e)) = arccos(1) = 0 car cos(0) = 1

• Dérivée

On sait que : Pour tout x ∈ Df tel que u(x) �= ±1

(arccos(u(x)))′ = − u′(x)√
1− (u(x))2

alors, ∀x ∈
]
1

e
, e

[
,

f ′(x) = − (ln(x))′√
1− (ln(x))2

= − 1

x
√

1− (ln(x))2

3. f(x) = argsh

(
1

x

)

• Domaine de définition :
On a

x ∈ Df ⇐⇒ x �= 0

Ainsi
Df = R∗ = ]−∞, 0[ ∪ ]0,+∞[ .



• Calcul de Limites
On sait que
∀y ∈ R, ∀x ∈ R, y = argsh(x) ⇐⇒ x = sh(y)

- lim
x−→−∞

argsh

(
1

x

)
= 0 car

{
lim

x−→−∞
1

x
= 0

argsh(0) = 0

- lim
x−→0−

argsh

(
1

x

)
= −∞ car

⎧⎨
⎩ lim

x−→0−

1

x
= −∞

lim
x−→−∞

argsh(x) = −∞

- lim
x−→0+

argsh

(
1

x

)
= +∞ car

⎧⎨
⎩ lim

x−→0+

1

x
= +∞

lim
x−→+∞

argsh(x) = +∞

- lim
x−→+∞

argsh

(
1

x

)
= 0 car

{
lim

x−→+∞
1

x
= 0

argsh(0) = 0

• Dérivée
On sait que :

∀x ∈ Df , (argsh(u(x)))′ =
u′(x)√

1 + (u(x))2

alors, ∀x ∈ R∗ ,

f ′(x) =

(
1

x

)′
√

1 +

(
1

x

)2

=

−1
x2√
x2 + 1

x2

=
− |x|

x2
√
x2 + 1

4. f(x) = argch(2x+ 1)



• Domaine de définition :
On a

x ∈ Df ⇐⇒ 2x+ 1 ≥ 1 �= 0

⇐⇒ x ≥ 0

Ainsi
Df = [0,+∞[ .

• Calcul de Limites
On sait que

∀x ≥ 1, ∀y ≥ 0, y = argch(x) ⇐⇒ x = ch(y)

- lim
x−→+∞

argch(2x+1) = +∞ car

{
lim

x−→+∞
2x+ 1 = +∞

lim
x−→+∞

argch(x) = +∞

- f(0) = argch(1) = 0 car ch(0) = 1

• Dérivée
On sait que :

∀x ∈ Df , tel que u(x) �= 1, (argch(u(x)))′ =
u′(x)√

(u(x))2 − 1

alors, ∀x ∈ ]0,+∞[ ,

f ′(x) =
(2x+ 1)′√
(2x+ 1)2 − 1

=
1√

x2 + x

5. f(x) = argth (ex)

• Domaine de définition :
On a

x ∈ Df ⇐⇒ −1 < ex < 1

⇐⇒
{ −1 < ex

ex < 1



On a
∀x ∈ R, −1 < ex

L’ensemble des solutions est S1 = R

et,
ex < 1 ⇐⇒ x < 0

L’ensemble des solutions est S2 = ]−∞, 0[

Ainsi
Df = S1 ∩ S2 = ]−∞, 0[ .

• Calcul de Limites

On sait que

∀y ∈ R, ∀x ∈ ]−1, 1[ , y = argth(x) ⇐⇒ x = th(y)

- lim
x−→−∞

argth (ex) = 0 car

{
lim

x−→−∞
ex = 0

argth(0) = 0

- lim
x−→0−

argth (ex) = +∞ car

{
lim

x−→0−
ex = 1−

lim
x−→1−

argth(x) = +∞

• Dérivée

On sait que : Pour tout x ∈ Df

(argth(u(x)))′ =
u′(x)

1− (u(x))2

alors, ∀x ∈ ]−∞, 0[ ,

f ′(x) =
(ex)′

1− (ex)2

=
ex

1− e2x

6. f(x) = argcoth (2x+ 2)



• Domaine de définition :
On a

x ∈ Df ⇐⇒ (2x+ 2 < −1) ∨ (2x+ 2 > 1)

On a
2x+ 2 < −1 ⇐⇒ x < −3

2

L’ensemble des solutions est S1 =

]
−∞,−3

2

[

et,

2x+ 2 > 1 ⇐⇒ x > −1

2

L’ensemble des solutions est S2 =

]
−1

2
, +∞

[

Ainsi

Df = S1 ∪ S2 =

]
−∞,−3

2

[
∪
]
−1

2
, +∞

[
.

• Calcul de Limites

On sait que

∀y ∈ R∗, ∀x ∈ ]−∞,−1[∪]1,+∞[ , y = argcoth(x) ⇐⇒ x = coth(y)

- lim
x−→−∞

argcoth (2x+ 2) = 0− car

{
lim

x−→−∞
2x+ 2 = −∞

lim
x−→−∞

argcoth(x) = 0−

- lim

x−→−
3

2

argcoth (2x+ 2) = −∞ car

⎧⎪⎪⎨
⎪⎪⎩

lim

x−→−
3

2

2x+ 2 = −1

lim
x−→−1

argcoth(x) = −∞

- lim

x−→−
1

2

argcoth (2x+ 2) = +∞ car

⎧⎪⎪⎨
⎪⎪⎩

lim

x−→−
1

2

2x+ 2 = 1

lim
x−→1

argcoth(x) = +∞



- lim
x−→+∞

argcoth (2x+ 2) = 0+ car

{
lim

x−→+∞
2x+ 2 = +∞

lim
x−→+∞

argcoth(x) = 0+

• Dérivée

On sait que : Pour tout x ∈ Df

(argth(u(x)))′ =
u′(x)

1− (u(x))2

alors, ∀x ∈
]
−∞,−3

2

[
∪
]
−1

2
, +∞

[
,

f ′(x) =
(2x+ 2)′

1− (2x+ 2)2

=
2

−4x2 − 8x− 3


