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Série de TD 3 : les fonctions réelles à une seule variable

Exercice 1 : Déterminer le domaine de définition des fonctions suivantes :

f1(x) =
√
x− 2 +

1

x− 1
. f2(x) = ln(x2 − 4x+ 4).

Exercice 2 : Calculer les limites suivantes :

1) lim
x→1

x2 − 1

x− 1
. 2) lim

x→+∞
cos(

1

x
) +

x2 + 5

x+ 2x2 + 5
. 3) lim

x→+∞

(√
x2 + 3− x

)
.

Exercice 3 : Soit

g(x) =


x2 − 2x, x < 1,

2x− 1, x ≥ 1.

a) Étudier la continuité et la dérivabilité de g en x = 1.

b) Si possible, prolonger g par continuité sur R.

Exercice 4 : Soit la fonction

f(x) =


x2 cos( 1x), x ̸= 0,

a, x = 0.

a) Déterminer la valeur de a pour que f soit continue sur R.

b) Pour a = 0 étudier la dérivabilité de f .

Exercice 5 :

a) Montrer que ex − 2 = 0 admet une solution unique sur [−1, 1]

b) Vérifier si la fonction h(x) = x3 − 3x + 1 satisfait les conditions du théorème de Rolle sur

[−1, 1].

c) En utilisant le théorème des accroissements finis, montrer que pour tout 0 < x < y :

x <
y − x

ln(y)− ln(x)
< y

Exercice 6 : Calculer les limites suivantes à l’aide de la règle de l’Hôpital :

1) lim
x→+∞

ln(x)

x
. 2) lim

x→+∞

x2 − 4x

ex
. 3) lim

x→0

1− cos(x)

ex − 1
Exercice 7 :

1) Donner le domaine de définition et les dérivées des fonctions

arcsin(2x), arccos(x2), arctan(3x+ 1).

2) Résoudre dans R : arctan(x) = π

4
.
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1 Exercice 1

1. f1(x) =
√
x− 2 +

1

x− 1
.

Pour que
√
x− 2 soit définie il faut x− 2 ≥ 0, donc x ≥ 2.

Pour que 1

x− 1
soit définie il faut x ̸= 1.

Comme x ≥ 2 implique x ̸= 1, Donc

Df1 = [2,+∞).

2. f2(x) = ln(x2 − 4x+ 4).
On remarque x2 − 4x + 4 = (x − 2)2. La fonction ln(t) est définie si et seulement si t > 0.

alors (x− 2)2 > 0, c.-à-d. x ̸= 2. Donc

Df2 = R \ {2}.

2 Exercice 2

1. lim
x→1

x2 − 1

x− 1
.

On a x2 − 1 = (x− 1)(x+ 1). Pour x ̸= 1, donc

lim
x→1

x2 − 1

x− 1
= lim

x→1
(x+ 1) = 2.

2. lim
x→+∞

cos
(1
x

)
+

x2 + 5

x+ 2x2 + 5
.

Étudions séparément les deux termes. On a

lim
x→+∞

cos
(1
x

)
= cos(0) = 1.

et on a
lim

x→+∞

x2 + 5

x+ 2x2 + 5
= lim

x→+∞

x2

2x2
=

1

2
.

Ainsi la somme tend vers 1 + 1
2 = 3

2 .

3. lim
x→+∞

(
√
x2 + 3− x).

On élimine la forme ∞−∞ en multipliant par le conjugué :√
x2 + 3− x =

(
√
x2 + 3− x)(

√
x2 + 3 + x)√

x2 + 3 + x
=

3√
x2 + 3 + x

.

Alors limx→+∞(
√
x2 + 3− x) = limx→+∞

3√
x2+3+x

= 0.
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3 Exercice 3
Soit

g(x) =

x2 − 2x, x < 1,

2x− 1, x ≥ 1.

Calcul des limites en x = 1 :

lim
x→1−

g(x) = lim
x→1−

(x2 − 2x) = −1, lim
x→1+

g(x) = lim
x→1+

(2x− 1) = 1.

et g(1) = 2 · 1− 1 = 1.
Les limites à gauche et à droite pas égal, donc g n’est pas continue en 1. Puisqu’une fonction

dérivable est nécessairement continue alors, g n’est pas dérivable en 1. et puisque g pas continue
donc pas admet prolonger par continuité

4 Exercice 4
Soit

f(x) =

x2 cos
(
1
x

)
, x ̸= 0,

a, x = 0.

(a) Continuité en 0

Étudions limx→0 x
2 cos(1/x). Comme −1 ≤ cos(1/x) ≤ 1 pour tout x ̸= 0, on a

−x2 ≤ x2 cos(1/x) ≤ x2.

Or limx→0±x2 = 0. Par le théorème d’encadrement, limx→0 x
2 cos(1/x) = 0. Ainsi la continuité

en 0 exige a = 0.

(b) Dérivabilité en 0

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 cos(1/x)− 0

x
= lim

x→0
x cos(1/x) = 0.

Donc f ′(0) = 0 et f est dérivable en 0.

5 Exercice 5

(a) Existence et unicité de la solution de ex − 2 = 0 sur [−1, 1]

Posons φ(x) = ex − 2. On a φ′(x) = ex > 0 pour tout x, donc φ est strictement croissante
(et continue). Calcul des signes aux extrémités :

φ(−1) = e−1 − 2 ≈ −1,6321 < 0, φ(1) = e− 2 ≈ 0,7183 > 0.

Par le théorème des valeurs intermédiaires, φ admet au moins un racine c ∈ (−1, 1). L’unicité
est assurée par strictement croissante .
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(b) Applicabilité du théorème de Rolle pour h(x) = x3 − 3x+ 1 sur [−1, 1]

Calculons h(−1) et h(1) :

h(−1) = (−1)3 − 3(−1) + 1 = −1 + 3 + 1 = 3, h(1) = 1− 3 + 1 = −1.

Comme h(−1) ̸= h(1), la condition h(−1) = h(1) requise par le théorème de Rolle n’est pas
satisfaite. Donc Rolle n’est pas applicable sur cet intervalle.

(c)

Soit f(t) = ln(t) sur [x, y] avec x > 0. f est continue sur [x, y] et dérivable sur (x, y). Par le
théorème des accroissements finis, il existe c ∈ (x, y) tel que

f ′(c) =
f(y)− f(x)

y − x
=

ln(y)− ln(x)

y − x
.

Mais f ′(t) =
1

t
, d’où

ln(y)− ln(x)

y − x
=

1

c
.

Puisque x < c < y, 1
y < 1

c < 1
x donc x <

y − x

ln(y)− ln(x)
< y

6 Exercice 6
Rappel de la condition : L’Hôpital peut être appliquée lorsque l’expression est de forme

indéterminée 0/0 ou ∞/∞.

1.

lim
x→+∞

lnx

x
.

Forme ∞/∞. donc

lim
x→+∞

lnx

x
= lim

x→+∞

1/x

1
= lim

x→+∞

1

x
= 0.

2.

lim
x→+∞

x2 − 4x

ex
.

Forme ∞/∞. Appliquons L’Hôpital successivement :

lim
x→+∞

x2 − 4x

ex
= lim

x→+∞

2x− 4

ex
.

La forme reste ∞/∞, appliquons encore L’Hôpital :

lim
x→+∞

2x− 4

ex
= lim

x→+∞

2

ex
= 0.

3.

lim
x→0

1− cosx

ex − 1
.

Forme 0/0. alors
lim
x→0

1− cosx

ex − 1
= lim

x→0

sinx

ex
.

Quand x → 0, sinx → 0 et ex → 1, donc la limite vaut 0.
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7 Exercice 7
1. y = arcsin(2x).
Le domaine est donné par 2x ∈ [−1, 1], soit x ∈ [−1

2 ,
1
2 ].

d

dx
arcsin(2x) =

2√
1− (2x)2

=
2√

1− 4x2
, |x| < 1

2 .

2. y = arccos(x2).
Ici x2 ∈ [0, 1] pour x ∈ [−1, 1], donc le domaine est [−1, 1]. On a

d

dx
arccos(x2) = − 2x√

1− (x2)2
= − 2x√

1− x4
, |x| < 1.

3. y = arctan(3x+ 1).
arctan est définie sur R, donc le domaine est R.

d

dx
arctan(3x+ 1) =

3

1 + (3x+ 1)2
.

Résoudre arctan(x) =
π

4
.

Comme tan(π/4) = 1 et arctan est la bijection de R sur (−π
2 ,

π
2 ), on obtient directement

arctan(x) =
π

4
⇐⇒ x = 1.
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