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Série de TD 3 : les fonctions réelles & une seule variable

Exercice 1 : Déterminer le domaine de définition des fonctions suivantes :

1
fl(.’l?):\/x—2+ﬁ. fg(x):ln(x2—4x+4)
Exercice 2 : Calculer les limites suivantes :
2 —1 1 2245
. . - I . 2 _
1)3171_>n[11 PR Z)xEIEOOCOS(m)+x+2x2+5. 3) :):ETOO( x?2+3 x)

Exercice 3 : Soit
2?2 -2z, <1,
g(z) =
20 -1, x2>1.

a) Etudier la continuité et la dérivabilité de g en = = 1.
b) Si possible, prolonger g par continuité sur R.

Exercice 4 : Soit la fonction

a) Déterminer la valeur de a pour que f soit continue sur R.
b) Pour a = 0 étudier la dérivabilité de f.
Exercice 5 :
a) Montrer que ¢” — 2 = 0 admet une solution unique sur [—1, 1]
b) Vérifier si la fonction h(x) = 2% — 3z + 1 satisfait les conditions du théoréme de Rolle sur
[—1,1].
c¢) En utilisant le théoréme des accroissements finis, montrer que pour tout 0 < x < y :

c YT _
v In(y) — In(x) y

Exercice 6 : Calculer les limites suivantes a ’aide de la regle de ’'Hopital :

1 24 1—
1) lim n(:n) 2) lim ? ’ 3)limM

T—+o0o0 T z—+o0o  eT =0 e* —1

Exercice 7 :

1) Donner le domaine de définition et les dérivées des fonctions

arcsin(2x), arccos(z?), arctan(3z + 1).

2) Résoudre dans R : arctan(z) = %



Solutions TD 3 analyse 01 (2025/2026)

1 Exercice 1
1
Pour que vz — 2 soit définie il faut x — 2 > 0, donc = > 2.
1
1 soit définie il faut x # 1.

x —_—
Comme x > 2 implique = # 1, Donc

Pour que
Dfl = [2, +OO).

2. fo(z) = In(2? — 42 + 4).
On remarque 22 — 4z + 4 = (x — 2)2. La fonction In(¢) est définie si et seulement si t > 0.

alors (x —2)? > 0, c.-a-d. x # 2. Donc
Dy, =R\ {2}.

2 Exercice 2

Onaz?—1=(zx—1)(z+1). Pour z # 1, donc

2
-1
lim =~ = lim(z + 1) = 2.
z—1 © —1 rz—1
1 2
2. lim cos(—) +$7+5.
z=Foo z x+222+5

Etudions séparément les deux termes. On a

lim cos(%) = cos(0) = 1.

T—r—+00
et on a
I 2245 . x2 1
im —————— = lim —
zo4o0x + 222 +5 zo4o00 222 2

Ainsi la somme tend vers 1 + % = %

3. lim (Va2+3-—ux).
r—+00
On élimine la forme co — co en multipliant par le conjugué :

/71.24_3_%:(\/IL‘2+3—$)(\/$2+3+LL’): 3
Val+3+z 2?+3+x

Alors limg 1 oo (V2?2 +3 — ) = limy 1 oo ﬁ =0

1



3 Exercice 3

Soit
2 -2z, x<l,
g(z) =
2¢ -1, x>1.
Calcul des limites en z =1 :
lim = lim (2% —2z) = —1, lim = lim (2z —1) = 1.
Jm g(z) = lm (27— 20) Jm g(z) = lim (22 —1)

etg(l)=2-1-1=1.

Les limites a gauche et a droite pas égal, donc g n’est pas continue en 1. Puisqu’une fonction
® dérivable est nécessairement continue iorsI i n’est pas dérivable en g ﬁ h
D

4 Exercice 4

Soit

(a) Continuité en 0
Etudions lim,_,0 22 cos(1/z). Comme —1 < cos(1/x) < 1 pour tout z # 0, on a
—z? < 2% cos(1/x) < 2°.

Or lim,_,o +22? = 0. Par le théoréme d’encadrement, lim,_,o 22 cos(1/z) = 0. Ainsi la continuité
en O exige a = 0.

(b) Dérivabilité en 0

2
— 1 —
fim L&) = Oy 27eosU/) =0 s cos(1/a) = 0.
x—0 x—0 x—0 xX z—0

Donc f/(0) =0 et f est dérivable en 0.

5 Exercice 5

(a) Existence et unicité de la solution de ¢ —2 =0 sur [—1, 1]

Posons ¢(z) = e* — 2. On a ¢'(x) = e* > 0 pour tout z, donc ¢ est strictement croissante
(et continue). Calcul des signes aux extrémités :

p(-1)=e -2~ -1,6321<0, (1)=e—2~0,7183 > 0.

Par le théoreme des valeurs intermédiaires, ¢ admet au moins un racine ¢ € (—1,1). L’'unicité
est assurée par strictement croissante .
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(b) Applicabilité du théoréme de Rolle pour h(z) = z* — 3z + 1 sur [—1,1]
Calculons h(—1) et h(1) :
h(=1)=(-1)> =3(-1)+1=-1+3+1=3, h(1)=1-3+1=-1.

Comme h(—1) # h(1), la condition h(—1) = h(1) requise par le théoréeme de Rolle n’est pas
satisfaite. Donc Rolle n’est pas applicable sur cet intervalle.

(c)
Soit f(t) = In(t) sur [z,y] avec © > 0. f est continue sur [z,y] et dérivable sur (x,y). Par le
théoréme des accroissements finis, il existe ¢ € (z,y) tel que

fly) = f@) _ In(y) —In(z)
y—x y—x

f(e) =

1
Mais f/(t) = o d’on

Puisquex<c<y,%<%<%donca:<

6 Exercice 6

Rappel de la condition : L’Hopital peut étre appliquée lorsque 'expression est de forme
indéterminée 0/0 ou oco/c0.

1.
. Inz
lim —.
r—4+oco I
Forme oo/00. donc
. Inz . 1/x
Iim — = lim L:I —=0
r—+oco I r—+00 r—+oco I
2.
. x? — 4z
lim
T——400 et

Forme oo/0o0. Appliquons L’Hépital successivement :

. x? — 4z . 2r —4
lim = lim .
r——+00 et z—+o0o0 et

La forme reste oo/oo, appliquons encore L’Hopital :

) 2z — 4 . 2
lim = lim — =0.
r—+o0 eT r—+00 T
3.
. 1—cosx
lim ——.
z—0 e* —1
Forme 0/0. alors
1—cosx . sinx
im —— = lim .
z—0 e* —1 z—0 et

Quand z — 0, sinx — 0 et ¢* — 1, donc la limite vaut 0.



7 Exercice 7

1. y = arcsin(2x).
Le domaine est donné par 2z € [—1,1], soit z € [—3, 3].

2 2
VI-(22)2 V1 42%

D=

— arcsin(2x) =

1
T < 3.
dx =1 2

2. y = arccos(z?).
Ici 22 € [0,1] pour z € [—1,1], donc le domaine est [—1,1]. On a

2 2
— arccos(z?) = — ° = |z| < 1.

iz JI-@? Vit

3. y = arctan(3z + 1).
arctan est définie sur R, donc le domaine est R.

d 3
L arctan(3z +1) = ——>
gz etz +1) = T

Résoudre arctan(z) =

NE

Comme tan(7/4) = 1 et arctan est la bijection de R sur (=7, %), on obtient directement

arctan(z) = % — =1
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