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AVANT-PROPOS  
 
 Le cours “ Commande avancée ” a pour but de présenter les aspects théoriques et numériques 

des différentes parties, ainsi que des applications dans des domaines très divers.  La théorie de 

commande analyse les propriétés des systèmes commandés, c’est-à-dire des systèmes 

dynamiques sur les- quels on peut agir au moyen d’une commande (ou contrôle).   Le but est 

alors d’amener le système d’un état initial donné à un certain état final, en respectant 

éventuellement certains critères. Les systèmes abordés sont multiples : systèmes différentiels, 

systèmes discrets, systèmes avec bruit, avec retard... Leurs origines sont très diverses : 

mécanique, électrique, biologie, chimie, ... L’objectif peut être de stabiliser le système pour le 

rendre insensible à certaines perturbations (stabilisation), ou encore de déterminer des solutions 

optimales et les meilleures performances. 
 

 Dans les industries modernes où la notion de rendement est prépondérante, le rôle de 

l’automaticien est de concevoir, de réaliser et d’optimiser, tout au moins d’améliorer les 

méthodes existantes. Ainsi les domaines d’application sont multiples aérospatiale, automobile, 

robotique, aéronautique, internet et les communications en général, mais aussi le secteur 

médical, chimique, génie des procédés, etc. 
 

 La première partie concerne la commande optimale en temps continu et discret. Les 

problèmes de commande optimale se rencontrent dans la vie de tous les jours : comment arriver 

à destination le plus rapidement possible, comment minimiser sa consommation... Pour un 

système dynamique donné et dont les équations sont connues, le problème de commande 

optimale consiste alors à trouver la   commande minimisant un critère donné.  C’est sous cette 

forme que la commande optimale a été étudiée dès le XIXème siècle avec le calcul des variations.  

Une des grandes applications de la commande optimale a été l’application au lanceur Apollo 

dans les années 1960. Notons néanmoins que les difficultés soulevées par ce genre de problème 

sont loin d’être complètement résolues comme en   témoignent les sessions d´dédiées à la 

commande optimale dans les conférences d’automatique. La commande optimale reste donc un 

sujet de recherche d’actualité. 
 

 La deuxième partie commence par un exposé d’évolution historique de la commande 

adaptative et les différentes stratégies directes et indirectes appliquées sur des systèmes linéaires 

(chapitre 4). Ensuite, l’algorithme d’identification paramétrique à base des moindres carrés 

récursifs et la méthode de commande polynomiale RST utilisés pour la conception de la 
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commande adaptative auto-ajustable sont présentés (chapitre 5). Le reste de cette partie est 

consacré à la commande adaptative à modèle de référence (chapitre 6). 
 

 La troisième partie concerne la commande prédictive. Le chapitre 7 présente une 

introduction à la commande prédictive. Deux types de commande prédictive sont étudiés. Dans 

le chapitre 8, la commande prédictive généralisée monovariable est étudiée avec application. 

Le chapitre 9 traite la commande prédictive basée sur le modèle, multivariable, permettant de 

prendre en compte des contraintes, souvent utilisée dans l’industrie, présentée sous plusieurs 

formes.  
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 CHAPITRE 1   
CALCUL DE LA COMMANDE OPTIMALE 

 

1.1 Introduction  

 Fréquemment, l’ingénieur en charge des procédés industriels a confronté les problèmes 

d’optimisation. Un tel problème pourrait être la maximisation de la portée d’un missile ou le 

profil d’une entreprise, la minimisation de l’erreur d’estimation de la position d’une cible, de 

l’énergie ou encore le coût exigé pour atteindre le but final. La recherche d’une commande 

permettant d’atteindre de tels objectifs tout en minimisant, ou bien maximisant, un critère donné 

à priori, constitue le problème fondamental dans la théorie d’optimisation. On subdivise ce 

problème en quatre parties : 

1- Définition de l’objectif, 

2- Connaissance de la position actuelle par rapport à l’objectif, 

3- Connaissance de l’influence de l’environnement sur le passé, le présent et le futur, 

4- Détermination de la meilleure stratégie.    

 On s’intéressera dans une première partie à la commande optimale telle qu’elle a été posée 

initialement et dans le cas des systèmes les plus généraux. Dans un second chapitre, on 

s’intéressera plus particulièrement aux systèmes linéaires dans le cas d’un critère quadratique, 

cas connu sous le nom de commande linéaire quadratique (LQ), et qui s’exprime sous la forme 

d’un retour d’état statique. On s’intéressera ensuite à la commande linéaire quadratique 

gaussienne (LQG) permettant de synthétiser un correcteur dynamique pour un système dont 

l’état n’est que partiellement mesuré.  
 

1.2 Introduction à la théorie d’optimisation  

 Soit un vecteur � ∈ ℝ� de variables de décision et soit un critère �(�) à valeur dans ℝ  définie 

sur 	 ⊂ ℝ�. On note ∆�(�) = 
�(�)

�    le gradient de la fonction �(�). Il s’agit d’une fonction 

de ℝ� vers ℝ�. La �è�� composante de  ∆�(�) s’écrit ��(�)
��� . On note �(�) = 
��(�)


��  le Hessien 

de la fonction �(�). Il s’agit d’une fonction de ℝ� vers ℝ�×�. La composante (�, �) de � 

s’écrit ���(�)
������ . 

 

Définition 1.1 (minimum global) : La fonction �(�) présente un minimum global en �� ∈
	 si �(�) > �(��), ∀� ≠ ��.   
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Définition 1.2 (minimum local) : la fonction �(�) présente un minimum local en �� ∈ 	 s’il 

existe un voisinage   de �� tel que �(�) > �(��), ∀ � ∈  ∖ � ≠ ��.    
 

1.2.1 Optimisation sans contrainte 

Lemme 1.1 (Condition du premier ordre d’existence d’un extremum) : 

Si le critère �(�) présente un extrémum en ��, alors on a 

                     "�(�)"� #�$�%
= 0                                                                                                                (1.1) 

Cette équation de premier ordre est une condition nécessaire mais n’est pas suffisante car la 

connaissance des dérivées d’ordre supérieur sont nécessaires pour conclure à la présence d’un 

extrémum et à la détermination du type d’extrémum (minimum ou maximum). 

Lemme 1.2 (Condition suffisante d’existence d’un extremum) : 

Si  

�(�)


� )�$�% = 0 et si 

��(�)


�� )�$�% > 0 (1)  alors le critère �(�) présente un minimum en ��. 

 Si  

�(�)


� )�$�% = 0 et si 

��(�)


�� )�$�% < 0 alors le critère �(�) présente un maximum en ��. 

Dans l’hypothèse où les conditions précédentes ne seraient pas satisfaites, il faut étudier les 

conditions d’ordre supérieures. On est en présence d’un extrémum si la première dérivée non 

nulle est d’ordre pair. 

Exemple 1.1 : On considère la fonction +: - → ℝ avec - = [−3, 3] dont la courbe représentative 

est la suivante 

 

 
 + admet un minimum local en −3 : si je choisis l’intervalle � =] − 4, −2[, alors pour tout       

 � ∈ - ∩ �=[-3, 2] on a +(�) ≥ +(−3) 

 + admet un maximum local en −2 

 
 
Cette inégalité doit être lue au sens des inégalités matricielles, c’est-`a-dire que le Hessien doit être  défini positif, ce qui revient 
aussi à dire que ses valeurs propres sont toutes strictement positives. 

Figure 1.1 : extrémum local et global 
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 + admet un minimum global, et donc local, en 1 

 + admet un maximum global, et donc local, en 3. 
 

1.2.2 Optimisation avec contrainte 

 Intéressons-nous désormais à la minimisation de �(�) sous la contrainte d’égalité         

 7(�) = 89×:. La recherche du minimum se fait par l'introduction d’un vecteur de ℝ9 appelé 

Lagrangien et par l’introduction d’un critère modifié 

            �;(�, <) = �(�) + <>7(�)                                                                                    (1.2) 
 

Lemme 1.3 (Condition du premier ordre d’existence d’un extremum) 

Pour que �� soit solution du problème d’extrema sous contrainte ci-dessus, il faut qu’il existe 

un Lagrangien <� qui satisfasse les conditions suivantes : 

                     ?�;?� (��, <�) = 8�×:                                                                                                        (1.3) 

                     ?�;?< (��, <�) = 89×:                                                                                                         (1.4) 

  

Exemple 1 (Minimisation sous contrainte) 

Pour � ∈ ℝ@, on considère le critère �(�) = �>� et la contrainte A� = 1 où A = [1 1]. Trouvez 

la solution du problème de minimisation sous contrainte. 

Solution  

                    �;(�, <) = �(�) + <>7(�) = �>� + <(A� − 1) = �:@ + �@@ + <�: + <�@ − <  

Les conditions d’optimalité  

                      ?�;?�: (�:�, <�) = 2�: + < = 0 ⟹ �: = − 12 < 

                      ?�;?�@ (��, <�) = 2�@ + < = 0 ⟹ �@ = − 12 < 

                       ?�;?< (��, <�) = �: + �@ − 1 = 0 ⟹ < = −1 

Le point (0.5, 0.5, -1) est un point critique. 

La matrice Hessienne 

� = C2 0 10 2 11 1 0D ⇒ �FG HIJFKLG ℎ: = 2, ℎ@ = 4, ℎN = det(�) = −4  

La matrice hessienne est indéfinie  
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1.3 Calcul des variations  

 Le calcul des variations est la base des méthodes de la commande optimale. Dans ce 

paragraphe, nous nous contentons de donner un exemple introductif. Dans ce cas, l’inconnue 

n’est plus un scalaire ni un vecteur, mais une fonction. Autrement dit, la solution du problème 

est cherchée dans un espace de dimension infinie. 

On cherche une fonction �(R) minimisant une intégrale de la forme : 

                      �(�) = S 7(�(R), �T (R), R)U
V "R                                                                                   (1.5) 

Notons �∗(R) la fonction optimale qui doit vérifier : 

                       �(�) ≥ �(�∗)        ∀� 

L’argument de J est une fonction, on qualifie souvent J de fonctionnelle, c’est-à-dire de 

fonction. En notant Y� une petite variation de la fonction �, et Y�T  la variation de sa dérivée 

correspondante, on a : 

   �(� + Y�) ≅ S [7(�(R), �T (R), R) + ?7?� (�(R), �T (R), R)Y�U
V

+ ?7?�T (�(R), �T (R), R)Y�T\ "R                                                                                  (1.6) 

Pour la trajectoire optimale, il faut que 
�^
�� (�(R), �T (R), R)Y� + �^

��T (�(R), �T (R), R)Y�T   soit nul tout 

au long de la trajectoire. 

1.3.1 Equation d’Euler-Lagrange  

Lemme 1.4 : la fonction optimale �(R) vérifie l’équation suivante  

                     ?7?� − ""R [?7?�T \ = 0                                                                                                         (1.7) 

Dans le cas où 7 ne dépend pas explicitement de R, la formule d'Euler-Lagrange se reformule 

de la manière suivante : 

Lemme 1.5 (Formule de Beltrami) : La fonction optimale �(R) vérifie l’équation suivante : 

                     7 − �T [?7?�T \ = �                                                                                                              (1.8) 

Où � est une constante.  

Démonstration : 

  On a  

                     ""R C7 − �T [?7?�T \D = 0 ⇒ �T C ?7?� − ""R [?7?�T \D = 0 ⇒  ?7?� − ""R [?7?�T \ = 0 

Le résultat du lemme 1.5 est vérifié 



CHAPITRE 1                                                                                                                            CALCUL DE LA COMMANDE OPTIMALE 

 

 

7 
 

1.3.2 Prise en compte des conditions initiales et finales 

 Les conditions initiales et finales peuvent être libres ou imposées. On peut imposer l'instant 

et/ou la valeur de la fonction �. Considère un critère intégrant éventuellement une pénalité sur 

les conditions initiales et finales, la forme : 

                      �(a) = S 7(�(R), �T (R), R)"R + bca, d, �(a), �(d)eU
V                                              (1.9) 

Les conditions correspondantes, appelées conditions de transversalité, s’écrivent : 
 

                     [?7?�T (a) − ?b?�(a)\ Y�(a) + [7(a) − ?7?�T (a)�T (a) − ?b?a\ Ya = 0                   (1.10) 

                     [?7?�T (d) + ?b?�(d)\ Y�(d) + [7(d) − ?7?�T (d)�T (d) + ?b?d\ Yd = 0                    (1.11) 

7(a) = 7(�(a), �T (a), a) FR 7(d) = 7(�(d), �T (d), d) pour alléger l’écriture. 
 

Exemple 1.2 : déterminer la trajectoire �(R) optimale minimisation le critère 

 g cR�T (R) + �T @(R)eUV "R avec a = 0, �(a) = 1, �(d) = 5 FR d �IdLF. 

 

1.3.3 Prise en compte des contraintes 

Considérant le cas d’une minimisation du critère (1.2) avec les contraintes suivantes : 

 Contrainte intégrale : g L(�, �T , R)"R = 0,   L ∈ ℝhUV  

 Contrainte instantanée G(�, �T , R) = 0, G ∈ ℝi   
La résolution se fait en introduisant les multiplieurs de Lagrange < ∈ ℝh et j(�) ∈ ℝi et en 

substituant à la fonction 7 l’Hamiltonien 

                     �(�, �T , R, <, j) = 7(�, �T , R) + <>L(�, �T , R) + j>G(�, �T , R)                                    (1.12) 

L’équation d’Euler-Lagrange est inchangée       

                     ?�?� − ""R [?�?�T \ = 0                                                                                                      (1.13) 

 

1.4 Commande optimale 

 Plutôt que de présenter de manière approfondie le problème de la commande optimale, cette 

partie constitue plutôt une introduction au sujet. Le choix a été fait de présenter un résultat 

s’appuyant sur le principe du maximum de Pontriaguine. Pour approfondir ce domaine.  

Position de problème  

Soit un système à temps continu de représentation d’état : 

                     �T = +(�, K, R) et �(R�) = �� où R ∈ ℝ, K ∈ ℝ� et � ∈ ℝ�                              (1.14) 
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Pour la condition initiale �� et la commande u, l’équation d'état (1.14) définit une trajectoire 

unique � pour l’état sur [R�, Rk ]. Celle-ci est fonction de la condition initiale �� et de la 

commande u sur [R�, Rk ]. 

Soit le critère : 

                     �(��, R�, K) = lc�k , Rke + g 7(�, K, R)"Rmnm%                                                        (1.15) 

Avec �k = �(Rk). Les fonctions l et 7 ainsi que les instants R� et Rk étant donnés, ce critère ne 

dépend que de �� et de u sur [R�, Rk ]. L’application qui au signal de commande u associe le 

critère scalaire �(��, R�, K) est une fonctionnelle. On peut noter que différents critères existent 

dans la littérature : 

 Le problème de Lagrange : g 7(�, K, R)"Rmnm%  

 Le critère de Bolza :  lc�ke + g 7(�, K, R)"Rmnm%  

 Le critère de Mayer :  oc�k , Rke 

Remarque :   

 L’instant final peut être imposé ou libre  

 La commande peut appartenir à un ensemble K ∈ p ≠ ℝ� 

 Des contraintes peuvent exister sur l’état final : �k ∈ q 

Le problème de la commande optimale consiste alors à trouver la commande Kr  minimisant 

�(��, R�, K): 
                     Kr = minv∈p  �(��, R�, K)                                                                                         (1.16) 

On notera alors �r la trajectoire correspondante de l’état et �;(��) = �(��, R�, Kr) la valeur du 

critère. 

1.4.1 Principe d’optimalité de Bellman 

Soit le critère : 

                      �(��, R�, K) = lc�k , Rke + g 7(�, K, R)"Rmnm%                                                            (1.17) 

La trajectoire optimale sur [R�, Rk ] est Kr  et le critère optimal : 

                      �;(��, R�) = minv[w%,wn ]  �(��, R�, K)                                                                          (1.18) 

Soit R: ∈ xR�, Rk y. Le principe d’optimalité de Bellman énonce que la trajectoire optimale sur 

xR�, Rk y contient la trajectoire optimale sur xR:, Rk y avec comme condition initiale �: = �(R:). 

Autrement dit : 
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                      �;(��) = minvzw%,wn {,�| [g 7(�, K, R)"Rm|m% + �;(�:)\                                                   (1.19) 

Bien que les développements suivants ne s’appuient pas directement sur ce principe, mais sur 

le principe du maximum, ce principe est un résultat classique de la commande optimale et se 

trouve souvent utilisé dans la littérature. Il permet d’obtenir une solution optimale en découpant 

l’intervalle et en résolvant un problème récursif. 

1.4.2  Principe du maximum de Pontriaguine 

Soit un système d’équation d’état  �T = +(�, K, R)       

Le critère de performance   �(��, R�, K) = lc�k , Rke + g 7(�, K, R)"Rmnm%  

On définit l’Hamiltonien du système 

                     �(�, K, <, R) = 7(�, K, R) + <>+(�, K, R)                                                           (1.20) 

Où < est appelé état-adjoint. Le principe du minimum de Pontriaguine énonce que la trajectoire 

optimale minimise l’Hamiltonien du système. Autrement dit : 

                     �c�r, Kr, <;e ≤ �c�r, K, <;e ∀K ∈ p                                                                       (1.21) 

Le long de la trajectoire optimale, on dispose d’un certain nombre d'équations permettant de 

résoudre le problème de commande optimale. Ces équations sont généralement établies en 

utilisant le calcul des variations. 
 

1) L’extrémité de la solution conduit à un jeu d’équations, appelées équations canoniques de 

Hamilton, qui régissent les dynamiques de l’état d’une part et de l’état adjoint d’autre part : 

 Etat        

       ?�?< = �T                                                                                                                             (1.22) 

 Etat adjoint 

        ?�?� = −<T                                                                                                                        (1.23) 

2)  Les équations provenant des conditions dites terminales, en R� d’une part et en Rk d’autre 

part sont appelées équations de transversalité : 

 À l'origine 

       [−�(R�) + ?l?R�\ YR� + (<(R�) + ?l?��)>Y�� = 0                                                   (1.24) 

 À l’arrivée 

       ~�cRke + ?l?Rk� YRk + (−<cRke + ?l?�k)>Y�k = 0                                                  (1.25) 
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3) Enfin, selon la nature du problème, on aura encore certaines relations additionnelles : 

 Si aucune contrainte (de type saturation) n’est imposée sur u(t) à l’instant t, on a : 
 

                     ?�?K (R) = 0                                                                                                                     (1.26) 

Si H n'est pas une fonction explicite du temps, on a : 

 

                     "�"R = ?�?R = 0                                                                                                                (1.27) 

1.4.3 Lien avec le calcul des variations   

 Il s’agit d'un problème d’optimisation sous contrainte égalité +(�, K, R) − �T = 0. En 

appuyant sur le calcul des variations, on est amené à introduire un multiplicateur de Lagrange <, 

qui est une fonction du temps, et à introduire l’Hamiltonien. 

                     �(�, K, <, R) = 7(�, K, R) + <>+(�, K, R) 

Le critère s’écrit alors 

                      �; = lc�k , Rke + S c7(�, K, R) + <>(+(�, K, R) − �T)e"Rmn
m%

                                   (1.28) 

                         = lc�k , Rke + S (�(�, K, <, R) − <>�T))"Rmn
m%

 

                          = lc�k , Rke + S (�(�, K, <, R) + <T>�))"Rmn
m%

− <k>�k + <>(R�)�� 

                          = l�c��, R�, �k , Rke + g (�(�, K, <, R) + <T>�))"Rmnm%  

 

 lc�k , Rke − <k>�k + <>(R�)�� 

Le calcul des variations permet de donner des conditions nécessaires pour résoudre ce 

problème. 
 

1.4.4 Equation d’Euler-Lagrange 

 L'équation d'Euler-Lagrange, bien connue en mécanique, peut être retrouvée à partir du 

principe du minimum. En notant T, l'énergie cinétique et U l’énergie potentielle d'un système 

mécanique, le principe de moindre action énonce par Maupertuis postule que le système évolue 

en minimisant l’intégrale : 
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                     g (� − �)"Rmnm%                                                                                                     (1.29) 

Notons q les cordonnées généralisées du système. Soit �(�, �T ) = �(�, �T ) − �(�) le lagrangien, 

avec le critère : 

                      �(��, R�, �T ) = g �(�, �T )"Rmnm%                                                                               (1.30) 

 

Exemple 

On considère un système dont on commande la vitesse, l’équation d’état du système s'écrivant 

alors simplement : 

                     �T = K 

L’Hamiltonien s'écrit alors : 

                     �(�, �,T <) = �(�, �T ) + <>�T  
Et le principe du minimum donne les deux équations suivantes : 

                     ?�?� = ?�?� = −<T 
                     ?�?�T = ?�?�T + < = 0 

En dérivant la seconde équation par rapport au temps puis en remplaçant < grâce à la première, 

on obtient l'équation d'Euler-Lagrange : 
 

                     ""R [?�?�T \ − ?�?� = 0                                                                                                        (1.31) 

 

 

1.5 Commande bang-bang 

 

 Un type de commande optimal particulier bien connu est la commande à temps minimal 

Prenons un exemple : vous commandez l’accélération d’un véhicule que vous devez amener 

d’une position initiale d’arrêt à une position finale, également à l’arrêt, dans le temps le plus 

court possible. Si l’on considère un mouvement en ligne droite, on conçoit intuitivement que la 

commande optimale est dans ce cas une accélération maximale jusqu’à un certain instant à 

partir duquel il faudra freiner au maximum.  
 

 On parle de commande bang-bang parce que la commande est toujours saturée, 

alternativement à sa valeur minimale ou à sa valeur maximale. Quant à la robustesse de la 

commande, c’est-à-dire la capacité à remplir la mission de manière précise, lorsque la masse 

du véhicule est imparfaitement estimée, vous imaginez bien que ce genre de commande n’est 
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pas très recommandable. Pour un exemple de ce type de commande. Un exemple complet de 

commande en temps minimal sera traité : Celui du double intégrateur. 
 

1.6 Problèmes  

Problème №1  

Calculer la commande optimale amenant le système d’un état initial �(R�) = �� à l’état 

final �k = 0, en temps minimal. En minimisant la fonction � = g 1"Rmnm%   

Pour le système �T (R) = ��(R) + �K(R), lorsque −1 ≤ K ≤ 1. 

Application au système intégrateur double �� = K (on posera R� = 0 pour simplifier). 

 

Problème №2: On considère le système linéaire du premier ordre : 
 �T (R) = K 
 

Partant de l’état initial donné x (0) = x0. Appliquer le principe du maximum pour résoudre les 

problèmes suivants. 

� = S 12 cK@(R) + �@�@(R)e"R>
�  

1) Au bout du temps T donné, amener le système en x(T) = 0, tout en minimisant le critère. 

2) Même problème, mais x(T) est laissé libre. 

3) Même problème, mais on considère le critère   

� = S 12 cK@(R) + �@�@(R)e"R + 12 �@(�)>
�  

Afin d’amener �(�) au voisinage de 0  

4) Critère identique à la question 2), mais avec une durée � qui est laissée libre. 

Pour les questions 1 à 3 on expliquera ce que devient la commande en boucle fermée quand        

R → �  et R fini quand  � → ∞ 
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 CHAPITRE 2   

COMMANDE LINEAIRE QUADRATIQUE 
 

 

2.1 Introduction  

 On parle de commande linéaire quadratique : LQ ou LQR (Linear Quadratic Regulator). Le 

système est linéaire et la commande est quadratique. La commande optimale est un retour d'état. 
 

2.2 Commande LQR des systèmes à temps continu 

2.2.1 Commande LQ à horizon fini 

 Soit le problème de commande optimale du système : 
 

                   ����� = �������� + 	���
���                                                                                      �2.1� 

 Avec le critère 

                      ����, ��, 
� = 12 ������ + � 12 �������� + 
�����
��� ��
��

                                �2.2� 

Les matrices �, �, �� � étant symétriques avec  � �� � ≥ 0 �� � > 0 

Remarque : Remarquons que le critère  !" #$��%���$ + 
��
&�� ����  est équivalent à celui de 

de l’équation (2.2) avec ���� = '�����%���'���   

L’Hamiltonien s’écrit alors :  

                     (��, 
, ), �� = )������ + )�	���
*+++++,+++++-./��0,1,��
+ 12 � ������� + 
��
�*++++++,++++++-2�0,1,��

                             �2.3� 

L’Hamiltonien vérifie les conditions suivantes :  
 

 Equation de l’état adjoint 

        )� = − 5(5� = −�����) − �����                                                                                  �2.4� 

 Condition de transversalité  

               )#��& = ���                                                                                                         (2.5) 

 

 Absence de contrainte sur la commande 

                5(5
 = 	����) + ����
 = 0                                                                                         �2.6� 

On déduit 

  


 = −�8!���	����) 
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                   �� = ����� − 	����8!���	����)                        (2.7) 

Les équations (2.4) et (2.7) peuvent se mettre sous la forme d’un système matriciel appelé 

système Hamiltonien : 
 

                     9��)�: = ; ���� −	����8!���	����−���� −����� < 9�):                                                      (2.8) 

 

Avec ) = =����, comme nous y avec la condition finale =#��& = �, l’équation (2.4) s’écrit 

alors : 

                     )� = −#�����=��� + ����&�                                                                               (2.9) 

                   )� = =� ���� + =�����  
Alors 
           �=� ��� + =������� + �����=��� − =���	����8!���	����=��� + ������ = 0         (2.10) 

La solution est alors obtenue en résolvant l’équation (différentielle) de Riccati suivante : 

           =� ��� + =������� + �����=��� − =���	����8!���	����=��� + ���� = 0            (2.11) 
  

Avec la condition finale =#��& = �, on montre que la condition :  

                      ��#=� + =� + ��= − =	�8!	�= + �&� = 0                                                 (2.12) 

S’écrit aussi : 

                      ��� ���=�� + ���� + 
��
 = 0                                                                             �2.13� 

Le critère : 

                       ����, ��, 
� = 12 ������ + � 12 �������� + 
�����
��� ��
��

                             �2.14� 

S’écrit alors : 

                      ����, ��, 
� = 12 ������� − � ��� ���=�������
��

 

                      ����, ��, 
� = 12 ���=������ 

Le minimum du critère est donc  

                       ����, ��, 
>� = �?��� � = 12 ���=�������                                                                    �2.15� 
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 Il est intéressant de noter que la commande optimale obtenue s’écrit comme un retour 

d'état 
 = −A���� avec : 

                   A = �8!	�=                                                                                                    (2.16) 

Néanmoins, n’oublions pas que, dans le cas présent, A varie en fonction du temps, même dans 

le cas d’un système et d’un critère à temps invariant (c’est-à-dire si les matrices A, B, Q et R ne 

dépendent pas du temps). En effet, la matrice =��� reste dépendant du temps dans le cas d’un 

critère à temps fini. 

2.2.2 Commande LQ à horizon infini 

Nous intéressons ici au cas du système linéaire à temps variant précédent où : 

                      ����, ��, 
� = � 12 �������� + 
�����
���  BC
��

                                                 �2.17� 

On montre que ce critère est fini si le système est stabilisable à tout instant �, (c’est-à-dire qu’à 

chaque instant, il existe un A��� tel que les valeurs propres de #� − 	A���& soient à partie 

réelle négative). Remarquons par ailleurs que la partie du critère concernant l’état final n’est 

plus pertinente car, sur un horizon infini, l’état tend vers zéro si le système bouclé est stable. 

Dans le cas d’un problème LTI (linéaire à temps invariant), la commande optimale est un retour 

d’état statique 
 = −A� où Aest exprimé par l’équation (2.16) où = vérifie l’équation 

algébrique de Riccati : 

                   =� + ��= − =	�8!	�= + � = 0                                                                   (2.18) 
 

 
 

 

 Figure 2.1: Shéma bloc de la commande LQR des systèmes continus 
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2.2.3 Robustesse de la commande LQ 

 A partir de l’équation de Riccati, faisons apparaître les termes EF − � en ajoutant (=EF −
EF=� où F est la matrice unité. 
                      =�EF − �� + �−EF − ���= + =	�8!	�= = �                                                (2.19) 

Multipliant à droite par �EF − ��8!	 et à gauche par 	��−EF − ���8! : 
          	��−EF − ���8!=	 + 	�=�EF − ��8!	 + 	��−EF − ���8!=	�8!	�=�EF − ��8!	 

                                    = 	��−EF − ���8!��EF − ��8!	                                                      (2.20) 
 

En notant que d’après (2.16), on a 	�= = �A et =	 = A��, on obtient : 
         	��−EF − ���8!A�� + �A�EF − ��8!	 +  	��−EF − ���8!A��A�EF − ��8!	  
                                       = 	��−EF − ���8!��EF − ��8!	                                                   (2.21) 
 

Le premier membre de l’égalité s’écrit : �F + 	��−EF − ���8!A����F + A�EF − ��8!	� − � 

On obtient finalement l’équation de la différence de retour : 

                     �F + 	��−EF − ���8!A����F + A�EF − ��8!	� = 

                      � + 	��−EF − ���8!��EF − ��8!	                                                               (2.22) 
 

2.2.4 Marges de stabilité  

 Reprenons l’équation de la différence de retour en fréquentiel avec E = GH et en 

notant (�GH� = �GHF − ��8!	. On obtient alors pour tout H : 
                   #F + A(�GH�&I�#F + A(�GH�& = � + (�GH�I�(�GH�                               (2.23) 

Où JI est l’hermitien de J, c’est-à-dire le conjugué transposé. On déduit alors l’inégalité de 

Kalman :   

                   #F + A(�GH�&I�#F + A(�GH�& ≥ �                                                              (2.24)                                  

Nous restreignons au cas � = KF et factorisons � en � = LL�. L’égalité (2.23) s’écrit alors : 

                      #F + A(�GH�&I#F + A(�GH�& = F + 1K #L(�GH�&I#L(�GH�&                        �2.25� 

Dont on déduit les valeurs singulières de  #F + A(�GH�& 

                       MN#F + A(�GH�& = O)N ;#F + A(�GH�&I#F + A(�GH�&< 

                       MN#F + A(�GH�& = P)N QF + 1K #L(�GH�&I#L(�GH�&R 
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La marge de module on en déduit  

                        MN#F + A(�GH�& = P1 + 1K MN"#L(�GH�& ≥ 1                                                    �2.26� 

Où )N représente la SèUV valeur propre (en utilisant les propriétés MN"�J� = )N�JIJ� �� )N�F +
J� = 1 + )N�J�. En mono-variable, ce résultat s’interprète facilement sur le lieu de Nyquist, 

comme le fait que la distance au point -1 est toujours supérieure à 1. Ainsi, la commande LQ 

présente la propriété de robustesse suivante : sa marge de module est égale à 1. On en déduit 

ainsi les intervalles dans lesquels le gain et la phase peuvent varier : 

 Le gain ]0.5;  +∞[ 
 La phase ] − 60°;  +60°[ 

 
 

 

 

2.2.5 Structure des régulateurs 

 Lorsque des signaux de consigne $∗ sont donnés pour certaines composantes y de x, 

comment les intégrer à la loi de commande ? Imaginons que les consignes concernent les 

premières composantes de � et décomposons � et A ainsi : 

                     A� = ]A% A^_ `$ab                                                                                                         �2.27� 

Alors la loi de commande sera 

                     
 = A%�$∗ − $� − A^a                                                                                               �2.28� 

Si $ est donné par une loi de type équation de sortie, $ = '�, on peut effectuer un changement 

d’état de sorte que le nouveau vecteur d’état contienne $, par exemple en utilisant la forme 

canonique d’observabilité. 

La commande LQ est de type proportionnel. Dans le but d’améliorer les performances en 

régulation en présence de perturbations constantes, il est souhaitable d’ajouter un effet intégral. 

A(�GH� 

Figure 2.2 : Lieu de Nyquist de la fonction de transfert de boucle LQ. 
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Imaginons, à titre d’exemple, que la première composante �!de � doit être asservie à �!∗ sans 

erreur statique. 

Construisons l’état supplémentaire : 

                     F! = � #�!�d� − �!∗�d�&�d�
�                                                                                         �2.29� 

Avec F�! = �! − �!∗ 

En considérant �!∗ comme une perturbation constante et de ce fait, en ne l’intégrant pas dans le 

modèle, l’équation d’état du système augmenté de son nouvel état F! s’écrit : 
                      ��V = �V����V − 	V���
                                                                                    (2.30) 

 

 

 

Le régulateur obtenu, d’entrées � �� �!∗ et de sortie 
 est un système dynamique d’ordre 1 de 

modèle d’état. 

                     fF�! = �! − �!∗       
 = −AgF! − A�                                                                                                         �2.31� 

La consigne �!∗ peut aussi être retranchée à �!; d’autres consignes peuvent être intégrées de la 

même manière en retranchant leur valeur à l’état correspondant. Si une commande en boucle 

ouverte (feed-forward) est disponible, elle peut être également intégrée, la commande sera alors 

la somme de la commande en boucle fermée et de la commande en boucle ouverte. 

Remarques  

 La matrice de Riccati =��� est une matrice symétrique variant dans le temps indépendant de 

l’instant initial ( �� = 0). 

 L’équation de Riccati constitue un système de  h�h + 1�/2 équations différentielles 

ordinaires non linéaires du premier ordre variant dans le temps 

 La matrice de Riccati =��� est une matrice définie positive sur [0, ��  ) 

 La matrice P(t) peut être calculée hors ligne par intégration numérique arrière à partir 

de =#��& = ��. 

 

2.2.6 Choix de pondérations 

 Il est intéressant de remarquer d’abord que la multiplication des pondérations � et � par un 

même scalaire laisse inchangé le gain A. En effet, soit = solution de l’équation de Riccati (et 

�V=`�F!b , �V = j � kl×![1 k!×l8!] 0 n , 	V = j 	k!×Un 

AV�V = [A  Ag ] `�F!b,    AV ∈ ℝU×�lB!� �� �$q� L� 
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soit le nouveau problème basé sur les pondérations �r = )� et �r = )� On vérifie que =r = )= 

est solution de l’équation de Riccati correspondante. En effet : 
                      As = −�r8!	�=r = −�8!	�= = A 

Sans restriction, les pondérations peuvent être choisies symétriques. Elles sont généralement 

choisies diagonales. Ainsi, on se ramène au choix de h scalaires pour l’état et de q scalaires 

pour la commande. Voici une méthode simple de choix et de modification des pondérations en 

vue d’aboutir à un correcteur satisfaisant. 
 

1. Au départ, on choisit généralement des pondérations égales aux matrices identité. 

2. Dans une seconde étape, on accélère ou décélère globalement le système en multipliant 

la matrice � par un scalaire ) (accélération avec ) >  1 et décélération avec ) <  1), 

jusqu’à obtenir une dynamique moyenne adaptée. 

3. Dans le cas où certains états auraient des dynamiques trop lentes par rapport à d’autres, 

on peut choisir d'augmenter la pondération de � correspondant aux premiers. 

4. Dans le cas où certains actionneurs seraient trop sollicités par rapport à d’autres, on peut 

choisir d’augmenter la pondération de � leur correspondant. 

Les étapes 2, 3 et 4 peuvent être réitérées dans l’ordre souhaité jusqu’à obtenir un correcteur 

satisfaisant le cahier des charges. 
 

2.3 Commande LQ des systèmes à temps discret 

2.3.1 Commande LQ à temps discret à horizon fini 

2.3.1.1 Formulation de problème  

Soit le système dynamique à temps discret défini par  

                   ��u + 1� = ��u���u� + 	�u�
�u�                                                                          �2.32� 

Avec la condition initiale ��u�� = �v�  et cherchons la commande minimisant le critère : 

         ��u�� = 12 ���J���J���J� + 12 w ���u���u���u� + 
��u���u�
�u�             �2.33�vxy8!
vxv�

 

Ce problème est plus simple que celui à temps continu car il s’agit ici d'un problème dont les 

inconnues sont les J et u�valeurs de 
�u� et non plus une fonction du temps. Il s’agit d’une 

minimisation de (2.33) sous les contraintes (2.32). L’Hamiltonien s’écrit alors : 
 

(�u� = 12 z���u����u� + 12 
��u���u�
�u�{ + )��u + 1�#��u���u� + 	�u�
�u�&  �2.34� 

Et la solution optimale vérifie les équations suivantes : 
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                     5(�u�5
�u� = ��u�
�u� + 	��u�)�u + 1� = 0                                                           �2.35� 

                     )�u� =  5(�u�5��u� = ��u���u� + ���u�)�u + 1�                                                    �2.36� 

                     ��u + 1� =  5(�u�5)�u + 1� = ��u���u� + 	�u�
�u�                                               �2.37� 

 

La commande est  
                      
�u� = −�8!�u�	��u�)�u + 1�                                                                             �2.38� 

La dernière commande 
�J� n’a aucun effet sur l’évolution du système sur l’horizon considéré  

sa valeur optimale est donc nulle 
�J� = 0, )�J + 1� = 0 . D’après (2.36) )�J� =
��J���J�. 

 Il s’agit d'un problème aux deux bouts, une condition initiale est disponible pour l’état alors 

que c’est une condition finale qui est disponible pour l’état adjoint. Ainsi, la résolution du 

problème doit se faire pour l’ensemble de la trajectoire, ce qui peut représenter une charge de 

calcul élevée dans le cas d’un horizon J élevée. 
                   ��u + 1� = ��u�� − 	�u��8!�u�	��u�)�u�       

                     ;��u + 1�)�u� < = ;��u� −	�u��8!�u�	��u���u�            ���u� < ; ��u�)�u + 1�<                                (2.39) 

 

Si déterminant de la matrice � diffèrent de zéro l’équation (2.38) est réécrite sous forme   

      ;��u�)�u�< = ; �8!�u� �8!�u�	�u��8!�u�	��u���u��8!�u� ���u� + ��u��8!�u�	�u��8!�u�	��u�< ;��u + 1�)�u + 1�<    (2.40) 

 

Si on a ��J� et )�J� donc on peut calculer ��u� et )�u�. 
 

2.3.1.2 Formulation sous forme d’équation de Riccati   

 Les équations précédentes peuvent être résolues directement en � et ). On peut aussi adopter 

la démarche suivante, basée sur un changement de variable suivant pour la variable adjointe. 

                     )�u� = =�u���u�, |}�~ =�J� = ��J� 

 

 

 

                        ��u�
�u� = −	��u�=�u + 1���u + 1�                             
                                            =  −	��u�=�u + 1�#��u���u� + 	�u�
�u�&   

        
�u� = −A�u���u� 
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                     A�u� = ��8!�u�	��u�=�u + 1���u�                      ���u� = ��u� + 	��u�=�u + 1�	�u� 

 

Il reste maintenant à déterminer la matrice P(k), on obtient : 

                     =�u���u� = ��u���u� + ���u�=�u + 1���u + 1� 

                     =�u���u� = ]��u� + ���u�=�u + 1�#��u� − 	�u�A�u�&_��u� 

                     =�u� = ��u� + ���u�=�u + 1�#��u� − 	�u�A�u�& 

                     =�u� = ��u� + ���u���u + 1���u�                                                             (2.41) 

��u + 1� = =�u + 1� − =�u + 1�	�u�#��u� + 	��u�=�u + 1�	�u�&8!	��u�=�u + 1� 

Cette équation récursive à inconnue matricielle est appelée équation de Riccati discrète. Sa 

condition finale est =�J�  =  ��J� et sa résolution se fait donc à rebours. Dans le cas de 

systèmes LTV où les matrices �, 	 dépendent effectivement de u ou bien si c’est le cas des 

matrices de pondération � et �, cela suppose de connaître à l’avance l’ensemble des matrices 

pour u =  u�, … , J. 
 

2.3.2 Commande LQ à temps discret à horizon infini 

2.3.2.1 Critère à horizon infini 

Cherchons la commande minimisant le critère : 

                     � = 12 w ���u����u� + 
��u���u�
�u�                                                          �2.42�vxBC
vxv�

 

 

Il s’agit du critère précédent où J tend vers l’infini. 

On peut montrer alors que pour un système LTI le gain du retour d’état est constant. Il s’écrit : 
                      A = �� + 	�=	�8!	�=�                                                                                     (2.43) 

Où = est solution de l’équation algébrique de Riccati discrète : 
 

                   = = � + ���= − =	�� + 	�=	�8!	�=��                                                    (2.44) 

Interprétation : de déterminer la commande 
�u� qui maintienne le vecteur d’état proche de 

son état d’équilibre 0 sans une dépense trop forte en énergie de commande. 
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2.4 Problèmes  

Problème №1 
 

Considérer le moteur à courant continu représenté par la figure ci-dessous avec AU =
10, �� dU = 2.0E 

 

 

 

Pour le régulateur, on désire obtenir un système en boucle fermée avec coefficient 

d’amortissement � = 0.707 et un temps de réponse à l’échelon (à 5%) de 300 ms.  

1) Étudier le choix des gains du régulateur par retour d’état en appliquant la théorie du 

régulateur linéaire quadratique (LQR). Tracer le lieu des racines quadratiques pour �% = 1 et 

la pondération sur la commande � variant de 0 à une valeur très grande. 

� = � �$�����%$��� + �
"������C
�  

2) Pour ce système étudier une structure de commande régulateur-observateur. 

3) Trouver les pôles en boucle fermée permettant de rencontrer les spécifications demandées 

au niveau du régulateur. 
 

Problème №2 :  

Considérer le modèle du pendule inversé donné ci-dessous  

�� + ������� + ������� = ����       �1� 

����� − ����� + ������ = 0                   �2� 

Avec � = 0.445u�;   � = 0.21u�;    � = 0.3� 

1) Écrire le modèle d’état de ce système en considérant que la sortie mesurée est la position du 

chariot x(t). 

2) Déterminer une commande par retour d’état qui stabilise le système en utilisant la technique 

de placement de pôles et la commande optimale avec un critère quadratique et simuler le 

système avec cette commande. 

3) Écrire les équations d’un observateur d’état d’ordre complet et déterminer ses gains par 

placement de pôles. 

4) Simuler la structure de commande (régulateur + observateur) et comparer le comportement 

du système avec le régulateur mis au point en 2). 

Problème № 3  

1q 

�" � �! = � AU1 + d�q 
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On considère le système  

                     �� = `0 10 0b � + `01b 
 

                     ��0� = `11b 

1) Vérifier que la matrice � = `0 10 0b est nilpotente. 

2) Etudier la stabilité de ce système. Calculer le régime libre. 

3) On boucle le système à l’aide d’une commande par retour d’état de la forme 

                      
 = −[1, �]� 

Ecrire les nouvelles équations d’état.  

4) Pour quelles valeurs de �, le système est-il asymptotiquement stable. 

5) Quelle valeur de �  permettant de minimiser le critère :  

                     � = 12 � [��������� + 
"���]��BC
�  

Quelle est la valeur du � ? 
 

Problème № 4  

Considérant un système donné par  

��u + 1� = 2��u� + 
�u� 

1) Trouver la solution homogène ��u� pour u = 0, 5 si ��0� = 3. 

2) Trouver la séquence de commande à énergie minimale 
�u� nécessaire pour dériver     

��0� = 3 à   ��5� = 0. Vérifier votre réponse en retrouvant la trajectoire d’état résultante.  

3) Trouver la séquence gain de retour optimale A�u�, pour minimiser l’indice de performance 

suivant  

                      �� = 5��" + 12 w��v" + 
v"��
vx�

 

Trouver la trajectoire d’état résultante et le coût pour aller �v∗ pour u = 0, 5. 
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 CHAPITRE 3   
COMMANDE LINEAIRE QUADRATIQUE  

GAUSSIENNE (LQG) 
 

 

3.1 Introduction  

 Par rapport à la commande LQ, la commande LQG présente l'intérêt de s’appliquer à des 

systèmes dont l’état n’est pas mesuré. Développée au début de la seconde moitié du 20ème siècle 

et appliquée lors du programme spatial Apollo pour la stabilisation de lanceurs, elle est apparue 

comme la première méthode générale pour l’asservissement des systèmes multi-variables. De 

ce fait, elle a connu un grand succès comme en témoigne les nombreuses publications sur le 

sujet. Depuis la fin du 20ème siècle, la commande H1 apparaît comme un sérieux concurrent 

pour l’asservissement robuste des systèmes multi-variables. Néanmoins, la commande LQG 

n’en demeure pas moins un standard industriel.  

3.2 Formulation  

Soit un système dynamique stochastique d’équation d’état : 

                            𝑥ሶ ሺ𝑡ሻ ൌ 𝐴𝑥ሺ𝑡ሻ ൅ 𝐵𝑢ሺ𝑡ሻ ൅ 𝑏௩ሺ𝑡ሻ 

                            𝑦ሺ𝑡ሻ ൌ 𝐶𝑥ሺ𝑡ሻ ൅ 𝑏௪ሺ𝑡ሻ                                                                                  (3.1) 

Où 𝑏௩et le bruit de mesure 𝑏௪ sont des bruits blancs centrés de variance 𝐸൛𝑏௩
்𝑏௩ൟ ൌ 𝑉 ൒ 0 

et 𝐸൛𝑏௪
்𝑏௪ൟ ൌ 𝑊 ൐ 0. Le problème LQG consiste à minimiser le critère suivant : 

                      𝐽ሺ𝑥଴, 𝑡଴, 𝑢ሻ ൌ lim
௧೑→ஶ

𝐸 ቊ
1
𝑡௙

න
1
2

ሺ𝑥்𝑄ሺ𝑡ሻ𝑥 ൅ 𝑢்𝑅ሺ𝑡ሻ𝑢ሻ𝑑𝑡 
௧೑

௧బ

ቋ                                 ሺ3.2ሻ 

Avec 𝑄 ൌ 𝑄் ൒ 0   𝑒𝑡 𝑅 ൌ 𝑅் ൐ 0 
 

3.3 Principe de séparation 

 La solution du problème LQG est donnée par les solutions de deux problèmes connus : 

1- Le problème d’estimation optimale de l’état d’un système dynamique stochastique (filtre de 

Kalman donnant une estimée 𝑥ො 𝑑𝑒 𝑥 qui est non biaisé et à variance minimale. 

2- Le problème de commande LQ optimale en supposant x connu, donnant un retour d’état de 

gain 𝐾. La commande LQG par retour de l’état estimé est donc finalement 𝑢 ൌ െ𝐾𝑥ො. 
 

3.4 Structure de la commande LQG 

 Equation de l’observateur (filtre de Kalman-Bucy) : 

                     𝑥ොሶ ൌ 𝐴𝑥ො ൅ 𝐵𝑢 ൅ 𝐿ሺ𝑦 െ 𝐶𝑥ොሻ                                                                                (3.3)                     



CHAPITRE 3                                                                                           COMMANDE LINEAIRE QUADRATIQUE GAUSSIENNE (LQG) 

25 
 

Où le gain de Kalman est : 

                     𝐿 ൌ 𝑃𝐶்𝑊ିଵ 

Avec 𝑃 la solution de l’équation algébrique de Riccati 

                   𝑃𝐴் ൅ 𝐴𝑃 െ 𝑃𝐶்𝑊ିଵ𝐶𝑃 ൅ 𝑉 ൌ 0                                                                   (3.4) 

Modèle d’état du correcteur 

                     𝑥ොሶ ൌ ሺ𝐴 െ 𝐵𝐾 െ 𝐿𝐶ሻ𝑥ො ൅ 𝐿𝑦                                                                                (3.5) 

                     𝑢 ൌ െ𝐾𝑥ො 

Le suivi d'une consigne 𝑦∗ se fera par la loi de commande 𝑢 ൌ 𝐺ሺ𝑝ሻሺ𝑦∗ െ 𝑦ሻ où la fonction de 

transfert du correcteur est : 

                     𝐺ሺ𝑝ሻ ൌ 𝐾ሺ𝑝𝐼 െ 𝐴 ൅ 𝐵𝐾 ൅ 𝐿𝐶ሻିଵ𝐿                                                                    (3.6) 

Ses équations d’état sont : 

                     𝑥ොሶ ൌ ሺ𝐴 െ 𝐵𝐾 െ 𝐿𝐶ሻ𝑥ො ൅ 𝐿𝑒                                                                                (3.7) 

                     𝑢 ൌ െ𝐾𝑥ො                                                                                                             (3.8) 

Où 𝑒 ൌ ሺ𝑦∗ െ 𝑦ሻ. Notons que ce correcteur LTI a même ordre que le processus   

3.5 Choix des pondérations  

 Le réglage du correcteur LQG nécessite la donnée de quatre matrices de pondération : 𝑄 et 

𝑅 pour le retour d’état, 𝑉 et 𝑊 pour l’estimateur. La méthode de réglage la plus simple repose 

sur un réglage séparé : régler 𝑉 et 𝑊 de sorte que l’état soit bien' reconstruit et régler 𝑄 et 𝑅 

pour avoir un bon retour d’état. Si les dynamiques de la régulation sont relativement lentes 

devant celles de l'observation, on peut supposer que l’état est parfaitement connu du point de 

vue du retour d’état et la commande sera robuste (marge de module égale à 1). Si cette 

hypothèse n’est pas respectée, et ce sera le cas dès que vous souhaiterez obtenir un régulateur 

avec des dynamiques élevées, la robustesse n’est plus assurée. La méthode de réglage des 

pondérations 𝑄 et 𝑅 du retour d’état vue au paragraphe précédent reste valable. Abordons la 

question du réglage de l’estimateur avant de présenter les méthodes de recouvrement du gain 

destinées à rendre robuste la commande LQG. 
 

3.6 Réglage de l’estimateur d’état 

 L’estimateur d’état s’appuie sur la commande 𝑢 et sur la mesure 𝑦 du système pour donner 

l’estimée de l’état la plus plausible, compte-tenu des incertitudes et bruits affectant le modèle 

et la mesure.  

 Une première approche du réglage du filtre concerne le cas où l’hypothèse de départ sur le 

modèle est respectée; c’est-à-dire que le seul défaut du modèle est d’être affecté par des signaux 

stochastiques blancs. Dans ce cas, le réglage se fera directement par une évaluation des 
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variances des bruits. Evaluer le bruit de mesure 𝑏௪ en observant 𝑦 est direct, ce qui n’est pas le 

cas du bruit d’état 𝑏௩. Ce bruit peut être attribué à la commande 𝑢 en choisissant 𝑉 ൌ 𝐵𝑉௨𝐵்𝑇, 

avec 𝑉௨ la variance du bruit de mesure. Cependant, la principale source de bruit d’état d’un 

modèle provient généralement des erreurs de modélisation qui sont déterministes et non 

stochastiques. Néanmoins ces erreurs de modélisation sont généralement mal connues et il n’est 

pas aberrant d’en tenir compte globalement grâce à un terme stochastique. La validation du 

filtre de Kalman peut alors se faire en simulation en introduisant des erreurs sur le modèle telles 

que des variations sur ses paramètres. 
 

3.7 Loop Transfert Recovery (LTR)  

 La présence d’un observateur fait, que les propriétés de robustesse du correcteur LQ ne sont 

plus valables. Les méthodes de Loop Transfert Recovery (LTR ou en Français recouvrement 

du transfert de la boucle) consistent à modifier les conditions de la synthèse afin de se 

rapprocher du transfert qui serait obtenu avec un retour d’état LQ. Si ce transfert est obtenu, la 

robustesse est alors assurée. Depuis les premiers travaux de Doyle et Stein en 1981, de 

nombreux travaux ont été menés sur ce sujet. C’est cette première approche qui est présentée 

ici. Elle a l’inconvénient de ne pas convenir aux systèmes à déphasage non-minimal Des 

travaux de recherche sont attachés à ce type de système. 

La méthode de recouvrement repose sur l’écriture de la matrice de covariance V de la forme :  

                   𝑉 ൌ 𝑉଴ ൅ 𝑞ଶ𝐵𝐵்                                                                                                  (3.9) 

On montre que le gain de la boucle ouverte 𝐶ሺ𝑝ሻ𝐺ሺ𝑝ሻ tend vers 𝐾ሺ𝑝𝐼 െ 𝐴ሻିଵ𝐵, celui du 

régulateur LQ, lorsque 𝑞 tend vers l’infini. Ainsi, à partir d’un correcteur initial reposant sur 

les pondérations 𝑉଴ et 𝑊, on augmente petit-à-petit 𝑞 jusqu’à obtenir la robustesse suffisante 

Une approche duale consiste à retoucher le gain du retour d’état en choisissant la matrice de 

pondération Q de la forme : 

                   𝑄 ൌ 𝑄଴ ൅ 𝑞ଶ𝐶்𝐶                                                                                                (3.10) 

La méthode reste la même : on augmente 𝑞 jusqu’à obtenir la robustesse désirée. Dans tous les 

cas, l’augmentation de la robustesse se fait au détriment des performances et un compromis doit 

être trouvé. 

3.8 Commande LQG à temps discret  

 A l’image de la commande LQG à temps continu, la version à temps discret consiste en la 

combinaison d’un filtre de Kalman à temps discret et d’un retour d’état. La méthode LTR 

s’applique également. 
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CHAPITRE 4  
GENERALITES SUR LA COMMANDE ADAPTATIVE 

 

 

4.1 Introduction 
 

 La terminologie de la commande adaptative désigne un ensemble de méthodes permettant 

un ajustement automatique en temps réel des paramètres des régulateurs mis en œuvre dans une 

boucle de commande afin de réaliser ou de maintenir un niveau de performance désiré, lorsque 

les paramètres du processus sont inconnus ou varient légèrement dans le temps. 

 Le problème essentiel d’un schéma de commande adaptative est d’assurer la stabilité du 

système en boucle fermée. Nous trouvons actuellement dans la littérature des commandes 

adaptatives élaborées pour différents types de systèmes parmi lesquels on trouve : 

 Les systèmes linéaires à déphasage minimal. Ce sont des systèmes dont les zéros sont tous 

dans la région stable. 

  Les systèmes linéaires à déphasage non minimal. Ce sont des systèmes qui peuvent avoir 

un ou plusieurs zéros dans la région instable. 
 

4.2 Bref historique  

 L’origine de la commande adaptative remonte au début des années 1950.  

 La commande adaptative a été motivée par ces problèmes de l’aéronautique  

 Beaucoup de recherches ont été activement menées  

 Conception d’autopilotes pour une large fourchette d’altitudes et de vitesses. 

  Forts changements dans la dynamique quand l’avion change de point de fonctionnement. 

  Les contrôleurs par feedback à gains constant n’étaient pas capables de garantir les 

performances désirées lors du changement de point de fonctionnement. 

  Des approches de commande sophistiquées, telle que la commande adaptative, étaient 

nécessaires pour compenser ces fortes variations dans la dynamique de l’avion. 

  La commande adaptative à modèle de référence a été proposée par Whitaker pour résoudre 

le problème de commande d’autopilotes. 

  La méthode de sensibilité et la règle d’adaptation du MIT a été largement utilisée. 

  Une méthode de placement de pôles adaptatif basée sur le problème linéaire quadratique 

optimal a été proposée par Kalman. 

 Méthode de sensibilité, règle du MIT, analyse de stabilité limitée (les années 1960) 

Whitaker, Kalman, Parks, etc  
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 Méthode basée sur la technique de Lyapunov, de passivité (les années 1970) Morse, 

Narendra, Landau, etc  

 Preuves de stabilité globales (les années 1970-1980) Astrom, Morse, Narendra, Landau, 

Goodwin, Keisselmeier, Anderson, etc  

 Questions de robustesse, instabilité (Début des années 1980) Rohrs, Valavani, Athans, 

Marino, Tomei, Egard, Ioanno, Anderson, Sastry etc  

 Commande adaptative robuste (les années 1980) Ioanno, Sun, Praly, Jiang, Tsakalis, Tao, 

Datta, Middleton, Basar, etc  

 Commande adaptative non linéaire (les années 1990) Kokotovic, Ioannou, Narendra, Krstic, 

Xu, Wang, Anderson, Safonov, Bernstein, etc  
 

4.3 Classification des approches de commande adaptative  

Les approches de commande adaptative peuvent être classées en deux classes :  

1. Commande adaptative directe (Direct adaptaive control). 

2. Commande adaptative indirecte (Indirect adaptaive control).  

Il existe principalement quatre types d’approches de commande adaptatives :  

1. Commande par gain programmé (Gain scheduling). 

2. Commande adaptative à Modèle de Référence (Model Reference Adaptive Control). 

3. Contrôleurs auto-ajustable (Self-Tuning Regulator) 

4. Commande duale (Dual control)  

Trois approches de base de la commande adaptative existent en boucle ouverte et fermée sont. 

Les schémas-blocs de chacun de ces différentes commandes seront présentés par la suite  
 

4.4 Commande à gain programmés (figure 4.1) 

 Dans ce type d’adaptation, on suppose qu’il existe une relation entre le point de 

fonctionnement du système, certaines variables de l’environnement, le temps écoulé et les 

paramètres du processus. Les valeurs de régulateur sont prédéfinies et ajustées en fonction des 

valeurs des mesures des différentes variables prises en compte. Ce type de d’adaptation s’avère 

cependant suffisant pour de nombreux processus. Cette méthode suppose que les non linéarités 

sont connues, car il n’existe pas de correction pour compenser une programmation incorrecte 

(fonctionnement en boucle ouverte). Elle a cependant l’avantage d’ajuster rapidement les 

paramètres du régulateur lors de changements rapides de la dynamique du processus.     
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Les méthodes présentées dans la suite concernant la commande adaptative en boucle fermée, 

qu’elle soit directe, c’est-à-dire avec un ajustement des paramètres de contrôleur directement à 

partir des mesures de l’indice de performance (comme modèle de référence, MRAC), ou 

indirecte c’est-à-dire en effectuant un ajustement des paramètres du modèle du processus 

(identification en ligne) suivi d’un nouveau calcul des paramètres du régulateur (commande 

auto-ajustable).  

 Dans tous les cas, il est nécessaire dans une première étape de préciser la structure et la 

complexité de modèle de procédé.   
 

 

4.5 Commande adaptative à régulateur auto-ajustable 

 Schéma de la figure 4.2 comporte une boucle interne, la boucle classique processus-

contrôleur et une boucle externe comprenant un estimateur (identificateur des paramètres du 

processus) et un mécanisme d’adaptation qui minimise l’erreur entre la sortie du processus et 

son estimateur. A l’origine la commande à modèle de référence traitait les problèmes de 

l’asservissement alors que le contrôleur auto-ajustable était destiné aux problèmes de 

régulation. 

 

Mesure de 
l’environnement 

Environnement 

Processus 
Régulateur 
ajustable 

Mécanisme 
d’adaptation 

y r u 

Figure 4.1 : commande à gains programmés 
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4.6 Commande adaptative par modèle de référence 

 Commande adaptative à modèle de référence fait partie d’un ensemble de techniques 

destinées à ajuster automatiquement les paramètres de contrôleur des systèmes de commande. 

Le comportement dynamique du processus est défini par un modèle de référence et les 

paramètres de contrôleur sont ajustés par la boucle externe de façon à minimiser l’erreur de 

sortie de processus-modèle. Cette méthode est utilisée en général pour les systèmes continus et 

déterministes. (𝑒 ൌ 𝑦 െ 𝑦௠ሻ. Le schéma fonctionnel est ;  

    

  

 

 

 

 

 

 

 

 

 

Estimateur 

Processus 
Régulateur 
ajustable 

Mécanisme 
d’adaptation 

y(k) 

Consigne 

u(k) 

Figure 4.2 : commande auto-ajustable (STR) 

Spécifications Estimation des paramètres  
du processus 

- 
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Figure 4.3 : Schéma de la commande adaptative  
à modèle de référence  
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4.7 Applications de la commande adaptative 
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CHAPITRE 5  
COMMANDE ADAPTATIVE AUTO-AJUSTABLE 

 

5.1 Introduction 

 Une commande est dite adaptative si les paramètres de contrôleur peuvent être ajustés en 

fonction des paramètres estimés du procédé à commander. La synthèse de contrôleur se fait 

normalement en utilisant la connaissance à priori de procédé. Lorsque ces paramètres de 

système à commander sont mal connus ou varient dans le temps, on peut faire appel à une 

commande adaptative. En général, on distingue deux niveaux de commande adaptative : 

 La commande adaptative directe : en estime directement les bons paramètres du régulateur 

qui intègre implicitement les paramètres du modèle. 

 La commande adaptative indirecte : on procède d’abord à une estimation des paramètres du 

modèle, puis on calcule le régulateur. La loi de commande adaptative est obtenue en utilisant 

l’équivalence certaine, c’est-à-dire en remplaçant le modèle de procédé par son estimation 

admissible lorsque la loi de commande est recherchée.    
 

 Ce chapitre est organisé en deux parties. La première partie regroupe la définition, principes 

et différentes d’étapes des algorithmes d’identification paramétrique récursive. La seconde 

partie présente la méthode de placement de pôles utilisée pour le calcul du régulateur RST. 

Application de la commande auto-ajustable sur une éolienne à deux masses.  
  

5.2 Identification paramétrique des systèmes dynamiques 

 Dans le but de développer une méthodologie intégrée pour la commande adaptative itérative 

indirecte ou auto-ajustable des systèmes industriels le premier élément consiste dans 

l’identification en ligne ou en temps réel des paramètres du modèle du système considéré. Le 

principe de l’identification en ligne consiste à comparer, à chaque instant 𝑡 ൌ 𝑘𝑇௘  ( 𝑇௘ est le 

temps d’échantillonnage), un signal de sortie 𝑦ሺ𝑘ሻ à sa prédiction 𝑦ොሺ𝑘ሻ. L’écart 𝜖ሺ𝑘ሻ ൌ 𝑦ሺ𝑘ሻ െ

𝑦ොሺ𝑘ሻ appelé erreur de prédiction, est ensuite utilisé par l’algorithme d’identification 

paramétrique approprié pour modifier les valeurs des paramètres 𝛽መሺ𝑘ሻ du modèle, de manière 

à minimiser l’erreur suivant un certain critère 𝐽ሺ𝑘ሻ.  
 

5.2.1 Définition et principes 

 L’identification est l’opération de construction d’un modèle permettant d’analyser les 

caractéristiques dynamiques d’un système et dont la connaissance est nécessaire pour la 

conception et la mise œuvre d’un système permanent de régulation. L’identification est une 
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technique expérimentale qui s’appuie sur l’utilisation de procédures et algorithmes issus 

d’études théoriques. L’identification inclut quatre étapes : 

1) acquisition des entrées/sorties sous un protocole d’expérimentation ; 

2) choix ou estimation de la complexité du modèle ; 

3) estimation des paramètres du modèle ; 

4) validation du modèle identifié. 

Une opération complète d’identification doit nécessairement comporter les quatre étapes 

indiquées ci-dessus. Il faut donc voir l’identification comme une procédure itérative telle quelle 

est illustrée dans la figure 5.1. Toutes les méthodes d’estimation paramétrique peuvent être 

représentées selon la figure 5.2.     
 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 
 

 

 

 

 

 

PROCEDE 

MODELE 
 AJUSTABLE 

ALGORITHME 
D’ESTIMATION 

PARAMETRIQUE (PAA) 

𝑞ିଵ 

𝜑ሺ𝑘 െ 1ሻ
𝛽መሺ𝑘ሻ 

Figure 5.2 : Structure d’identification récursive  

𝑢ሺ𝑘ሻ 𝑦ሺ𝑘ሻ

𝑦ොሺ𝑘ሻ

൅ 

െ 

𝜖ሺ𝑘ሻ

Acquisition de donnée Entrées/Sorties sous un protocole 
expérimentale   

Estimation de la complexité du modèle (ou choix)   

Choix du modèle de bruit 
Estimation paramétrique 

Validation du modèle 

Non Oui  
Calcul de régulateur 

Figure 5.1 : Méthodologie de l’identification  
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5.2.2 Les étapes de l’identification 

Nous donnerons dans ce qui suit les éléments de base de chaque étape de l’identification.  
 

5.2.2.1 Acquisition des données entrée/sortie 

 L’acquisition des données entrée/sortie est la première étape de la procédure d’identification. 

Etant donné que le modèle résultant à l’issue de la procédure dépend essentiellement des 

données utilisées, le protocole d’acquisition (et sa mise en œuvre) conditionne la qualité de 

l’identification. En conséquence, une attention particulière doit être donnée à toute contrainte 

possible et aspect d’ordre pratique lié au système avant d’appliquer les algorithmes qui 

détermineront les paramètres du modèle.  

 Les signaux d’excitation utilisés pour l’identification d’un modèle paramétrique du système 

doivent être suffisamment riches en fréquence pour pouvoir exciter convenablement la 

dynamique du système. Cela correspond à l’utilisation des signaux qui couvrent un intervalle 

de fréquence spécifié avec une énergie constante à toutes les fréquences (bruit blanc ou bruit à 

bande limitée). Une classe de signaux largement utilisée dans le domaine pratique de 

l’identification est l’ensemble des signaux pseudo-aléatoires. Les séquences binaires pseudo-

aléatoires (SBPA) sont des successions d’impulsions rectangulaires modulées en largeur qui 

approchent un bruit blanc discret. Les signaux SBPA sont engendrés à partir d’un registre à 

décalage bouclé. La longueur maximale d’une séquence est 2ே െ 1, où N est le nombre de 

cellules du registre. Pour des détails sur la SBPA. 
 

5.2.2.2 Définition d’une classe de modèles 

 La structure choisie pour les modèles linéaires et invariants dans le temps est 
 

                     𝐹ሺ𝑞ሻ ൌ 𝑞ିௗ 𝐵ሺ𝑞ିଵሻ
𝐴ሺ𝑞ିଵሻ

                                                                                                       ሺ5.1ሻ 

où  

                     𝐴ሺ𝑞ିଵሻ ൌ 1 ൅ 𝑎ଵ𝑞ିଵ ൅ 𝑎ଶ𝑞ିଶ … ൅ 𝑎௡𝑞ି௡  

                     𝐵ሺ𝑞ିଵሻ ൌ 𝑏ଵ𝑞ିଵ ൅ 𝑏ଶ𝑞ିଶ … ൅ 𝑏௠𝑞ି௠ 

                     𝑑 ൌ 𝑛 െ 𝑚 

𝑑 est le retard du système en nombre entier de la période d’échantillonnage et 𝐴ሺ𝑞ିଵሻ, 𝐵ሺ𝑞ିଵሻ 

sont des polynômes en 𝑞ିଵ (opérateur de retard) d’ordre n et m respectivement. Un modèle de 

ce type exprime la relation entre l’entrée 𝑢ሺ𝑘ሻet la sortie 𝑦ሺ𝑘ሻ du système qu’on désire estimer 

sous l’hypothèse qu’un bruit additif sur la sortie soit présente et que. 
 

                     𝑦ሺ𝑘ሻ ൌ 𝐹ሺ𝑞ሻ𝑢ሺ𝑘ሻ ൅ 𝑤ሺ𝑘ሻ                                                                                            ሺ5.2ሻ 
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où 𝑤ሺ𝑘ሻ représente l’effet du bruit. 

 Les principaux modèles de bruit sont :  

 1er cas 

                     𝑤ሺ𝑘ሻ ൌ
𝐶ሺ𝑞ିଵሻ
𝐴ሺ𝑞ିଵሻ

𝑒ሺ𝑘ሻ                                                                                                     ሺ5.3ሻ 

 

Où 𝑒ሺ𝑘ሻ est un bruit blanc discret gaussien de valeur moyenne nulle et d’écart type 𝜎, dans ce 

cas, (5.2) est un modèle ARMAX (Auto Regressive Moving Average with eXogenous input). 

 2ème cas 

                     𝑤ሺ𝑘ሻ ൌ
𝐶ሺ𝑞ିଵሻ

𝐴ሺ𝑞ିଵሻ𝐷ሺ𝑞ିଵሻ
𝑒ሺ𝑘ሻ                                                                                       ሺ5.4ሻ 

 

Dans ce cas, (5.2) est un modèle AR-ARMAX (pour 𝐶ሺ𝑞ିଵሻ ൌ 1 ce modèle est appelé AR-

ARX). 

 Les polynômes 𝐶ሺ𝑞ିଵሻ et 𝐷ሺ𝑞ିଵሻ sont supposés asymptotiquement stables et ont la forme : 

                     𝐶ሺ𝑞ିଵሻ ൌ 1 ൅ 𝑐ଵ𝑞ିଵ ൅ 𝑐ଶ𝑞ିଶ … ൅ 𝑐௡௖𝑞ି௡௖ ൌ 1 ൅ 𝑞ିଵ𝐶∗ሺ𝑞ିଵሻ                         ሺ5.5ሻ  
 

                     𝐷ሺ𝑞ିଵሻ ൌ 1 ൅ 𝑑ଵ𝑞ିଵ ൅ 𝑑ଶ𝑞ିଶ … ൅ 𝑑௡ௗ𝑞ି௡ௗ ൌ 1 ൅ 𝑞ିଵ𝐷∗ሺ𝑞ିଵሻ                      ሺ5.6ሻ  

 Les deux structures (5.3) et (5.4) correspondent au filtrage de la perturbation par les pôles 

de modèle de procédé. Nous supposons aussi que la structure choisie (ordre des différents 

polynômes) pour l’estimateur est telle qu’il existe un vecteur des paramètres 𝛽መ  pour lequel 

l’erreur de prédiction 𝑒ሺ𝑘ሻ, dans un environnement déterministe (sans bruit), est nulle.  

L’équation de l’estimateur à posteriori est donnée par : 

                     𝑦ොሺ𝑘ሻ ൌ 𝐹ሺ𝑞, 𝑘ሻ𝑢ሺ𝑘ሻ ൌ 𝑞ିௗ 𝐵ሺ𝑞ିଵ, 𝑘ሻ
𝐴ሺ𝑞ିଵ, 𝑘ሻ

𝑢ሺ𝑘ሻ                                                           ሺ5.7ሻ 

                     𝑦ොሺ𝑘 ൅ 1ሻ ൌ 𝛽መ்ሺ𝑘 ൅ 1ሻ𝜗መሺ𝑘ሻ                                                                                         ሺ5.8ሻ 
où 
                     𝐴ሺ𝑞ିଵ, 𝑘ሻ ൌ 1 ൅ 𝑎ଵሺ𝑘ሻ𝑞ିଵ ൅ 𝑎ଶሺ𝑘ሻ𝑞ିଶ … ൅ 𝑎௡ሺ𝑘ሻ𝑞ି௡  

                     𝐵ሺ𝑞ିଵ, 𝑘ሻ ൌ 𝑏ଵሺ𝑘ሻ𝑞ିଵ ൅ 𝑏ଶሺ𝑘ሻ𝑞ିଶ … ൅ 𝑏௠ሺ𝑘ሻ𝑞ି௠ 
 

                     𝛽መ்ሺ𝑘ሻ ൌ ሾ𝑎ଵሺ𝑘ሻ, 𝑎ଶሺ𝑘ሻ, … , 𝑎௡ሺ𝑘ሻ, 𝑏ଵሺ𝑘ሻ, 𝑏ଶሺ𝑘ሻ, … , 𝑏௠ሺ𝑘ሻሿ                                 ሺ5.9ሻ 

   𝜗መ்ሺ𝑘ሻ ൌ ሾെ𝑦ොሺ𝑘ሻ, െ𝑦ොሺ𝑘 െ 1ሻ, … , െ𝑦ොሺ𝑘 െ 𝑛 ൅ 1ሻ, 𝑢ሺ𝑘 െ 𝑑ሻ, … , 𝑢ሺ𝑘 െ 𝑑 െ 𝑚 ൅ 1ሻሿ    ሺ5.10ሻ  
 

𝛽መሺ𝑘ሻ est le vecteur des paramètres et 𝜗መሺ𝑘ሻest le vecteur des mesures (appelé aussi régresseur). 

La démarche pour le développement des différentes méthodes d’identification peut se résumer 

de la façon suivante : 

1) Choix d’un modèle “procédé + perturbation”. 
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2) Construction d’estimateur optimal qui, pour 𝛽መ ൌ 𝛽 assure les conditions pour une estimation 

non biaisée. 

3) Choix du critère de l’erreur. 

4) Construction des algorithmes de minimisation du critère (algorithmes itératifs ou récursifs). 
 

5.2.2.3 Algorithmes d’identification récursifs 

 Plusieurs approches peuvent être considérées pour engendrer des algorithmes récursifs : 

- Transformation d’algorithmes non récursifs en algorithmes récursifs 

- Utilisation de la technique d’optimisation du gradient dans le domaine temporel, 

- Utilisation de la théorie des systèmes adaptatifs, 

- Rapprochement avec filtre de Kalman. 

Pour une représentation exhaustive de différentes approches. Mais quelle que soit l’approche 

utilisée pour les obtenir, les algorithmes récursifs ont toujours la forme générale.     
 

                     𝛽መሺ𝑘 ൅ 1ሻ ൌ 𝛽መሺ𝑘ሻ ൅ 𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ𝜖ሺ𝑘 ൅ 1ሻ  

                                       ൌ 𝛽መሺ𝑘ሻ ൅ 𝑃ሺ𝑘 ൅ 1ሻ𝜗መሺ𝑘ሻ𝜖ሺ̅𝑘 ൅ 1ሻ                                                          ሺ5.11ሻ 

                     𝜖ሺ𝑘 ൅ 1ሻ ൌ 𝑦ሺ𝑘 ൅ 1ሻ െ 𝑦ොሺ𝑘 ൅ 1ሻ                                                                            ሺ5.12ሻ 

                     𝑃ିଵሺ𝑘 ൅ 1ሻ ൌ 𝜆ଵሺ𝑘ሻ𝑃ିଵሺ𝑘ሻ ൅ 𝜆ଶሺ𝑘ሻ𝜗መሺ𝑘ሻ𝜗መ்ሺ𝑘ሻ                                                 ሺ5.13ሻ 

                                   0 ൏ 𝜆ଵሺ𝑘ሻ ൑ 1, 0 ൑ 𝜆ଶሺ𝑘ሻ ൏ 2       𝑃ሺ0ሻ ൐ 0 

                     𝑃ିଵሺ𝑘ሻ ൐ 𝛼𝑃ିଵሺ0ሻ;  0 ൏ 𝛼 ൏ ൅∞ 

                     𝜖ሺ𝑘 ൅ 1ሻ ൌ
𝜖ሺ̅𝑘 ൅ 1ሻ

1 ൅ 𝜗መ்ሺ𝑘ሻ𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ
                                                                             ሺ5.14ሻ 

 

 L’ensemble des équations (5.11), (5.12), (5.13) et (5.14) porte le nom d’algorithme 

d’adaptation paramétrique (Parametric Adaptation Algorithm PAA). Dans l’équation (5.14) 

𝜗መሺ𝑘ሻ𝜖ሺ̅𝑘 ൅ 1ሻ, correspond à une évaluation de gradient du critère à minimiser, 𝜖ሺ̅𝑘 ൅ 1ሻ et 

𝜖ሺ𝑘 ൅ 1ሻ correspondent aux erreurs d’estimation, 𝜖ሺ̅𝑘 ൅ 1ሻ a le sens d’une erreur d’estimation 

a priori (elle dépend de 𝛽መሺ𝑘ሻ et 𝜖ሺ𝑘 ൅ 1ሻ a le sens d’une erreur d’estimation a posteriori (elle 

dépend de 𝛽መሺ𝑘 ൅ 1ሻ), 𝑃ሺ𝑘 ൅ 1ሻ correspond au gain d’adaptation (pas de gradient). Ce pas est 

en général variable dans le temps et la variation de ce pas est définie par l’équation (5.13) qui, 

en utilisant le lemme d’inversion matricielle, peut s’écrire :          

                     𝑃ሺ𝑘 ൅ 1ሻ ൌ
1

𝜆ଵሺ𝑘ሻ
൦𝑃ሺ𝑘ሻ െ

𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ𝜗መ்ሺ𝑘ሻ𝑃ሺ𝑘ሻ
𝜆ଵሺ𝑘ሻ
𝜆ଶሺ𝑘ሻ ൅ 𝜗መ்ሺ𝑘ሻ𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ

൪                                      ሺ5.15ሻ 
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Les séquences 𝜆ଵሺ𝑘ሻ et 𝜆ଶሺ𝑘ሻ permettent de modifier la loi de variation du gain d’adaptation 

dans le temps. Dans de nombreuses applications il est néanmoins utile d’utiliser les séquences 

𝜆ଵ et 𝜆ଶ pour obtenir d’autres caractéristiques pour la variation du profil du gain d’adaptation. 
 

5.2.2.3.1 Choix du gain d’adaptation 

 Considérons l’équation (5.13), à noter que 𝜆ଵሺ𝑘ሻ et 𝜆ଶሺ𝑘ሻ dans l’équation (5.15) ont un effet 

opposé, 𝜆ଵሺ𝑘ሻ ൑ 1 tend à augmenter le gain d’adaptation (l’inverse du gain décroit), 𝜆ଶሺ𝑘ሻ tend 

à décroitre le gain d’adaptation (l’inverse de gain augmente). Pour chaque choix des séquences 

𝜆ଵሺ𝑘ሻ et 𝜆ଶሺ𝑘ሻ correspond un profil de variation du gain d’adaptation et une interprétation en 

termes de critère d’erreur qui est minimisé par l’algorithme PAA. 
 

a) Gain constant (l’algorithme de gradient amélioré)  

Dans ce cas  
                     𝜆ଵሺ𝑘ሻ ൌ 𝜆ଵ ൌ 1 ;  𝜆ଶሺ𝑘ሻ ൌ 𝜆ଶ ൌ 0                                                                          ሺ5.16ሻ 
 

C’est l’algorithme le plus simple mais aussi le moins performent, car il n’est pas facile à choisir 

les meilleures valeurs des gains d’adaptation et les performances sont très sensible à ces valeurs. 

On peut utiliser cet algorithme pour identification des systèmes stationnaires ou variables dans 

le temps, mais avec peu de paramètres (൑ 3ሻ et en présence d’un nivaux de bruit réduit.  
 

b) Gain décroissant  

Dans ce cas  
                    𝜆ଵሺ𝑘ሻ ൌ 𝜆ଵ ൌ 1 ;  𝜆ଶሺ𝑘ሻ ൌ 𝜆ଶ ൌ 1                                                                           ሺ5.17ሻ 
 

Cet algorithme est appliqué en général pour l’estimation des paramètres des processus 

stationnaires.  
 

c) Gain est variable et décroissant 

Dans ce cas  
                                𝜆ଵሺ𝑘ሻ ൌ 𝜆ଵ ൌ 1 ;  0 ൏ 𝜆ଶሺ𝑘ሻ ൏ 2                                                                 ሺ5.18ሻ 
 

Pour éviter la convergence vers zéro du gain d’adaptation, ces algorithmes sont initialisés soit 

en détectant un changement de la dynamique du processus, soit à période fixe.  
 

d) Facteur d’oubli fixe 

Dans ce cas  
                               0 ൏  𝜆ଵ ൑ 1 ;  𝜆ଶሺ𝑘ሻ ൌ 𝜆ଶ ൌ 1                                                                       ሺ5.19ሻ 
Les valeurs typiques pour 𝜆ଵ sont de 0.95 à 0.99. L’effet de (𝜆ଵ ൏ 1) est d’introduire une 

pondération de plus en plus faible sur les données anciennes (𝑖 ൏ 𝑘ሻ. C’est pour cette raison 

que 𝜆ଵ est appelé « facteur d’oubli ». Le point maximum est donné à la dernière erreur. Ce type 
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d’algorithme convient pour l’identification des systèmes lentement variables. Le gain 

d’adaptation a une capacité de poursuite (convergence exponentielle), dans le cas où les signaux 

d’entrée-sortie sont excitants. Or cette condition n’est pas réalisée lorsque le régime stationnaire 

est atteint. Dans ce cas, le gain d’adaptation tend à croitre exponentiellement et conduit à 

l’explosion de vecteur des paramètres.  

e) Facteur d’oubli variable 

Dans ce cas  

                     𝜆ଶሺ𝑘ሻ ൌ 𝜆ଶ ൌ 1,   𝜆ଵሺ𝑘ሻ ൌ 𝜆଴𝜆ଵሺ𝑘 െ 1ሻ ൅ 1 െ 𝜆଴;  0 ൏ 𝜆଴ ൑ 1                      ሺ5.20ሻ 
 

Les valeurs typiques pour 𝜆ଵሺ0ሻ et 𝜆଴ sont de 0.95 à 0.99, 𝜆ଵሺ𝑘ሻ peut être interprétée comme 

la sortie d’un filtre de premier ordre avec un gain statique égale à 1 qui est: 

                     𝜆ଵሺ𝑘ሻ ൌ
1 െ 𝜆଴

1 െ 𝜆଴𝑞ିଵ                                                                                                      ሺ5.21ሻ 

  Ce type de profil est très recommandé pour l’identification des systèmes stationnaires.  

f) Trace constante 

Dans ce cas, 𝜆ଵሺ𝑘ሻ et 𝜆ଶሺ𝑘ሻ sont choisis automatiquement à chaque pas pour assurer une trace 

constante de la matrice de gain. 

                     𝑡𝑟൫𝑃ሺ𝑘 ൅ 1ሻ൯ ൌ 𝑡𝑟൫𝑃ሺ𝑘ሻ൯ ൌ 𝑡𝑟൫𝑃ሺ0ሻ൯ ൌ 𝑛𝛿                                                       ሺ5.22ሻ 
 

où n est le nombre de paramètres et 𝛿 est le gain initial (valeurs typiques 𝛿 = 0.1 à 4), la matrice 

𝑃ሺ0ሻ ayant la forme : 
 

                     𝑃ሺ0ሻ ൌ ൭
𝛿 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛿

൱
௡ൈ௡

                                                                                           ሺ5.23ሻ 

 

Les valeurs de 𝜆ଵሺ𝑘ሻ et 𝜆ଶሺ𝑘ሻ se déterminent à partir de l’équation : 
 

                     𝑡𝑟ሺ𝑃ሺ𝑘 ൅ 1ሻ ൌ
1

𝜆ଵሺ𝑘ሻ
𝑡𝑟 ቈ𝑃ሺ𝑘ሻ െ

𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ𝜗መ்ሺ𝑘ሻ𝑃ሺ𝑘ሻ

𝛾ሺ𝑘ሻ ൅ 𝜗መ்ሺ𝑘ሻ𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ
቉                             ሺ5.24ሻ 

 

En fixant le rapport 𝛾ሺ𝑘ሻ ൌ 𝜆1ሺ𝑘ሻ

𝜆2ሺ𝑘ሻ
 (l’équation (5.24) est obtenue à partir de (5.15)). Ce type de 

profil convient pour l’identification des systèmes à paramètres variables dans le temps. 
 

5.2.2.3.2 Choix du gain initial 𝑃ሺ0ሻ 

 Le gain d’adaptation initial 𝑃ሺ0ሻ est de la forme donnée par l’équation (5.23). En absence 

d’information initiale sur les paramètres à estimer, on prend les estimations initiales nulles et 

on choisit le gain initial (𝛿=1000). On peut interpréter le gain d’adaptation comme une mesure 

de la précision de l’estimation, ceci explique le choix de 𝑃ሺ0ሻ. 
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5.2.2.4 Stabilité de l’algorithme d’identification PAA  

L’erreur paramétrique est définie par 

                     𝛽෨ሺ𝑘ሻ ൌ 𝛽መሺ𝑘ሻ െ 𝛽                                                                                                         ሺ5.25ሻ 
 

 Pour analyser les méthodes d’identification itérative (récursive), nous disposons d’un 

résultat général de stabilité qui est obtenu en prenant en compte la structure équivalente à 

contre-réaction des algorithmes (voir la figure 5.3). Nous ferons les hypothèses suivantes :   

i) L’algorithme d’adaptation paramétrique est donné par les équations (5.11) à (5.14) ; 

ii) La commande adaptative conduit à écrire l’erreur généralisée, ou l’erreur d’adaptation à 

postériori, sous la forme   
 

                     𝜖ሺ𝑘 ൅ 1ሻ ൌ െ𝐻ሺ𝑞ିଵሻ𝛽෨்ሺ𝑘ሻ𝜗መሺ𝑘ሻ                                                                             ሺ5.26ሻ  

𝑜ù                 𝐻ሺ𝑞ିଵሻ ൌ
𝐻ଵሺ𝑞ିଵሻ
𝐻ଶሺ𝑞ିଵሻ

                                                                                                    ሺ5.27ሻ 

𝑎𝑣𝑒𝑐            𝐻௜ሺ𝑞ିଵሻ ൌ 1 ൅ 𝑞ିଵ𝐻௜
∗ሺ𝑞ିଵሻ ൌ 1 ൅ ෍ ℎ௝

௜𝑞ି௝; 𝑖 ൌ 1, 2

௡೔

௝ୀଵ

                                     ሺ5.28ሻ 

où 𝜗መሺ𝑘ሻ est une séquence bornée ou non bornée.  

iii)  𝛽 est une valeur constante du vecteur des paramètres. 

 
 

 

  

 

 

  

 

 

 

 
 

 

Théorème 5.1: Sous hypothèse (i), (ii) et (iii) si : 

                     𝐻ሺ𝑧ିଵሻ ൌ 𝐻ሺ𝑧ିଵሻ െ
𝜆ଶ

2
                                                                                             ሺ5.29ሻ 

est une fonction de transfert strictement réelle positive où : 

                     max
௞

𝜆ଶሺ𝑘ሻ ൑ 𝜆ଶ ൏ 2                                                                                                   ሺ5.30ሻ 

𝐻ሺ𝑧ିଵሻ 

𝜆ଶ

2
 

𝑃ሺ𝑘ሻ ሺൈሻ ሺൈሻ் 

𝑞ିଵ 

𝜆ଶ

2
 

𝜗መሺ𝑘ሻ 

𝛽መሺ𝑘 ൅ 1ሻ 

𝛽መሺ𝑘ሻ 

൅ 

൅ ൅ 

െ 

൅ െ െ 

𝜖ሺ𝑘 ൅ 1ሻ  

𝐻 ൌ 𝐻 െ
𝜆ଶ

2
 

 𝑠𝑦𝑠𝑡è𝑚𝑒 𝑝𝑎𝑠𝑠𝑖𝑓 

Figure 5.3 : Représentation équivalente à contre-réaction associée à l’algorithme PAA
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alors pour tout 𝜖ሺ0ሻ et 𝛽መሺ0ሻ bornés, on a : 

(1) lim
௞భ→ାஶ

∑ 𝜖ଶሺ𝑘 ൅ 1ሻ ൏௞భ
௞ୀ଴ 𝐶 ቀ𝜖ሺ0ሻ, 𝛽መሺ0ሻቁ ;    0 ൏ 𝐶 ൏ ∞                          ሺ5.31ሻ 

(2) lim
௞→ାஶ

𝜖ሺ𝑘 ൅ 1ሻ ൌ 0                                                                                          ሺ5.32ሻ 

(3) lim
௞→ାஶ

ൣ𝛽 െ 𝛽መሺ𝑘 ൅ 1ሻ൧
்

𝜑ሺ𝑘ሻ ൌ 0                                                                   ሺ5.33ሻ 

(4) lim
௞→ାஶ

ሾ 𝛽መሺ𝑘 ൅ 1ሻ െ 𝛽መሺ𝑘ሻሿ்𝑃ିଵሺ𝑘ሻൣ𝛽መሺ𝑘 ൅ 1ሻ െ 𝛽መሺ𝑘ሻ൧ ൌ 0                     ሺ5.34ሻ 

(5) ሾ𝛽መሺ𝑘 ൅ 1ሻ െ 𝛽ሿ்𝑃ିଵሺ𝑘ሻൣ𝛽መሺ𝑘 ൅ 1ሻ െ 𝛽൧ ൏ 𝑅ଵ ൏ ∞                                 ሺ5.35ሻ 

(6) si 𝐻ሺ𝑧ିଵሻ est strictement passive en sortie : 

lim
௞→ାஶ

ൣ1 ൅ 𝜗መ்ሺ𝑘ሻ𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ൧𝜖ଶሺ𝑘 ൅ 1ሻ 

ൌ lim
௞→ାஶ

ሾ𝜖ሺ̅𝑘 ൅ 1ሻሿଶ

1 ൅ 𝜗መ்ሺ𝑘ሻ𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ
ൌ 0                                                                 ሺ5.36ሻ 

si les conditions suivantes sont vérifiées 

                     𝑃ିଵሺ𝑘ሻ ൒ 𝛼𝑃ିଵሺ0ሻ;   𝑃ሺ0ሻ ൐ 0;  𝛼 ൐ 0; ∀𝑘 ൒ 0                                                 ሺ5.37ሻ 

donc 

                     lim
௞→ାஶ

𝑃ሺ𝑘ሻ𝜗መሺ𝑘ሻ𝜖ሺ𝑘 ൅ 1ሻ ൌ lim
௞→ାஶ

ሾ𝛽መሺ𝑘 ൅ 1ሻ െ 𝛽መሺ𝑘ሻሿ ൌ 0                                ሺ5.38ሻ  

                     lim
௞→ାஶ

ฮ𝛽መሺ𝑘 ൅ 1ሻ െ 𝛽መሺ𝑘ሻฮ ൌ 0; 𝑘 ൏ ∞                                                                     ሺ5.39ሻ 

                     ฮ𝛽መሺ𝑘ሻฮ ൑ 𝑅ଶ ൏ ∞;   ∀𝑘 ൒ 0                                                                                    ሺ5.40ሻ 
 

 La relation (5.32) de ce théorème assure la convergence vers zéro de l’erreur d’adaptation à 

postériori, les autres résultats prouvent que les paramètres du processus convergent et l’entrée 

et la sortie du système sont bornées. La démonstration de ce théorème se trouve dans1.    
 

5.2.2.5 Validation des modèles identifiés  

 La dernière étape de la procédure d’identification est la validation du modèle obtenue au 

terme de la phase d’identification paramétrique. Dans le paragraphe précédent, on a mentionné 

la méthode d’identification récursive utilisée. Parallèlement, nous allons rappeler les techniques 

de validation associées à cette méthode. Pour les méthodes d’identification basées sur le 

blanchissement de l’erreur de prédiction, il est nécessaire de vérifier que l’erreur de prédiction, 

obtenue comme différence entre la sortie réelle du système 𝑦ሺ𝑘ሻet la sortie du modèle 

identifié 𝑦ොሺ𝑘ሻ, est assimilable au bruit blanc. Si on note avec 𝜖ሺ𝑘ሻ l’erreur de prédiction, cela 

implique : 

                     lim
௞→ାஶ

ሾ𝜖ሺ𝑘ሻ𝜖ሺ𝑘 െ 𝑗ሻሿ ൌ 0 , 𝑗 ൌ 1, 2, …                                                                     ሺ5.41ሻ 
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Le test de blancheur appliqué à la séquence 𝜖ሺ𝑘ሻ centrée (la valeur moyenne a été soustraite) 
est : 

                     𝑅ሺ0ሻ ൌ
1
𝑁

෍ 𝜖ଶሺ𝑘ሻ

ே

௞ୀଵ

,                 𝑅ேሺ0ሻ ൌ
𝑅ሺ0ሻ
𝑅ሺ0ሻ

ൌ 1                                               ሺ5.42ሻ 

                     𝑅ሺ𝑗ሻ ൌ
1
𝑁

෍ 𝜖ሺ𝑘ሻ𝜖ሺ𝑘 െ 𝑗ሻ

ே

௞ୀଵ

,    𝑅ேሺ𝑗ሻ ൌ
𝑅ሺ𝑗ሻ
𝑅ሺ0ሻ

; 𝑗 ൌ 1, 2, … , 𝑗௠௔௫                       ሺ5.43ሻ 

où                  𝑗௠௔௫ ൌ maxሺ𝑛, 𝑚 ൅ 𝑑ሻ                                                                                            ሺ5.44ሻ 

et les 𝑅ேሺ𝑗ሻ sont les estimations des auto corrélation (normalisées). La condition (5.41) devient 

alors : 
 

                     𝑅ேሺ0ሻ ൌ 1;  𝑅ேሺ𝑗ሻ ൌ 0;   𝑗 ൒ 1                                                                                ሺ5.45ሻ 

 Dans les situations pratiques cela ne se produit jamais car 𝜖ሺ𝑘ሻ contient des erreurs 

résiduelles de structure et le nombre d’échantillonnes utilisés ne peut pas être infini. En 

conséquence on considère comme critère pratique de validation (sous l’hypothèse que la 

séquence 𝑅ேሺ𝑗ሻ ሺ𝑗 ് 0ሻ tend vers une distribution gaussienne à valeur moyenne nulle et écart 

type 𝜎 ൌ ଵ

√ே
) : 

                     𝑅ேሺ0ሻ ൌ 1;  |𝑅ேሺ𝑗ሻ| ൑
2.17

√𝑁
;   𝑗 ൒ 1                                                                       ሺ5.46ሻ 

où N est le nombre d’échantillonnes. Une comparaison dans le domaine temporel entre 𝑦ሺ𝑘ሻ et 

𝑦ොሺ𝑘ሻ termine la phase de validation (pour les détails théoriques sur la méthode des moindres 

carrés voire l’annexe A). 
 

5.3 Régulateur RST numérique synthèse par placement de pôles 

 La deuxième étape de la méthodologie de commande adaptative d’un système industriel est 

la conception d’un régulateur numérique sur la base d’un modèle du procédé (identifié en 

boucle ouverte ou en boucle fermée). La méthode retenue pour la synthèse de régulateurs 

numériques robustes dans le cas linéaire est le placement des pôles avec calibrage des fonctions 

de sensibilité. Cette méthode repose sur un ensemble de techniques qui ont été développées au 

cours de ces dernières années. Comme pour toute structure de correction, le concepteur devra 

déterminer les paramètres de correction (ici les polynômes R, S et T) pour assurer : 

- la stabilité en boucle fermée ; 

- le suivi asymptotique d’une certaine classe de consigne ; 

- le rejet asymptotique d’une certaine classe de perturbation ; 

- un régime transitoire satisfaisant. 
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Cependant, le respect des spécifications n’est pas suffisant pour assurer un fonctionnement 

satisfaisant de l’installation. Il faudra tenir compte : 

- des saturations de procédé ; 

- du niveau du bruit de mesure ; 

- des erreurs de modélisation.  
 

5.3.1 Principe de synthèse du régulateur RST 

 Le schéma de régulation qui sera considéré comme base pour les discussions qui suivent est 

celui représenté en figure 5.4. Le procédé est contrôlé par un régulateur polynômial de type R-

S-T à deux degrés de liberté (permettant d’imposer un comportement différent pour la poursuite 

et la régulation). Le modèle échantillonné du procédé 𝐹ሺ𝑞ሻ et les polynômes du régulateur ont 

les formes suivantes : 

    𝐹ሺ𝑞ሻ ൌ
𝐵ሺ𝑞ିଵሻ
𝐴ሺ𝑞ିଵሻ

ൌ
𝑏ଵ𝑞ିଵ ൅ 𝑏ଶ𝑞ିଶ ൅ ⋯ ൅ 𝑏௠𝑞ି௠

1 ൅ 𝑎ଵ𝑞ିଵ ൅ 𝑎ଶ𝑞ିଶ ൅ ⋯ ൅ 𝑎௡𝑞ି௡                                                         ሺ5.47ሻ 

 

et 
                     𝑅ሺ𝑞ିଵሻ ൌ 1 ൅ 𝑟ଵ𝑞ିଵ ൅ 𝑟ଶ𝑞ିଶ ൅ ⋯ ൅ 𝑟௡ೝ

𝑞ି௡ೝ                                                      ሺ5.48ሻ  

                     𝑆ሺ𝑞ିଵሻ ൌ 𝑠଴ ൅ 𝑠ଵ𝑞ିଵ ൅ 𝑠ଶ𝑞ିଶ ൅ ⋯ ൅ 𝑠௡ೞ
𝑞ି௡ೞ                                                     ሺ5.49ሻ  

 

                     𝑇ሺ𝑞ିଵሻ ൌ 𝑡଴ ൅ 𝑡ଵ𝑞ିଵ ൅ 𝑡ଶ𝑞ିଶ ൅ ⋯ ൅ 𝑡௡೟
𝑞ି௡೟                                                     ሺ5.50ሻ 

Avec 𝑛, 𝑚, 𝑛௥, 𝑛௦, 𝑛௧ les degrés des polynômes et 𝑑 ൌ 𝑛 െ 𝑚 est le retard pur du modèle. La 

période d’échantillonnage en seconds de système est 𝑇௘ et 𝑞ିଵ est soit l’opérateur temporel de 

retard, soit l’opérateur fréquentiel avec 𝜔ௗ ∈ ሾ0, గ

೐்
ሿ la pulsation discrète normalisée.  

 

 

 

 

     

 

 

 

 

La loi de commande dans le domain 

e temporelle est : 
 

                     𝑅ሺ𝑞ିଵሻ𝑢ሺ𝑘ሻ ൌ 𝑇ሺ𝑞ିଵሻ𝑦௖ሺ𝑘ሻ െ 𝑆ሺ𝑞ିଵሻ𝑦ሺ𝑘ሻ                                                        ሺ5.51ሻ  
 

𝑦௖ሺ𝑘ሻ 𝑦ሺ𝑘ሻ 

𝑣ሺ𝑘ሻ 𝑟é𝑔𝑢𝑙𝑎𝑡𝑒𝑢𝑟 

𝐵ሺ𝑞ିଵሻ
𝐴ሺ𝑞ିଵሻ

 
1

𝑅ሺ𝑞ିଵሻ

𝑆ሺ𝑞ିଵሻ

𝑇ሺ𝑞ିଵሻ 

𝑚𝑜𝑑è𝑙𝑒 

𝑢ሺ𝑘ሻ 𝜀ሺ𝑘ሻ 

𝑤ሺ𝑘ሻ 

𝑦∗ሺ𝑘ሻ 

െ 
൅ 

൅ 

 

Figure 5.4 : Structure de la commande RST 
𝑏𝑟𝑢𝑖𝑡 𝑑𝑒 𝑚𝑒𝑠𝑢𝑟𝑒 

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 
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qui exprime la commande 𝑢ሺ𝑘ሻcomme moyenne filtrée des mesures 𝑦ሺ𝑘ሻ, 𝑦ሺ𝑘 െ 1ሻ, …, des 

valeurs précédentes de la commande 𝑢ሺ𝑘 െ 1ሻ, 𝑢ሺ𝑘 െ 2ሻ, …, et les consignes ሺ 𝑦௖ሺ𝑘 െ

1ሻ, 𝑦௖ሺ𝑘 െ 2ሻ, … ሻ qui est enregistrée dans le microcontrôleur ou générée à partir d’un modèle 

de référence : 

                     𝐹௠ሺ𝑞ሻ ൌ
𝐵௠ሺ𝑞ିଵሻ
𝐴௠ሺ𝑞ିଵሻ

                                                                                                       ሺ5.52ሻ 

avec  
                   𝐴௠ሺ𝑞ିଵሻ ൌ 1 ൅ 𝑎ଵ

௠𝑞ିଵ ൅ 𝑎ଶ
௠𝑞ିଶ ൅ ⋯ ൅ 𝑎௡

௠𝑞ି௡ 

                   𝐵௠ሺ𝑞ିଵሻ ൌ 𝑏ଵ
௠𝑞ିଵ ൅ 𝑏ଶ

௠𝑞ିଶ ൅ ⋯ ൅ 𝑏௠
௠𝑞ି௠ 

 

La fonction de transfert en boucle fermée, entre la référence filtrée 𝑦௖ሺ𝑘ሻ et la sortie 𝑦ሺ𝑘ሻ 

(boucle de poursuite), est donnée par : 
 

                     𝐻஻ிሺ𝑧ሻ ൌ
𝑇ሺ𝑧ିଵሻ𝐵ሺ𝑧ିଵሻ

𝐴஻ிሺ𝑧ିଵሻ
                                                                                           ሺ5.53ሻ 

où 
                     𝐴ሺ𝑧ିଵሻ𝑅ሺ𝑧ିଵሻ ൅ 𝐵ሺ𝑧ିଵሻ𝑆ሺ𝑧ିଵሻ ൌ 𝐴஻ிሺ𝑧ିଵሻ                                                       ሺ5.54ሻ    
 

 Dans l’équation (5.54), le polynôme 𝐴஻ிሺ𝑧ିଵሻ représente les pôles désirés de la boucle 

fermée. La partie gauche de (5.54) est le dénominateur des fonctions de sensibilité.  
 

5.3.1.1 Les spécifications des performances  

 Un problème de commande est généralement décrit par un cahier des charges qui définit les 

spécifications à atteindre, dans le domaine temporel et/ou fréquentiel. 
 

5.3.1.1.1 Spécifications temporelles 

 Les spécifications pour la commande d’un système sont souvent liées aux caractéristiques 

de la réponse indicielle du système.  

 Le temps de montée 𝑡௠est le temps nécessaire au système pour que sa sortie passe de 10% 

à 90% de sa valeur finale.  

 Le dépassement maximal 𝐷% est la différence entre la valeur maximale prise par la sortie 

du système et la valeur finale divisée par la même valeur finale.  

 Le temps du premier maximum 𝑇ெ est l’instant caractérisant le premier maximum.  

 Le temps d’établissement 𝑡௥ à 𝑥% ou encore le temps de réponse est le temps nécessaire 

pour que la réponse du système demeure dans la fourchette േ𝑥% autour de la valeur finale (en 

prend couramment 𝑥% ൌ 10%, 5% 𝑜𝑢 2%ሻ.  
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 Ces quatre quantités permettent de caractériser assez complètement le régime transitoire 

d’un système. Si elles sont assez facilement mesurables pratiquement, leurs expressions 

analytiques ne sont pas toujours évidentes à établir.   
   

5.3.1.1.2 Spécifications fréquentielles  

 Les spécifications pour la commande d’un système peuvent être aussi exprimées en termes 

des caractéristiques de la réponse fréquentielle du système. 
 

 La bande passante 𝐵𝑃 : est la fréquence maximale à laquelle une sinusoïde à la sortie du 

système peut reproduire, sans trop d’atténuation, une sinusoïde sur la consigne. La quantité 𝐵𝑃 

est une mesure de la vitesse de réponse d’un système et sa valeur correspond à la fréquence à 

laquelle le gain en dB devient inférieur à െ3𝑑𝐵. 
  

 Le facteur de résonance 𝑀𝑅 : est le rapport entre le gain maximum du module de la réponse 

fréquentielle est le gain à la fréquence nulle. La quantité 𝑀𝑅 est une mesure de l’amortissement 

du système. L’étude d’un système en boucle fermée dans le domaine fréquentiel est 

extrêmement importante. Car, il permet d’évaluer ses caractéristiques de robustesse de manière 

très significative. 

5.3.1.1.3 Les marges de robustesse 

 Nous rappelons ici les marges de robustesse (voir aussi la figure 5.5) communément utilisées 

pour mesurer la réserve de stabilité du système en boucle fermée par rapport à une variation de 

la fonction de transfert 𝐻஻ைሺ𝑒௝ఠሻ de la boucle ouverte : 

 La marge de gain 𝑀𝐺 : correspond à l’inverse du gain de 𝐻஻ைሺ𝑒௝ఠሻ à la fréquence où le 

déphasage est égale à −180. Physiquement, elle représente donc la quantité de gain que l’on 

peut ajouter (en dB) dans la boucle avant que la boucle fermée ne devienne instable. Des valeurs 

typiques sont 𝑀𝐺 ൒ 2 ሺ6𝑑𝐵ሻ. 

La marge de phase 𝑀𝜑 : définit la marge de sécurité sur la phase. Elle est donnée par  (𝑀𝜑 ൌ

180 െ arg ቀ𝐻஻ை൫𝑒௝ఠക൯ቁ  ; où 𝜔ఝ est la pulsation à laquelle ห𝐻஻ை൫𝑒௝ఠക൯ห ൌ 1. Physiquement 

la marge de phase représente la quantité de phase que l’on peut perdre dans la 

 boucle avant que la boucle fermée ne devienne instable. D’un point de vue pratique, un 

réglage assez courant (mais on peut évidemment avoir d’autres exigences) est d’imposer : 

                                ൜
𝑀𝐺 ൌ 10

𝑀𝜑 ൒ 45୭                                                                                              (5.55) 
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 La marge de module ∆𝑀 : est la mesure de la distance minimale entre le point critique dans 

le plan de Nyquist ሺെ1, 0𝑗ሻ et l’hodographe de la fonction de transfert de la boucle ouverte 

(∆𝑀 ൌ min
ሺ∀ఠሻ

ห1 ൅ 𝐻஻ைሺ𝑒௝ఠകሻหሻ. La valeur de ∆𝑀 mesure l’incertitude additive non-structurée 

toléré par le 𝐻஻ை à toutes les fréquences, on donne souvent comme contrainte ∆𝑀 ൒

0.5 𝑜𝑢 ∆𝑀 ൒ െ6𝑑𝐵. 

 La marge de retard ∆𝜏 : est le retard supplémentaire maximal tolérable pour 𝐻஻ை 

∆𝜏 ൌ 𝑚𝑖𝑛 ቂ∆ఝ೔

ఠ೔
ቃ  avec ∆𝜑௜ marge de phase en 𝜔௜ exprimée en rad. C’est le retard parasite 

maximum que l’on acceptera. Pour les systèmes temps discret échantillonnés avec une période 

d’échantillonnage 𝑇௘, une condition typique à atteindre est ∆𝜏 ൒ 𝑇௘. Par ailleurs, une bonne 

marge de module implique des bonnes marges de gain et phase, mais l’inverse n’est pas toujours 

vrai (pour des détails sur les relations entre les marges voir [Lan02]). Les marges de module et 

de retard sont des indices plus fiables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.1.2 Calcul de la dynamique de régulation  

 Les polynômes 𝑅 et 𝑆 du régulateur sont généralement factorisés en une partie fixe (les 

polynômes 𝑅௙ et 𝑆௙ imposés par les spécifications de synthèse, soit fixés pour calibrer des 

fonctions de sensibilité) et une autre partie liée au placement de pôles (𝑅଴ et 𝑆଴). 
 

                     ቊ
𝑅ሺ𝑧ିଵሻ ൌ 𝑅௙ሺ𝑧ିଵሻ𝑅଴ሺ𝑧ିଵሻ

𝑆ሺ𝑧ିଵሻ ൌ 𝑆௙ሺ𝑧ିଵሻ𝑆଴ሺ𝑧ିଵሻ
                                                                                                     (5.56) 

Les polynômes 𝑅ሺ𝑧ିଵሻ et𝑆ሺ𝑧ିଵሻ de manière générale sont les solutions de l’équation de Bézout 

(5.57) de placement de pôles. 

             𝐴ሺ𝑧ିଵሻ𝑅௙ሺ𝑧ିଵሻ𝑅଴ሺ𝑧ିଵሻ ൅ 𝐵ሺ𝑧ିଵሻ𝑆௙ሺ𝑧ିଵሻ𝑆଴ሺ𝑧ିଵሻ ൌ 𝐴஻ிሺ𝑧ିଵሻ 

                                                                                                           ൌ  𝐴஻ி
ௗ ሺ𝑧ିଵሻ  𝐴஻ி

௔ ሺ𝑧ିଵሻ         ሺ5.57ሻ 
 

𝐼𝑚ሺ𝐹ሺ𝑗𝜔ሻሻ 

𝑅𝑒ሺ𝐹ሺ𝑗𝜔ሻሻ 

1
𝑀𝐺

 

|𝐻஻ை| ൌ 1 

𝑀𝜑 

1 

Figure 5.5 : Marges de robustesse  

𝜔 ൌ 𝜔௖௥ 

∆𝑀 

-1 
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Les pôles désirés doivent être fixés afin de satisfaire les spécifications de performance et de 

robustesse imposées. L’identité de Bézout a une solution unique minimale sous les conditions 

suivantes : 

                               deg൫𝐴஻ிሺ𝑧ିଵሻ൯ ൌ 𝑛஻ி ൑ 𝑛 ൅ 𝑚 െ 1; 

                               deg൫𝑅ሺ𝑧ିଵሻ൯ ൌ 𝑛௥ ൌ 𝑚 െ 1; 

                               deg൫𝑆ሺ𝑧ିଵሻ൯ ൌ 𝑛௦ ൌ 𝑛 െ 1                                                                             ሺ5.59ሻ 
 

ou si on considère les parties fixes imposées au régulateur, la condition devient : 

          degሺ𝑅0ሻ ൌ 𝑛𝑟0
ൌ 𝑚 ൅ deg൫𝑆𝑓൯ െ 1; degሺ𝑆0ሻ ൌ 𝑛𝑠0

ൌ 𝑛 ൅ deg൫𝑅𝑓൯ െ 1  

 

5.3.1.3 Calcul de la dynamique de poursuite 

 La partie 𝑇ሺ𝑧ିଵሻ de la poursuite est utilisée dans le régulateur pour compenser la dynamique 

de la boucle fermée afin que la fonction de transfert entre 𝑦௖ሺ𝑘ሻ et 𝑦ሺ𝑘ሻ soit très proche du 

modèle de référence 𝐹௠ሺ𝑧ିଵሻ. La fonction de transfert de la boucle de poursuite, en tenant 

compte de ce modèle de référence est exprimée comme : 
 

                     𝐻௬௬೎
ሺ𝑧ሻ ൌ

𝐵ሺ𝑧ିଵሻ𝑇ሺ𝑧ିଵሻ
𝐴஻ிሺ𝑧ିଵሻ

ൌ
𝐵௠ሺ𝑧ିଵሻ
𝐴௠ሺ𝑧ିଵሻ

                                                            ሺ5.60ሻ 

 

 

Le polynôme 𝑇ሺ𝑧ିଵሻ peut avoir l’une des trois structures suivantes : 

 𝑇ሺ𝑧ିଵሻ ൌ ஺ಳಷሺ௭షభሻ

஻ሺଵሻ
 qui correspond à simplifier les pôles imposés par la boucle de 

régulation, normaliser le gain statique à 1 et imposer comme dynamique de poursuite de 

modèle spécifié par le modèle de référence 𝐹௠ሺ𝑧ିଵሻ. 

 𝑇ሺ𝑧ିଵሻ ൌ
஺ಳಷ

೏ ൫௭షభ൯஺ಳಷ
ೌ ሺଵሻ

஻ሺଵሻ
 qui correspond à simplifier les seuls pôles dominant (donnés par 

le polynôme 𝐴஻ி
ௗ ሺ𝑧ିଵሻ de la régulation en laissant les pôles auxiliaires inchangés 

(spécifiés par 𝐴஻ி
௔ ሺ𝑧ିଵሻ) et son gain statique est ajusté. 

  𝑇ሺ𝑧ିଵሻ ൌ ஺ಳಷሺଵሻ

஻ሺଵሻ
  est un gain constant (= 𝑆ሺ1ሻ si 𝑅ሺ𝑧ିଵሻ contient un terme1 െ 𝑧ିଵ) et on 

impose la même dynamique soit en poursuite qu’en régulation 𝐹௠ሺ𝑧ሻ ൌ 1.     
 

Dans la pratique, on choisit souvent un modèle de référence de 2ème ordre avec la dynamique 

désirée de la poursuite. 
 

5.3.1.4 Calcul du régulateur : comment placer les pôles 
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 On a montré auparavant que l’emplacement des pôles de la boucle fermée caractérise 

complètement la nature de la réponse temporelle du système et ses propriétés de robustesse. Il 

est intéressant de fournir un ensemble de règles qui puissent aider à déterminer la configuration 

des pôles qui conduit à la boucle fermée désirée. 

 Dans la pratique on classifie les pôles en rapides et lents (ou dominants), en faisant référence 

à la rapidité avec laquelle le mode naturel associé tend à disparaître. On placera, comme pôles 

dominants, les pôles qui correspondent à la dynamique désirée (spécifiée par n paires de pôles 

complexes conjugués placés aux fréquences désirées). On rappelle que du point de vue de la 

robustesse un bon choix initial (si on ne veut pas accélérer le système) correspond généralement 

à imposer en boucle fermée les pôles de la boucle ouverte (si stables et bien amortis, les cas 

échéants on imposera un amortissement compris entre 0.7 et 1). Les pôles qui restent (pôles 

auxiliaires) sont utilisés pour améliorer la robustesse de la boucle fermée. En général on place 

des pôles de la forme : 
 

                     𝐴஻ி
௔ ሺ𝑧ିଵሻ ൌ ሺ1 െ 𝛼𝑧ିଵሻ௡ೌ                                                                                         ሺ5.61ሻ 

 

où 𝛼 est le pôle en haute fréquence de multiplicité 𝑛௔ placé suffisamment loin de pôles 

dominants mais tel que les marges de robustesse soient respectées, et  
 

     𝑛௔ ൑ 𝑛 ൅ 𝑚 െ 1 ൅ deg ቀ𝑆௙ሺ𝑧ିଵሻቁ ൅ deg ቀ𝑅௙ሺ𝑧ିଵሻቁ െ deg ቀ𝐴஻ி
ௗ ሺ𝑧ିଵሻቁ             ሺ5.62ሻ 
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Problèmes 

Problème №1: On considère la fonction  

                         𝑉ሺ𝑥ሻ ൌ 𝑥்𝐴𝑥 ൅ 𝑏்𝑥 ൅ 𝑐 

Ou 𝑥 et 𝑏 sont des vecteurs colonnes, 𝐴 est une matrice et 𝑐 est un scalaire. 

1- Vérifier que le gradient  𝑔𝑟𝑎𝑑௫𝑉ሺ𝑥ሻ ൌ ሺ𝐴 ൅ 𝐴்ሻ𝑥 ൅ 𝑏 

2- Utiliser la première question pour calculer le minimum 𝑥∗. 
 

Problème №2 : considère 

                      𝑦ሺ𝑘ሻ ൌ 𝑏଴𝑢ሺ𝑘ሻ ൅ 𝑏ଵ𝑢ሺ𝑘 െ 1ሻ ൅ 𝑒ሺ𝑘ሻ, 𝑘 ൌ 1, 2, … 

ሼ𝑒ሺ𝑘ሻሽ est une séquence indépendante normale 𝑁ሺ0, 𝜎ሻ variable aléatoire. 

1) Déterminer l’estimation des 𝑏଴, 𝑏ଵ utilisant les la méthode des moindres carrés avec un 

échelon comme entrée ሼ𝑢ሺ𝑘ሻሽ .  

2) Si ሼ𝑢ሺ𝑘ሻሽ est un bruit blanc interpréter les résultats. 
 

 
 
Problème №3 : On considère un procédé du double intégrateur donné par la fonction de 
transfert  

                     𝐺ሺ𝑝ሻ ൌ
1

𝑝ଶ 

En prenant comme entrée de référence un échelon. Souhaitant déterminer les paramètres d’une 
loi de commande de type RST permettant d’annuler l’erreur statique en un temps fini. 
1- Trouver le modèle discret du procédé. 
2- Calculer le régulateur RST utilisant l’équation de diophantienne. Avec 𝑇௘ ൌ 1𝑠    
3- Etudier la réponse par rapport un échelon.   
 

Problème №4 : Soit le système 

                     𝐺ௌሺ𝑝ሻ ൌ
1

𝑝ଶ ൅ 1
 

1- Montrer que la fonction de transfert de ce système échantillonné à la période 

𝑇௘(convertisseur numérique analogique modélisé par un bloqueur d’ordre zéro) est : 

                     𝐺ሺ𝑧ሻ ൌ
ሺ1 െ cosሺ𝑇௘ሻሻሺ𝑧 ൅ 1ሻ
𝑧ଶ െ 2 cosሺ𝑇௘ሻ 𝑧 ൅ 1

 

2- Choisir en première approximation pour 𝑇௘ ൌ 1𝑠, calculer la fonction de transfert 𝐺ሺ𝑧ሻ. 

3- Ecrire la fonction 𝐺ሺ𝑧ሻsous la forme de 𝑧ିଵ. 

4- Donner le schéma de principe d’un système asservi avec la commande R.S.T. 
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5- On souhaite calculer un correcteur sous forme R.S.T qui assure les spécifications suivantes 

(𝜉 ൌ 0.7, 𝜔௡ ൌ 5 𝑟𝑎𝑑/𝑠) : 

- Calculer le polynôme de dénominateur 𝐴௠ሺ𝑧ିଵሻ du modèle de référence 𝐺௠ሺ𝑧ሻ 

- Déterminer les degrés minimaux pour les polynômes R, S pour assurer les spécifications. 

- Donner la fonction de transfert en boucle fermé entre la sortie et la consigne 𝑌௖ሺ𝑧ሻ et 𝑌ሺ𝑧ሻ. 

- Calculer les polynômes 𝑅ሺ𝑧ିଵሻ, 𝑆ሺ𝑧ିଵሻ et 𝑇ሺ𝑧ିଵሻ qui assurent les spécifications de 

régulation et de poursuite. 
 

Indices : 

                      
1

𝑝ሺ𝑝ଶ ൅ 1ሻ
ൌ

1
𝑝

െ
𝑝

𝑝ଶ ൅ 1
 

                  Transformée en z : 𝑍 ቀ
ଵ

௣
ቁ ൌ

௭

௭ିଵ
 et 𝑍 ቀ

௣

௣మାఠబ
మቁ ൌ

௭మି௭ୡ୭ୱሺఠబ ೐்ሻ

௭మିଶ௭ୡ୭ୱሺఠబ ೐்ሻାଵ
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CHAPITRE 6  
COMMANDE ADAPTATIVE A MODELE DE REFERENCE  

 

 

6.1 Introduction 
 

 La commande adaptative à modèle de référence (MRAC : Model Reference Adaptive 

Control) est une des commandes adaptatives les plus connues. Cette approche de commande a 

été originalement proposée pour résoudre un problème dans lequel les spécifications de 

performances sont données en termes d’un modèle de référence. Ce modèle de référence donne 

une indication sur comment la sortie du système doit idéalement répondre à un signal de 

commande. Son principe de base (détaillé dans la suite) consiste à adapter les paramètres du 

contrôleur en fonction de l’erreur entre le système et le modèle (voir la figure 6.1). 

  

 

 

 

 

 

 

 

 

6.2 Principe de base  

 Comme il est montré sur la figure 6.1, un schéma de commande adaptative compote 

principalement deux boucles : 

 Une boucle interne qui a la structure d’une boucle classique de régulation, 

 Une boucle externe qui est la boucle adaptative. 
 

Les paramètres du régulateur adaptatif sont calculés à partir de l’erreur 𝑒 ൌ 𝑦 െ 𝑦௠ par la 

boucle adaptative pour un modèle de référence donné. On peut classer les méthodes 

d’ajustement des paramètres du correcteur adaptatif à modèle de référence en deux catégories    

u  y 
uc  

ym  

Figure 6.1 : Schéma de la commande adaptative  
à modèle de référence  
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1) Les méthodes du gradient, 

2) Les méthodes basées sur la théorie de la stabilité. 

 

6.3 Les méthodes du gradient 
 

6.3.1 Règle d’adaptation du MIT 
 

Soit un système en boucle fermée dont le correcteur possède un seul paramètre 𝜃. Soit 𝑦௠ la 

sortie du modèle de référence et 𝑒 ൌ 𝑦 െ 𝑦௠ l’erreur de poursuite du modèle de référence. On 

considère la fonction coût suivante : 

                     𝐽ሺ𝜃ሻ ൌ
1
2

𝑒ଶ                                                                                                                      ሺ6.1ሻ 

𝜃 Représente le vecteur des paramètres du contrôleur à adapter 

Pour minimiser 𝐽, il est logique de faire varier les paramètres dans la direction négative du 

gradient de 𝐽 : 

                     
𝑑𝜃
𝑑𝑡

ൌ െ𝛾
𝜕𝐽
𝜕𝜃

ൌ െ𝛾𝑒
𝜕𝑒
𝜕𝜃

                                                                                                 ሺ6.2ሻ 

                     
𝑑𝐽
𝑑𝑡

ൌ 𝑒
𝑑𝑒
𝑑𝑡

ൌ 𝑒
𝜕𝑒
𝜕𝜃

𝑑𝜃
𝑑𝑡

ൌ െ𝛾𝑒ଶ ൬
𝜕𝑒
𝜕𝜃

൰
ଶ

                                                                        ሺ6.3ሻ 

డ௘

డఏ
 représente la sensibilité de l’erreur par rapport aux paramètres. Il indique comment l’erreur 

est influencée par une variation de paramètres. 
 

6.3.2 Autres critères  

D’autres critères peuvent être utilisés 

                      𝐽ሺ𝜃ሻ ൌ |𝑒|                                                                                                                        ሺ6.4ሻ 

Ce qui donne en appliquant l’algorithme du gradient la règle de mise à jour suivante : 

                     
𝑑𝜃
𝑑𝑡

ൌ െ𝛾
𝜕𝐽
𝜕𝜃

ൌ െ𝛾
𝜕𝑒
𝜕𝜃

𝑠𝑖𝑔𝑛ሺ𝑒ሻ                                                                                    ሺ6.5ሻ 

On utilise aussi une autre règle de mise à jour appelée sign-sign algorithme 

                     
𝑑𝜃
𝑑𝑡

ൌ െ𝛾
𝜕𝐽
𝜕𝜃

ൌ െ𝛾𝑠𝑖𝑔𝑛 ൬
𝜕𝑒
𝜕𝜃

൰ 𝑠𝑖𝑔𝑛ሺ𝑒ሻ                                                                      ሺ6.6ሻ 
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Ce dernier algorithme est simple et rapide. La version discrète est utilisée en 

télécommunications. 

Exemple 6.1 (Commande adaptative en boucle ouverte), soit le système linéaire monovariable 

représenté sur la figure 6.2. 

 

 

 

La fonction de transfert du système  𝑘𝐺ሺ𝑠ሻ avec 𝐺ሺ𝑠ሻ est connue mais le gain 𝑘 est inconnu.  

L’objectif est de trouver un correcteur en boucle ouverte pour que système corrigé possède la 

fonction de transfert de modèle de référence  𝐺௠ሺ𝑠ሻ ൌ 𝑘଴𝐺ሺ𝑠ሻ : 

On utilise pour cela un correcteur proportionnel.  La commande est alors donnée par 

                       𝑢 ൌ 𝜃𝑢௖                                                                                                                    (6.7) 

Avec 𝜃 le paramètre ajustable du correcteur et 𝑢௖ la consigne. Cette fonction de transfert est 

égale à 𝐺௠ሺ𝑠ሻ si le paramètre 𝜃 est choisi  

                        𝜃 ൌ
𝑘଴

𝑘
                                                                                                                             ሺ6.8ሻ 

Le gain 𝑘 est inconnu.  On utilise alors la règle MIT pour la mise à jour du paramètre 𝜃 

L’erreur est  

                         𝑒 ൌ 𝑦 െ 𝑦௠ ൌ 𝑘𝐺ሺ𝑝ሻ𝜃𝑢௖ െ 𝑘଴𝐺ሺ𝑝ሻ𝑢௖ ൌ 𝐺ሺ𝑝ሻሺ𝑘𝜃 െ 𝑘଴ሻ𝑢௖ 

La règle MIT donne la loi d’adaptation suivante  

                          
𝑑𝜃
𝑑𝑡

ൌ െ𝛾́
𝜕𝑒
𝜕𝜃

𝑒 ൌ െ𝛾́𝑘
𝑘଴

𝑘଴
𝐺ሺ𝑝ሻ𝑢௖𝑒 ൌ െ𝛾́

𝑘
𝑘଴

𝑦௠𝑒 ൌ െ𝛾𝑦௠𝑒                           ሺ6.9ሻ 

Où  𝛾 ൌ െ𝛾́ ௞

௞బ
 a été introduit à la place de 𝛾́  

Le schéma de la commande est donné par la figure.6.2 
 
Remarque 6.1.  Pour avoir le signe correct de 𝛾, il faut connaître le signe 𝑘. 

Figure 6.2 : Adaptation de gain en boucle ouverte   
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Exemple 6.2 (Commande adaptative d’un système du premier ordre).  Soit un système 

linéaire décrit par un modèle du premier ordre : 

                      
𝑑𝑦
𝑑𝑡

ൌ െ𝑎𝑦 ൅ 𝑏𝑢                                                                                                            ሺ6.10ሻ 

Où 𝑢 est la commande variable, et 𝑦 est la sortie mesurée. Supposant que, on veut obtenir un 

système en boucle fermé décrit par  

                      
𝑑𝑦௠

𝑑𝑡
ൌ െ𝑎௠𝑦௠ ൅ 𝑏௠𝑢௖                                                                                              ሺ6.11ሻ 

Soit le contrôleur donné par  

                   𝑢 ൌ 𝜃ଵ𝑢௖ െ 𝜃ଶ𝑦                                                                                                (6.12) 

En remplaçant 𝑢 dans (6.10)  

                      
𝑑𝑦
𝑑𝑡

ൌ െ𝑎𝑦 ൅ 𝑏ሺ𝜃ଵ𝑢௖ െ 𝜃ଶ𝑦ሻ ൌ െሺ𝑎 ൅ 𝑏𝜃ଶሻ𝑦 ൅ 𝑏𝜃ଵ𝑢௖                                      ሺ6.13ሻ 

Qui représente le système en boucle fermée. On aura un comportement similaire (perfect 

model-following) au modèle de référence si : 

                     𝑏௠ ൌ 𝑏𝜃ଵ ⇒ 𝜃ଵ ൌ 𝜃ଵ
଴ ൌ

𝑏௠

𝑏
 

                      𝑎௠ ൌ 𝑎 ൅ 𝑏𝜃ଶ ⇒ 𝜃ଶ ൌ 𝜃ଶ
଴ ൌ

𝑎௠ െ 𝑎
𝑏

 

L’ordre du système et du modèle de référence étant le même, il est possible de faire une 

poursuite parfaite du modèle de référence. En introduisant l’opérateur de différentiation 𝑝 ൌ ௗ

ௗ௧
 

l’équation (6.13) devient  

                      𝑦 ൌ
𝑏𝜃ଵ

𝑝 ൅ 𝑎 ൅ 𝑏𝜃ଶ
𝑢௖ 𝑒𝑡 𝑒 ൌ 𝑦 െ 𝑦௠  

On calcul alors  

                     
𝜕𝑒

𝜕𝜃ଵ
ൌ  

𝑏
𝑝 ൅ 𝑎 ൅ 𝑏𝜃ଶ

𝑢௖  

                     
𝜕𝑒

𝜕𝜃ଶ
ൌ  െ

𝑏ଶ𝜃ଵ

ሺ𝑝 ൅ 𝑎 ൅ 𝑏𝜃ଶሻଶ 𝑢௖ ൌ െ
𝑏

𝑝 ൅ 𝑎 ൅ 𝑏𝜃ଶ
𝑦 

On ne peut pas utiliser directement cette formule, car les paramètres du système 𝑎 et 𝑏 sont 

inconnus, une approximation est donc nécessaire. On considère maintenant cette approximation 

basée sur l’observation, 𝑝 ൅ 𝑎 ൅ 𝑏𝜃ଶ
଴ ൎ 𝑝 ൅ 𝑎௠ quand les paramètres donnent une poursuite 

parfaite de modèle de référence. On utilisera donc l’approximation. 

                     𝑝 ൅ 𝑎 ൅ 𝑏𝜃ଶ ൎ 𝑝 ൅ 𝑎௠ 

 Par conséquent 
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𝑑𝜃ଵ

𝑑𝑡
ൌ െ𝛾 ൬

𝑎௠

𝑝 ൅ 𝑎௠
𝑢௖൰ 𝑒                                                                                            ሺ6.14ሻ 

                     
𝑑𝜃ଵ

𝑑𝑡
ൌ 𝛾 ൬

𝑎௠

𝑝 ൅ 𝑎௠
𝑦൰ 𝑒                                                                                                 ሺ6.15ሻ 

Avec  𝛾 ൌ 𝛾́𝑏/𝑎௠, le signe de paramètre 𝑏 doit être connu pour avoir un gain γ de signe correct 

On remarque que, le filtre a également été normalisé pour que son gain statique égal unité.  

Schéma bloc d’implémentation  

 

 
 

Application à un système de premier ordre  

Les différents paramètres sont 𝑎 ൌ 1, 𝑏 ൌ 0,5 et 𝑎௠ ൌ 𝑏௠ ൌ 2, l’entrée est un signal carré avec 

une amplitude égale 1, et 𝛾 ൌ 1.  

L’évolution de la sortie et la commande     

 

 

Figure 6.3 : Schéma bloc d’une commande adaptative MRAC  
pour un système de premier ordre    

Figure 6.4 : L’évolution de la sortie et la commande     
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Remarque 6.2 : Même si l’erreur 𝑒 ൌ 𝑦 െ 𝑦௠ → 0, cela n’implique pas forcément que 𝜃 → 𝜃଴ 

qui est la vraie valeur des paramètres. 
 

6.3.3 Normalisation de la règle MIT 

Pour l’algorithme de la règle MIT : 

                     
𝑑𝜃
𝑑𝑡

ൌ 𝛾𝜑𝑒                                                                                                                       ሺ6.16ሻ 

Où on a introduit  

                     𝜑 ൌ െ
𝜕𝑒
𝜕𝜃

 

La normalisation de l’algorithme est donnée par 

                     
𝑑𝜃
𝑑𝑡

ൌ
𝛾𝜑𝑒

𝛼 ൅ 𝜑்𝜑
, 𝛼 ൐ 0                                                                                                ሺ6.17ሻ 

 Rend l’algorithme moins sensible au signal d’entrée. Le paramètre 𝛼 est introduit pour éviter 

les difficultés quand  𝜑 est petit.  
 

6.4 Theorie de Lyapunov  

Il n’y a pas de garantie qu’une commande adaptative basée sur la règle MIT donnera un système 

en boucle fermée stable.  

6.4.1 Stabilité des système non linéaires à temps variant 

Soit le système non linéaire libre à temps variant 

                   𝑥ሶ ൌ 𝑓ሺ𝑥, 𝑡ሻ                                                                                                        (6.18) 

On va rappeler les principales définitions relatives à la stabilité. 

Définition 6.1 (Point d’équilibre). Le point 𝑥௘ ൌ 0 est un point d’équilibre du système (6.18) 
si  

Figure 6.5 : Evolution des paramètres selon différents 
gains d’adaptation 
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                   𝑓ሺ𝑥௘, 𝑡ሻ ൌ 0  ∀𝑡 ൒ 0   

Définition 6.2 (Stabilité uniforme). Le point d’équilibre 𝑥௘ ൌ 0  est stable si  

                   ∀𝑡଴ ൒ 0  ∀𝜀 ൐ 0, ∃𝛿ሺ𝑡଴, 𝜀ሻ ∶  ‖𝑥ሺ𝑡଴ሻ‖ ൏ 𝛿ሺ𝜀, 𝑡଴ሻ ⟹ ‖𝑥ሺ𝑡ሻ‖ ൏ 𝜀  ∀𝑡 ൒ 0    

Si 𝛿ሺ𝑡଴, 𝜀ሻ ൌ 𝛿ሺ𝜀ሻ est indépendant de 𝑡଴, alors le point d’équilibre est uniformément stable. 

Définition 6.3 (Stabilité asymptotique) Le point d’équilibre 𝑥௘ ൌ 0 est asymptotiquement 

stable s’il est stable et qu’en plus : 

                     ∃𝑅 ൐ 0, ∀𝑡଴ ൒ 0  ‖𝑥ሺ𝑡଴ሻ‖ ൏ 𝑅 ⟹ lim
௧→ஶ

𝑥ሺ𝑡ሻ ൌ 0  

On introduira maintenant la notion de fonction de classe 𝜅 

Définition 6.4 (Fonction de classe κ). La fonction continue 𝛼: ሾ0, 𝑎ሻ → ሾ0, ∞ሻ est de classe 𝜅 si  

𝛼 est strictement croissante et 𝛼ሺ0ሻ  ൌ  0. La fonction 𝛼 est de classe 𝜅ஶ si elle est de classe 𝜅 

et que : 𝑎 ൌ ∞ et 𝛼ሺ𝑟ሻ  →  ∞ comme 𝑟 → ∞ 

6.4.2 Théorème de Lyapunov pour les systèmes à temps variant 

Théorème 6.1 (Stabilité d’un système à temps variant). Soit 𝑥௘ ൌ  0 un point d’équilibre de 

𝑥ሶ  ൌ  𝑓ሺ𝑥, 𝑡ሻ. Soit 𝐷 ൌ ሼ𝑥 ∈ ℝ௡ ‖𝑥‖⁄ ൏ 𝑟ሽ la boule de rayon 𝑟, alors s’il existe une fonction 

𝑉 continument différentiable tel que : 

                   𝛼ଵሺ‖𝑥‖ሻ ൑ 𝑉ሺ𝑥, 𝑡ሻ ൑ 𝛼ଶሺ‖𝑥‖ሻ                                                                              (6.19) 

         
𝑑𝑉
𝑑𝑡

ൌ
𝜕𝑉
𝜕𝑡

൅
𝜕𝑉
𝜕𝑥

𝑓ሺ𝑥, 𝑡ሻ ൑ െ𝛼ଷሺ‖𝑥‖ሻ, 𝑝𝑜𝑢𝑟 𝑡 ൒ 0 

Les fonctions 𝛼ଵ, 𝛼ଶ et 𝛼ଷ sont de classe 𝜅, alors 𝑥𝑒 ൌ  0 est uniformément asymptotiquement 

stable. 

Remarque 6.3. En pratique, il faut borner supérieurement 𝑉ሺ𝑥, 𝑡ሻ par une fonction 

indépendante de 𝑡. 
 

6.4.3 Lemme de Barbalat 

Lemme 6.1 (Lemme de Barbalat). Soit 𝑔 : ℝ → ℝ une fonction définie et uniformément 

continue pour 𝑡 ൒ 0. Si la limite de l’intégrale lim
௧→ஶ

׬ 𝑔ሺ𝑠ሻ𝑑𝑠
௧

଴  existe et qu’elle est finie alors 

lim
௧→ஶ

𝑔ሺ𝑡ሻ ൌ 0 

Théorème 6.2 (Bornitude et ensemble de convergence). Soit 𝐷 ൌ ሼ𝑥 ∈ ℝ௡ ‖𝑥‖⁄ ൏ 𝑟ሽ 

Supposons que 𝑓ሺ𝑥, 𝑡ሻ est Lipschitzienne sur 𝐷 ൈ ሾ0, ∞ሻ. Soit 𝑉 une fonction continûment 

différentiable tel que  

                    𝛼ଵሺ‖𝑥‖ሻ ൑ 𝑉ሺ𝑥, 𝑡ሻ ൑ 𝛼ଶሺ‖𝑥‖ሻ                     

         
𝑑𝑉
𝑑𝑡

ൌ
𝜕𝑉
𝜕𝑡

൅
𝜕𝑉
𝜕𝑥

𝑓ሺ𝑥, 𝑡ሻ ൑ െ𝑊ሺ𝑥ሻ ൑ 0, 𝑝𝑜𝑢𝑟 𝑡 ൒ 0 𝑒𝑡 ∀𝑥 ∈ 𝐷 
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Avec 𝛼ଵ et 𝛼ଶ des fonctions de classe 𝜅 définies sur ሾ0, 𝑟ሻ et 𝑊ሺ𝑥ሻ continue sur 𝐷. De plus, on 

suppose que 𝑑𝑉/𝑑𝑡 est uniformément continue en 𝑡, alors les solutions de l’équation (6.18) 

avec ‖𝑥ሺ𝑡଴ሻ‖ ൏ 𝛼ଶ
ିଵ൫𝛼ଵሺ𝑟ሻ൯ sont bornées et vérifient  lim𝑊 

௧→ஶ
ሺ𝑥ሺ𝑡ሻሻ → 0. De plus, si toutes les 

hypothèses sont vérifiées globalement et que 𝛼ଵ ∈ 𝜅ஶ alors le résultat est vrai ∀𝑥ሺ𝑡଴ሻ ∈ ℝ௡ 

Remarque 6.4 : Il suffit d’avoir 𝑑ଶ𝑉/𝑑𝑡ଶ bornée pour avoir 𝑑𝑉/𝑑𝑡 uniformément continue. 
 

6.5 Synthèse de la commande MRAC par la théorie de Lyapunov 

 L’utilisation de la théorie de Lyapunov sur la stabilité des systèmes non stationnaires pour 

la synthèse d’une commande adaptative par modèle de référence (MRAC) passe par les étapes 

suivantes : 

 Formuler l’équation différentielle de l’erreur de poursuite du modèle de référence                         

𝑒 ൌ 𝑦 െ 𝑦௠ 

 Trouver une fonction candidate de Lyapunov et un mécanisme d’adaptation pour assurer 

                   lim
௧→ஶ

𝑒ሺ𝑡ሻ ൌ 0 

 Généralement 𝑑𝑉/𝑑𝑡 est seulement semi-définie négative. Il est alors possible d’utiliser le 

théorème 6.2 pour démontrer la convergence de l’erreur vers zéro. 

Exemple 6.3 (Synthèse MRAC par la méthode de Lyapunov). Soit le modèle de référence 

linéaire à temps invariant du premier ordre (voir l’exemple 6.2). 

                      
𝑑𝑦௠

𝑑𝑡
ൌ െ𝑎௠𝑦௠ ൅ 𝑏௠𝑢௖                                                                                             ሺ6.20ሻ 

On souhaite imposer son comportement à un système qui est aussi de premier ordre 

                      
𝑑𝑦
𝑑𝑡

ൌ െ𝑎𝑦 ൅ 𝑏𝑢                                                                                                           ሺ6.21ሻ 

par une commande proportionnelle sur la mesure et la consigne 

                     𝑢 ൌ 𝜃ଵ𝑢௖ െ 𝜃ଶ𝑦                                                                                              (6.22) 

On rappelle que l’erreur de poursuite est donnée par 

                     𝑒 ൌ 𝑦 െ 𝑦௠ 

ce qui conduit après simplification à l’équation différentielle suivante de l’erreur de poursuite 

                        
𝑑𝑒
𝑑𝑡

ൌ
𝑑𝑦
𝑑𝑡

െ
𝑑𝑦௠

𝑑𝑡
ൌ െ𝑎𝑦 ൅ 𝑏ሺ𝜃ଵ𝑢௖ െ 𝜃ଶ𝑦ሻ ൅ 𝑎௠𝑦௠ െ 𝑏௠𝑢௖ ൅ 𝑎௠𝑦 െ 𝑎௠𝑦 

                        
𝑑𝑒
𝑑𝑡

ൌ െ𝑎௠𝑒 െ ሺ𝑏𝜃ଶ ൅ 𝑎 െ 𝑎௠ሻ𝑦 ൅ ሺ𝑏𝜃ଵ െ 𝑏௠ሻ𝑢௖                                           ሺ6.23ሻ 

Si les paramètres du système à commander étaient connus, alors en posant 
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                     ൞
𝜃ଵ ൌ 𝜃ଵ

଴ ൌ
𝑏௠

𝑏
         

𝜃ଶ ൌ 𝜃ଶ
଴ ൌ

𝑎௠ െ 𝑎
𝑏

                                                                                                  ሺ6.24ሻ 

Comme les paramètres 𝑎 et 𝑏 sont inconnus, on construira le mécanisme d’ajustement des 

paramètres qui va faire converger 𝜃ଵvers 𝜃ଵ
଴ et 𝜃ଶvers 𝜃ଶ

଴ pour 𝑡 → ∞. 

On introduit la fonction quadratique suivante 

                     𝑉ሺ𝑒, 𝜃ଵ, 𝜃ଶሻ ൌ
1
2

൬𝑒ଶ ൅
1

𝑏𝛾
ሺ𝑏𝜃ଶ ൅ 𝑎 െ 𝑎௠ሻଶ ൅

1
𝑏𝛾

ሺ𝑏𝜃ଶ െ 𝑏௠ሻଶ൰                    ሺ6.25ሻ 

Avec 𝛾 ൐ 0 une constante strictement positive. On remarque que 𝑉ሺ0, 𝜃ଵ
଴, 𝜃ଶ

଴ሻ ൌ 0. La dérivée 

temporelle de la fonction 𝑉 est donnée par  

                     
𝑑𝑉
𝑑𝑡

ൌ 𝑒
𝑑𝑒
𝑑𝑡

൅
1
𝛾

ሺ𝑏𝜃ଶ ൅ 𝑎 െ 𝑎௠ሻ
𝑑𝜃ଶ

𝑑𝑡
൅

1
𝛾

ሺ𝑏𝜃ଵ െ 𝑏௠ሻ
𝑑𝜃ଵ

𝑑𝑡

ൌ െ𝑎௠𝑒ଶ ൅
1
𝛾

ሺ ሺ𝑏𝜃ଶ ൅ 𝑎 െ 𝑎௠ሻ ൬
𝑑𝜃ଶ

𝑑𝑡
െ 𝛾𝑦𝑒൰ ൅

1
𝛾

ሺ𝑏𝜃ଵ െ 𝑏௠ሻ ൬
𝑑𝜃ଵ

𝑑𝑡
൅ 𝛾𝑢௖𝑒൰ 

Si les paramètres sont ajustés comme  

                     ൞

𝑑𝜃ଵ

𝑑𝑡
ൌ െ𝛾𝑢௖𝑒

𝑑𝜃ଶ

𝑑𝑡
ൌ 𝛾𝑦𝑒     

                                                                                                             ሺ6.26ሻ 

On trouve  

                      
𝑑𝑉
𝑑𝑡

ൌ െ𝑎௠𝑒ଶ                                                                                                                ሺ6.27ሻ 

Lyapunov MIT 

𝑑𝜃ଵ

𝑑𝑡
ൌ െ𝛾𝑢௖𝑒

𝑑𝜃ଶ

𝑑𝑡
ൌ 𝛾𝑦𝑒     

    

𝑑𝜃ଵ

𝑑𝑡
ൌ െ𝛾 ൬

𝑎௠

𝑠 ൅ 𝑎௠
൰ 𝑢௖𝑒

𝑑𝜃ଶ

𝑑𝑡
ൌ 𝛾 ൬

𝑎௠

𝑠 ൅ 𝑎௠
൰ 𝑦𝑒     

    

 

 

On constate que 𝑉ሶ ൑ 0 car si 𝑒 ൌ 0 et 𝜃ଵ ് 𝜃ଵ
଴ ou 𝜃ଶ ് 𝜃ଶ

଴  on aura 𝑉ሶ ൌ 0 On peut alors déduire 

que 𝑉ሺ𝑡ሻ ൑ 𝑉ሺ0ሻ car 𝑉ሺ𝑡ሻ est décroissante, ce qui implique que 𝑒, 𝜃ଵet 𝜃ଶ soient bornés et que 

𝑦 ൌ  𝑒 ൅  𝑦௠ soit aussi borné en supposant que le modèle de référence 𝐺௠ሺ𝑠ሻ est stable et la 

consigne 𝑢௖ bornée. De plus, la dérivée seconde par rapport au temps 𝑡 de 𝑉 est donné par 

                     
𝑑ଶ𝑉
𝑑𝑡ଶ ൌ െ2𝑎௠𝑒

𝑑𝑒
𝑑𝑡

ൌ െ2𝑎௠𝑒ሺെ𝑎௠𝑒 െ ሺ𝑏𝜃ଶ ൅ 𝑎 െ 𝑎௠ሻ𝑦 ൅ ሺ𝑏𝜃ଵ െ 𝑏௠ሻ𝑢௖ሻ 

Table 6.1 : Comparaison des méthodes de Lyapunov et MIT. 
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Comme 𝑒, 𝑦 et 𝑢௖ sont bornés, alors 𝑉ሷ  est aussi bornée, donc 𝑉ሶ  est uniformément continue le 

théorème 6.2 permet de conclure que  

                  lim
௧→ஶ

𝑒ሺ𝑡ሻ ൌ 0   

Toutefois, ceci n’assure pas la convergence 𝜃ଵ → 𝜃ଵ
଴ et 𝜃ଶ → 𝜃ଶ

଴ Il faut imposer une condition 

sur l’excitation. 

 

 

 

Le tableau suivant compare les méthodes de synthèse d’un MRAC sur l’exemple du système 

du premier ordre pour la poursuite d’un modèle de référence du premier ordre avec une 

commande proportionnelle sur la consigne et la sortie. La règle de mise à jour utilisant la 

méthode MIT peut être obtenue de la règle la méthode de Lyapunov en remplaçant les signaux 

𝑢௖ et 𝑦 par leur valeur filtrée   ቀ ௔೘

௦ା௔೘
ቁ 𝑢௖ et  ቀ ௔೘

௦ା௔೘
ቁ 𝑦. Dans les deux cas, la règle d’adaptation 

peut être écrite comme suit 

                     
𝑑𝜃
𝑑𝑡

ൌ 𝛾𝜑𝑒                                                                                                                       ሺ6.27ሻ 

Avec  

𝜃 vecteur des paramètres  

                     𝜑 ൌ ሾെ𝑢௖, 𝑦ሿ்    

Règle de Lyapunov 

                     𝜑 ൌ ൬
𝑎௠

𝑠 ൅ 𝑎௠
൰ ሾെ𝑢௖, 𝑦ሿ் 

Règle MIT 

La règle de Lyapunov est plus simple et ne nécessite pas de f i l t rage. 
 

Figure 6.6 : Schéma bloc d’une commande MRAC basée  
sur la méthode Lyapunov  
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5.6 Synthèse de MRAC dans l’espace d’état 

Soit le SLTI décrit par sa représentation d’état 

                     
𝑑𝑥
𝑑𝑡

ൌ 𝐴𝑥 ൅ 𝐵𝑢                                                                                                              ሺ6.28ሻ 

On souhaite poursuivre un modèle de référence donné également par sa représentation d’état 

                     
𝑑𝑥௠

𝑑𝑡
ൌ 𝐴௠𝑥௠ ൅ 𝐵௠𝑢௖                                                                                                ሺ6.29ሻ 

On utilise une commande qui combine un retour d’état linéaire et une action proportion- 

nelle sur la consigne 

                   𝑢 ൌ 𝑀𝑢௖ െ 𝐿𝑥                                                                                                  (6.30) 

Le système en boucle fermée devient 

                     
𝑑𝑥
𝑑𝑡

ൌ ሺ𝐴 െ 𝐵𝐿ሻ𝑥 ൅ 𝐵𝑀𝑢௖ ൌ 𝐴௖ሺ𝜃ሻ𝑥 ൅ 𝐵௖ሺ𝜃ሻ𝑢௖                                                  ሺ6.31ሻ 

La paramétrisation de la loi de commande peut  se faire de différentes manières. Ceci 

revient à choisir les paramètres des matrice 𝑀 et 𝐿. 

5.6.1 Condition de compatibilité 

Elle exprime le fait qu’il existe des valeurs de paramètres de commande t e l  que le système en 

boucle fermée soit identique au modèle de référence 

                     ∃𝜃଴ : ቊ

      
𝐴௖ሺ𝜃଴ሻ ൌ 𝐴௠ 
𝐵௖ሺ𝜃଴ሻ ൌ 𝐵௠

                                                                                                      (6.32) 

Dans ce cas, on réalise une poursuite parfaite du modèle de référence. On a alors 

                                 ൜
𝐴 െ 𝐴௠ ൌ 𝐵𝐿
𝐵௠ ൌ 𝐵𝑀                                                                                                 (6.33) 

On peut conclure de l’équation (6.33) que les colonnes de la matrice ሺ𝐴 െ 𝐴௠ሻ sont une 

combinaison linéaire des colonnes de 𝐵 et que les colonnes de 𝐵௠ sont aussi une 

combinaison linéaire des colonnes de 𝐵. Si 𝐵 et 𝐵𝑚   sont linéairement indépendantes, on 

peut écrire 

                      𝐿 ൌ ሺ𝐵்𝐵ሻିଵ𝐵்ሺ𝐴 െ 𝐴௠ሻ ൌ ሺ𝐵௠
் 𝐵ሻିଵ𝐵௠

் ሺ𝐴 െ 𝐴௠ሻ   

                      𝑀 ൌ ሺ𝐵்𝐵ሻିଵ𝐵்𝐵௠ ൌ ሺ𝐵௠
் 𝐵ሻିଵ𝐵௠

் 𝐵௠ 
 

5.6.2 Equation différentielle de l’erreur 

L’erreur de poursuite du vecteur d’état est définie par 

                      𝑒 ൌ 𝑦 െ 𝑦௠ 

sa dérivée temporelle est alors 

                     
𝑑𝑒
𝑑𝑡

ൌ
𝑑𝑥
𝑑𝑡

െ
𝑑𝑥௠

𝑑𝑡
ൌ 𝐴𝑥 ൅ 𝐵𝑢 െ 𝐴௠𝑥௠ െ 𝐵௠𝑢௖ 
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en rajoutant en soustrayant 𝐴𝑚 𝑥 au second terme de l’équation, on obtient 

                     
𝑑𝑒
𝑑𝑡

ൌ 𝐴௠𝑒 ൅ ሺ𝐴 െ 𝐴௠ െ 𝐵𝐿ሻ𝑥 ൅ ሺ𝐵𝑀 െ 𝐵௠ሻ𝑢௖ 

                           ൌ 𝐴௠𝑒 ൅ ሺ 𝐴ሺ𝜃଴ሻ െ 𝐴௠ሻ𝑥 ൅ ሺ 𝐵ሺ𝜃଴ሻ െ 𝐵௠ሻ𝑢௖ 

                           ൌ 𝐴௠𝑒 ൅ Ψሺ𝜃 െ 𝜃଴ሻ                                                                                            (6.34) 

Supposant que l’équations (6.32) sont vérifiées 

On choisit la fonction quadratique candidate suivante 

                     𝑉ሺ𝑒, 𝜃ሻ ൌ
1
2

ሺ𝛾𝑒்𝑃𝑒 ൅ ሺ𝜃 െ 𝜃଴ሻ்൫ሺ𝜃 െ 𝜃଴ሻ൯                                                        ሺ6.35ሻ 

Avec 𝑃 ൐ 0 une matrice symétrique définie positive. En supposant que 𝑄 est une matrice 

symétrique définie positive qui vérifie l’équation suivante 

                      𝐴௠
் 𝑃 ൅ 𝑃𝐴௠ ൌ െ𝑄 

La dérivée temporelle de 𝑉, après calcul, est donnée par 

                     
𝑑𝑉
𝑑𝑡

ൌ െ
𝛾
2

𝑒்𝑄𝑒 ൅ 𝛾ሺ𝜃 െ 𝜃଴ሻ்Ψ்𝑃𝑒 ൅ ሺ𝜃 െ 𝜃଴ሻ் 𝑑𝜃
𝑑𝑡

 

                            ൌ െ
𝛾
2

𝑒்𝑄𝑒 ൅ ሺ𝜃 െ 𝜃଴ሻ் ൬
𝑑𝜃
𝑑𝑡

൅ Ψ்𝑃𝑒൰                                                         ሺ6.36ሻ 

Afin de rendre 𝑉ሶ  semi-définie négative, on choisit la règle d’adaptation suivante 

                     
𝑑𝜃
𝑑𝑡

ൌ െΨ்𝑃𝑒                                                                                                                ሺ3.37ሻ 

Ce qui donne 

                    
𝑑𝑉
𝑑𝑡

ൌ െ
𝛾
2

𝑒்𝑄𝑒                                                                                                              ሺ3.38ሻ 

De même qu’avec l’exemple 6.3, en procédant de la même façon et en utilisant le théorème 

6.2 et le Lemme de Barbalat, on conclut que 

                   lim
௧→ஶ

𝑒ሺ𝑡ሻ ൌ 0                                                                                                                 ሺ3.39ሻ 
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CHAPITRE 7  
INTRODUCTION A LA COMMANDE PREDICTIVE 

 
7.1 Philosophie de la commande prédictive 

 Grâce à ses propriétés intrinsèques et sa facilité de mise en œuvre, la commande prédictive 

se situe parmi les commandes avancées les plus utilisées dans le milieu industriel, si exigeant 

en termes de performances et de simplicité d’implémentation. De nombreuses applications 

industrielles existent, surtout pour des systèmes pour lesquels la trajectoire à suivre est connue 

à l’avance, comme des robots ou bras de robots, des machines-outils, des applications dans 

l’industrie pétrolière, biochimique ou chimique, aéronautique, thermique, l’industrie du ciment. 

Il est à noter cependant que, malgré des calculs hors-ligne simples caractéristiques de la 

commande prédictive sans contraintes, les structures d’asservissement à base de correcteurs 

PID s’avèrent encore les plus utilisées dans l’industrie, peut-être à cause de l’inertie des 

ingénieurs habitués à régler manuellement ce type de correcteur et à les maintenir. 

 S’éloignant quelque peu de la simplicité requise par le milieu industriel, et partant des 

stratégies de base initiales de la commande prédictive, le monde de la recherche propose 

désormais des structures encore plus évoluées, pour lesquelles, tout en conservant la simplicité 

des concepts, des outils mathématiques nouveaux spécifiques aux théories de la stabilité et de 

la robustesse, font leur apparition. Ces nouveaux domaines rigoureux et captivants ouvrent des 

perspectives toujours renouvelées pour la méthodologie prédictive. Après un bref historique 

non exhaustif de cette stratégie, les paragraphes suivants détaillent les grands principes 

communs à l’ensemble des méthodes. 
 

7.2 Historique de la commande prédictive 

 Depuis la fin des années 70, de nombreuses catégories et dénominations de la commande 

prédictive ont été proposées. La liste ci-dessous propose un aperçu non exhaustif des plus    

classiques : 

 MPHC (Model Predictive Heuristic Control) : Connue ensuite sous le nom de MAC (Model 

Algorithmic Control). Cette approche, appliquée aux systèmes industriels multi variables, basée 

sur des prédictions sur un horizon temporel long, impose des trajectoires de référence pour les 

sorties et minimise la variance de l’erreur ; 
 

 DMC (Dynamic Matrix Control) : Proposée par Shell, utilise l’incrément de commande à la 

place de la commande dans le critère de performance pour un horizon fini de prédiction ; cet 
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algorithme est appliqué à des systèmes multi variables linéaires sans contraintes ; l’erreur de 

poursuite est minimisée en spécifiant le comportement futur des sorties ; les commandes 

optimales sont calculées par la méthode des moindres carrés ; 
 

 EHAC (Extended Horizon Adaptive Control) : Stratégie de commande prédictive pour les 

systèmes mono-variables, utilise des modèles E/S pour maintenir la sortie future (calculée via 

la résolution d’une équation diophantienne) le plus près possible de la consigne pendant une 

période donnée au-delà du retard pur du système ; 
 

 EPSAC (Extended Prediction Self-Adaptive Control): Introduit une commande constante 

pour un système non-linéaire (en linéarisant le système) et utilise un prédicteur sous-optimal à 

la place de la résolution de l’équation diophantienne ;  
 

 GPC (Generalized Predictive Control) : Cette méthode la plus connue, basée sur un modèle 

de type CARIMA, introduit un horizon de prédiction sur la commande, agit conformément au 

principe de l’horizon fuyant et peut être appliquée aux systèmes à non minimum de phase, aux 

systèmes instables en boucle ouverte, aux systèmes avec retards purs variables ; 
 

 PFC (Predictive Functional Control) : Est un algorithme prédictif simple, utilisé surtout pour 

des systèmes SISO industriels rapides et/ou non linéaires, s’avérant pratique pour l’ingénieur 

en permettant le réglage direct des paramètres (par exemple la constante de temps) associées au 

temps de monté; pour garder la simplicité, une manque de rigueur en performance et surtout 

dans la garantie des contraints est associée avec cet algorithme ; 
 

 CRHPC (Constrained Receding Horizon Predictive Control) : Propose de prendre en compte 

des contraints terminales sous forme « égalité » sur la sortie sur un horizon fini au-delà de 

l’horizon de prédiction ; 
 

 MPC (Model Predictive Control) : formulée dans l’espace d’état, utilise le formalisme de la 

représentation d’état pour faciliter l’analyse de la stabilité et de la robustesse.  

 
 En fait, toutes ces variantes de stratégies de commande prédictive sont aujourd’hui 

regroupées sous le terme générique MPC, illustrant ainsi le rôle fondamental du modèle. Par 

ailleurs, les dernières années ont été marquées par la mise en œuvre de lois de commande 

prédictives robustes. 
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7.3 Principe de la commande prédictive 

 La commande prédictive MPC représente un moyen relativement simple d’aborder une loi 

de commande dans le domaine temporel, et a démontré à travers de nombreuses applications 

ses qualités liées à la régulation des systèmes multi-variables, des systèmes instables, des 

systèmes à retard, des systèmes non-linéaires, des systèmes à non minimum de phase, des 

systèmes hybrides. Le principe « philosophique » de la commande prédictive est le suivant 

(Figure 6.1).  

 

 

 

 

 

 

 

 

 
 

 

 Un modèle discret du processus permet dans un premier temps de prédire la sortie du système 

sur un horizon fini. Puis, à chaque instant, en minimisant un critère de performance sur cet 

horizon fini, une séquence de commande est obtenue dont seul le premier élément est appliqué 

au système. La même procédure est enfin reprise à la période d’échantillonnage suivante, selon 

le principe de l’horizon fuyant. Le but est de maintenir la sortie du système la plus près possible 

de la référence désirée, supposée connue sur l’horizon fini de prédiction de façon à mettre en 

évidence un certain caractère anticipatif. 
 

 La technique prédictive permet en fait de reproduire de façon théorique le comportement 

intuitif naturellement prédictif ou anticipatif de l’être humain : en conduisant une voiture, en 

marchant, en faisant du ski, en respectant le budget alloué à certaines activités sur une période 

limitée, en traversant une rue… Ainsi, les skieurs font une prédiction de la trajectoire à suivre 

sur un horizon fini, et élaborent les actions qui vont leur permettre de la suivre, et puis à chaque 

étape l’horizon de prédiction glisse avec eux. En utilisant des commandes classiques, les 

décisions sont réalisées à partir des erreurs passées entre la sortie et la consigne, et non des 

erreurs prédites. Or il apparaît clairement dans le cas du ski que la structure prédictive faisant 

Figure 7.1 : Principe de fonctionnement de la commande prédictive : 
Prédiction de la sortie à l’instant k sur un horizon fini (à gauche) ; 
Réitération à l’instant suivant (à droite) 
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intervenir des erreurs futures est fortement nécessaire, le cas contraire étant équivalent à skier 

en regardant à l’arrière pour réduire l’erreur entre la trajectoire désirée et la position réelle. 

Les étapes spécifiques à toutes les lois de commande prédictive peuvent être classifiées comme 

suit : 

 élaboration (choix) du modèle du système sur lequel est basée la prédiction de la sortie ; 

 spécification de la trajectoire que doit suivre la sortie ; 

 minimisation d’un critère quadratique à horizon fini élaborant une séquence de commandes 

futures ; 

 application du premier élément de la séquence de commande au système et au modèle ; 

Les deux dernières étapes sont répétées à chaque instant d’échantillonnage, conformément au 

principe de l’horizon fuyant. 
 

Remarque 

Pour les systèmes multi-variables, cet algorithme est appliqué simultanément à chaque sortie, 

il en résulte une commande différente pour chaque entrée du système. 
 

7.4 Choix du modèle du processus  

 La loi de commande prédictive implique la connaissance du comportement futur du système 

prédit à l’aide d’un modèle du processus. Ainsi l’élément central de la commande MPC est le 

modèle du système. Ce point fort peut devenir aussi son point faible, selon la qualité du modèle. 

Trouver le bon modèle (le plus simple possible, mais malgré tout suffisamment significatif et 

adapté aux besoins, en offrant des prédictions suffisamment précises) implique une 

connaissance appropriée du système. Les modèles résultent souvent d’une phase 

d’identification, qui peut se faire en utilisant les lois de la physique, de la chimie ou encore de 

façon expérimentale en effectuant diverses expériences sur le système. Le modèle doit être 

capable de prédire le comportement du système en réponse à une sollicitation donnée. Des 

techniques existent également, qui utilisent un modèle variant dans le temps sur l’horizon de 

prédiction, d’autres conçues sur un modèle à base de techniques floues. Prendre en compte les 

parties non-linéaires des systèmes par une modélisation floue et commander de façon prédictive 

ce modèle peut conduire à une amélioration des performances. Grâce à la simplicité du modèle, 

corrélée avec la souplesse du correcteur prédictif, cette vision devient intéressante en milieu 

industriel. 

 Certes, les systèmes industriels sont rarement linéaires, mais dans la pratique la 

représentation choisie est souvent un modèle linéaire, induisant en l’absence de contraintes une 

structure linéaire de la loi de commande prédictive. Ainsi, de cette manière, l’optimisation et 
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l’analyse hors ligne du comportement en boucle fermée sont beaucoup plus faciles. En dernier 

lieu, si la modélisation linéaire s’avère insuffisante, une mise en œuvre via un modèle non-

linéaire peut s’envisager. Ces modèles servant à la prédiction sont classiquement des modèles 

à temps discret, dès lors que la commande prédictive est plutôt implémentée sous forme discrète 

sur calculateur. Malgré tout, des techniques de synthèse à temps continu existent. 
 

En conclusion partant d’un modèle initial (qui n’est pas forcément le meilleur choix de modèle), 

après un premier essai de commande prédictive qui ne donne pas les résultats souhaités, rien 

n’empêche l’ingénieur de retoucher le modèle du système en vue de l’élaboration d’une 

nouvelle loi de commande prédictive. 
 

7.5 Paramètres de réglage de la commande prédictive 

 Choisir le bon modèle du système et un correcteur MPC comme stratégie de commande ne 

résout pas encore le problème. Il reste à déterminer les paramètres de réglage spécifiques à la 

commande prédictive, qui interviennent généralement dans le critère de minimisation suivant.  

                       𝐽 ൌ ෍ ሺ𝑟ሺ𝑘 ൅ 𝑗ሻ െ 𝑦ොሺ𝑘 ൅ 𝑗/𝑘ሻሻ்𝑄෨௃ሺ𝑟ሺ𝑘 ൅ 𝑗ሻ െ 𝑦ොሺ𝑘 ൅ 𝑗/𝑘ሻሻ

ேమ

௝ୀேభ

൅ ෍ሺΔ𝑢ሺ𝑘 ൅ 𝑗 െ 1ሻሻ்

ேೠ

௝ୀଵ

𝑅෨௃ሺΔ𝑢ሺ𝑘 ൅ 𝑗 െ 1ሻሻ                                                       ሺ7.1ሻ 

Ces paramètres sont en fait assez semblables d’une structure prédictive à une autre, se 

composant d’horizons de prédiction et de pondérations. Si l’on se base sur une stratégie 

prédictive de type GPC (sans doute la plus connue), ces paramètres de réglage sont les suivants  
 

 les horizons inférieur 𝑁ଵ et supérieur 𝑁ଶ de prédiction sur la sortie ; 

 l’horizon de prédiction sur la commande 𝑁௨ ; 

 les facteurs de pondérations sur l’erreur de poursuite 𝑄෨௃ et sur l’effort de commande 𝑅෨௃. 
 

 Dans le cas de la commande prédictive avec contraintes, il convient de régler également les 

horizons sur les contraintes. Le critère d’optimisation peut englober aussi des coûts terminaux 

qui doivent être bien choisis. Il faut noter que non seulement ces paramètres de réglage, mais 

aussi la structure du critère quadratique, jouent un rôle fondamental sur les performances de 

la commande résultante. Dans la pratique, la période d’échantillonnage a aussi un rôle essentiel. 

 Plusieurs stratégies de choix de ces paramètres existent. Ainsi, si l’on se réfère au cas GPC, 

on notera que pour un système à retard, l’horizon inférieur de prédiction sur la sortie peut être 

choisi égal à la valeur du retard pur divisé par la période d’échantillonnage, pour les autres 
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systèmes il peut être égal à 1. L’horizon supérieur de prédiction sur la sortie peut être choisi 

approximativement égal au temps de réponse du processus divisé par la période 

d’échantillonnage. Si 𝑁ଶ augmente, les performances nominales en boucle fermée sont 

améliorées si toutefois 𝑁௨ est suffisamment grand (ceci est nécessaire pour un bon 

conditionnement). Pourtant dans la pratique, pour beaucoup de systèmes, on constate qu’une 

valeur de 𝑁௨ supérieure à 3 n’apporte pas de différences significatives. Une autre règle générale 

est de choisir 𝑁ଶ െ 𝑁௨ supérieur au temps de réponse. L’horizon de prédiction sur la commande 

doit être augmenté en fonction de la complexité du système à piloter. Pour les systèmes stables 

simples (SISO), 𝑁௨ peut être choisi égal à 1, parce que dans ce cas le comportement du système 

en boucle fermée suit le comportement du système en boucle ouverte, en restant stable. Pour 

les systèmes instables, 𝑁௨ doit être choisi (strictement) supérieur au nombre des pôles instables. 
 

 Généralement la pondération sur l’erreur de poursuite 𝑄෨௃ est considérée comme unitaire, 

dans ce cas seule la pondération sur l’effort de commande 𝑅෨௃ intervient et est choisie 

conformément au critère suivant : l’augmentation de 𝑅෨௃ conduit à une réponse plus lente du 

système bouclé avec le correcteur. Pour les systèmes multi-variables, les pondérations 𝑄෨௃et 𝑅෨௃ 

jouent un rôle très important sur le dépassement et sur la largeur relative de la bande passante. 

Ces matrices sont utilisées en vue de moduler la pondération relative entre les différentes voies 

d’un modèle MIMO. Une normalisation de l’erreur de poursuite par rapport à l’effort de 

commande s’impose en vue de donner un sens physique au choix des pondérations. Une bonne 

sélection de ces pondérations pour le cas MIMO peut s’avérer relativement longue. 

Notons enfin que dans le cas des lois de commande prédictives adaptatives, pour lesquelles il 

est nécessaire d’estimer le modèle du système en ligne à chaque période d’échantillonnage, les 

paramètres de réglage de la commande MPC adaptative peuvent éventuellement rester les 

mêmes dès lors que le système varie lentement au cours du temps. 
 

Remarque : Dans le cas de la commande prédictive multi-variable, les mêmes horizons de 

prédiction sur toutes les sorties, ainsi que les mêmes horizons de commande sont généralement 

choisis, sauf si le comportement du système est vraiment très différent sur chaque voie 

entrée/sortie. 
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CHAPITRE 8  
COMMANDE PREDICTIVE GENERALISEE (GPC) 

 
 
8.1 Introduction 

 La commande GPC nécessite un modèle numérique de représentation pour son 

fonctionnement. Il peut être obtenu par la discrétisation du système continu (utilisant la 

transformée en z avec le BOZ) et de choisir un modèle pour l’identification préalable.  

 Cette technique de commande comprend, plusieurs approches qui sont identiques par rapport 

au principe général de base de la commande GPC :  

 Approche algorithmique. 

 Approche polynomiale synthèse RST.  

 Recherche Automatique des paramètres. 

 Extension en structure cascade multi échantillonnée et en δ. 

 Approche sous contraintes terminales. 

 Approche multi-variable. 
 

 De l’ensemble des techniques proposées ci-dessus. La structure cascade garantit la rejection 

des perturbations, la commande prédictive permet quant à elle de prendre en compte la 

connaissance de la trajectoire future. L’auto calibrage, permettant la recherche automatique des 

paramètres de réglage, est le garant de l’implantation réelle et effective de ce type de commande 

dans un secteur industriel. Cela montre que toutes les méthodes prédictives sont simples et 

efficaces en milieu industriel. 

 Concernant, l’approche polynomiale synthèse RST sera exposée en détaille plus loin puisque 

c’est la technique utilisée dans notre travail. Dans le cas des autres stratégies. 
 

8.2 Principe de la commande prédictive approche polynomiale (RST) 

 Parmi toutes les méthodes prédictives reprenant bien sûr les principes exposés 

précédemment, la Commande Prédictive Généralisée est peut-être celle qui a connu le plus 

grand nombre d’applications et qui demeure une référence dans le cas de la commande 

prédictive des systèmes monovariables. C’est pourquoi ce paragraphe propose une description 

des idées principales de cette stratégie. Il s’agit ici de reprendre tous les points fondamentaux 

de l’algorithme GPC pour aboutir aux trois polynômes RST du régulateur équivalent.  
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8.2.1 Modèle de représentation du procédé et calcul du prédicteur  

 La commande GPC se différentie des autres algorithmes prédictifs par deux caractéristiques 

majeures. Même si toute représentation demeure admissible, elle utilise le plus souvent pour la 

prédiction du comportement un modèle entrée/sortie par fonction de transfert de type CARIMA 

(Controlled Auto-regressive Integrated Moving Average). 

                     𝐴ሺ𝑞ିଵሻ𝑦ሺ𝑘ሻ ൌ 𝐵ሺ𝑞ିଵሻ𝑢ሺ𝑘 െ 1ሻ ൅ 𝐶ሺ𝑞ିଵሻ
𝜀ሺ𝑘ሻ

∆ሺ𝑞ିଵሻ
                                               ሺ8.1ሻ 

                     𝐴ሺ𝑞ିଵሻ ൌ 1 ൅ 𝑎ଵ𝑞ିଵ ൅ ⋯ ൅ 𝑎௡ೌ
𝑞ି௡ೌ 

                     𝐵ሺ𝑞ିଵሻ ൌ 𝑏଴ ൅ 𝑏ଵ𝑞ିଵ ൅ ⋯ ൅ 𝑏௡್
𝑞ି௡್ 

                     ∆ሺ𝑞ିଵሻ ൌ 1 െ 𝑞ିଵ 

Ce modèle est un modèle incrémental, où 𝑢 , 𝑦 représentent l’entrée et la sortie du système à 

commander, 𝜀 est un signal aléatoire centré non corrélé avec l’entrée, 𝐴 et 𝐵 sont des polynômes 

en l’opérateur de retard 𝑞ିଵ de degrés 𝑛௔ et 𝑛௕ respectivement, et ∆ሺ𝑞ିଵሻ ൌ 1 െ 𝑞ିଵ est 

l’opérateur différence, 𝐶ሺ𝑞ିଵሻ est un polynôme en l’opérateur retard, lié aux perturbations et 

par la suite, sans une connaissance supplémentaire sur la nature des perturbations, il sera choisi 

égal à 1 (sa valeur n’influe pas par ailleurs sur le comportement en suivi de trajectoire, il peut 

jouer un rôle en rejet de perturbation). 
 

8.2.2 Critère de performance  

 Le critère de performance est représenté par une fonction de coût quadratique considérant 

l’erreur de poursuite et l’effort de commande sur un horizon glissant de la forme : 

                      𝐽ሺ𝑁ଵ, 𝑁ଶ, 𝑁௨ሻ ൌ ෍ ሾ𝑟ሺ𝑘 ൅ 𝑗ሻ െ 𝑦ොሺ𝑘 ൅ 𝑗/𝑘ሻሿଶ ൅ 𝜆 ෍ሾΔ𝑢ሺ𝑘 ൅ 𝑗 െ 1ሻሿଶ

ேೠ

௝ୀଵ

ேమ

௝ୀேభ

      ሺ8.2ሻ 

 Où 𝑦ොሺ𝑘 ൅ 𝑗/𝑘ሻ représente la prédiction optimale à l’instant 𝑘 ൅ 𝑗 connaissant les paramètres 

de contexte à l’instant présent 𝑘, 𝑁ଵ, 𝑁ଶ caractérisent le début et la fin de la fenêtre de prédiction 

sur la sortie, 𝑁௨ est l’horizon de prédiction sur la commande, λ > 0 un facteur de pondération 

sur l’effort de commande et enfin r est la consigne à suivre supposée connue sur l’horizon de 

prédiction.  

Remarque : En règle générale, l’horizon de prédiction sur la sortie est supérieur à l’horizon de 

commande et pour la cohérence de la prédiction il est supposé qu’à la fin de l’horizon de 

commande : 

                     Δ𝑢ሺ𝑘 ൅ 𝑗ሻ ൌ 0, 𝑗 ൒ 𝑁௨                                                                                          ሺ7.3ሻ 
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Remarque : Le modèle CARIMA fait intervenir les incréments de commande et non la 

commande effective. Cet aspect permet d’imposer au final une action intégrale au sein du 

régulateur et assure par conséquent une erreur statique nulle pour des consignes et perturbations 

constantes. L’aspect incrémental du modèle se retrouve aussi dans le critère par la présence 

de ∆𝑢. En se basant sur le modèle mentionné en (8.2) et en appliquant les idées de modélisation 

présentées par Clark et ses coauteurs, un prédicteur p optimal peut être construit sous la forme 

: 
 

𝑦ሺ𝑘 ൅ 𝑗/𝑘ሻ ൌ 𝐹௝ሺ𝑞ିଵሻ𝑦ሺ𝑘ሻ ൅ 𝐻௝ሺ𝑞ିଵሻ∆𝑢ሺ𝑘 െ 1ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ ൅
௥é௣௢௡௦௘ ௟௜௕௥௘

𝐺௝ሺ𝑞ିଵሻ∆𝑢ሺ𝑘 ൅ 𝑗 െ 1ሻ ൅ 𝐽௝ሺ𝑞ିଵሻ𝜀ሺ𝑘 ൅ 𝑗ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௥é௣௢௡௦௘ ௙௢௥௖é௘

   ሺ8.4ሻ 

 

Avec 𝐹௝,𝐺௝, 𝐻௝, 𝐽௝  polynômes solutions uniques des équations diophantiennes suivantes : 

  

 

                     ቊ
∆ሺ𝑞ିଵሻ𝐴ሺ𝑞ିଵሻ𝐽௝ሺ𝑞ିଵሻ ൅ 𝑞ି௝𝐹௝ሺ𝑞ିଵሻ ൌ 1

𝐺௝ሺ𝑞ିଵሻ ൅ 𝑞ି௝𝐻௝ሺ𝑞ିଵሻ ൌ 𝐵ሺ𝑞ିଵሻ𝐽௝ሺ𝑞ିଵሻ
                                                        (8.5) 

 

                      deg ሺ𝐽௝ሺ𝑞ିଵሻ ൌ 𝑗 െ 1,     deg ሺ𝐹௝ሺ𝑞ିଵሻ ൌ deg൫𝐴ሺ𝑞ିଵሻ൯,  

                      deg ሺ𝐺௝ሺ𝑞ିଵሻ ൌ 𝑗 െ 1,   deg ሺ𝐻௝ሺ𝑞ିଵሻ ൌ deg൫𝐵ሺ𝑞ିଵሻ൯ െ 1  

 

Le prédicteur optimal déduit de la considération que la meilleure estimée du signal perturbateur 

dans le futur est égale à sa moyenne, nulle ici, prend la forme : 
 

𝑦ොሺ𝑘 ൅ 𝑗/𝑘ሻ ൌ 𝐹௝ሺ𝑞ିଵሻ𝑦ሺ𝑘ሻ ൅ 𝐻௝ሺ𝑞ିଵሻ∆𝑢ሺ𝑘 െ 1ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ ൅
௥è௣௢௡௦௘ ௟௜௕௥௘

𝐺௝ሺ𝑞ିଵሻ∆𝑢ሺ𝑘 ൅ 𝑗 െ 1ሻᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
௥é௣௢௡௦௘ ௙௢௥௖é௘

                       ሺ8.6ሻ 

 

8.2.3 Synthèse de régulateur RST 

La minimisation du critère se base sur la mise sous forme matricielle de l’équation de prédiction 

(8.6)  

                     𝒚ෝ ൌ 𝐺𝒖෥ ൅ 𝑖𝑓𝑦ሺ𝑘ሻ ൅ 𝑖ℎ∆𝑢ሺ𝑘 െ 1ሻ 

𝐽 ൌ ሺ𝐺𝒖෥ ൅ 𝑖𝑓𝑦ሺ𝑘ሻ ൅ 𝑖ℎ∆𝑢ሺ𝑘 െ 1ሻ െ 𝑟ሻ் ሺ𝐺𝒖෥ ൅ 𝑖𝑓𝑦ሺ𝑘ሻ ൅ 𝑖ℎ∆𝑢ሺ𝑘 െ 1ሻ െ 𝑟ሻ ൅ 𝜆𝒖෥𝑻𝒖෥ 

                    𝑖ℎ ൌ ൣ𝐻ேభ
ሺ𝑞ିଵሻ, … , 𝐻ேమ

ሺ𝑞ିଵሻ൧
்

;   𝑖𝑓 ൌ ൣ𝐹ேభ
ሺ𝑞ିଵሻ, … , 𝐹ேమ

ሺ𝑞ିଵሻ൧
்

                     ሺ8.7ሻ 

 

                     𝒖෥் ൌ ሾ∆𝑢ሺ𝑘ሻ, … , ∆𝑢ሺ𝑘 ൅ 𝑁௨ െ 1ሻሿ் 
 

De façon similaire, la réponse forcée peut être réécrite sous forme matricielle : 
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                     𝐺 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑔ேభ

ேభ                𝑔ேభିଵ
ேభ   …       0

𝑔ேభାଵ
ேభାଵ              𝑔ேభ

ேభାଵ   …    0
⋮              …         …               0

         …           …       
⋮                …        …         ⋮

𝑔ேమ

ேమ   𝑔ேమିଵ
ேమ   …      𝑔ேమିேೠାଵ

ேమ
⎦
⎥
⎥
⎥
⎥
⎥
⎤

,  𝑔଴ ൌ 0                                                      (8.8) 

Avec les coefficients 𝑔௜
௝ issus des polynômes𝐺௝ correspondant à ceux de la réponse indicielle 

du modèle.  

La minimisation analytique du critère conduit à la séquence optimale de commande future : 
 

                     𝒖෥௢௣௧ ൌ 𝑀ሾ𝑟 െ 𝑖𝑓𝑦ሺ𝑘ሻ െ 𝑖ℎ ∆𝑢ሺ𝑘 െ 1ሻሿ  

                     𝑀 ൌ ൫𝐺்𝐺 ൅ 𝜆𝐼ேೠൈேೠ
൯

ିଵ
𝐺் ൌ ሾ𝑚ଵ

், … , 𝑚ேೠ
் ሿ் 

 

Qui constitue en fait un régulateur linéaire représentable sous forme polynomiale RST Avec : 
 

                     𝑆ሺ𝑞ିଵሻ∆𝑢ሺ𝑘ሻ ൌ െ𝑅ሺ𝑞ିଵሻ𝑦ሺ𝑘ሻ ൅ 𝑇ሺ𝑞ሻ𝑟ሺ𝑘ሻ                                                            ሺ8.9ሻ   

                     𝑆ሺ𝑞ିଵሻ ൌ ሺ1 ൅ 𝑚ଵ 𝑖𝑓𝑞ିଵሻ      

 𝑎𝑣𝑒𝑐           𝑑𝑒𝑔𝑟éሾ𝑆ሺ𝑞ିଵሻሿ ൌ 𝑑𝑒𝑔𝑟éሾ𝐵ሺ𝑞ିଵሻሿ              

                   𝑅ሺ𝑞ିଵሻ ൌ 𝑚ଵ 𝑖𝑓   

                     𝑑𝑒𝑔𝑟éሾ𝑅ሺ𝑞ିଵሻሿ ൌ 𝑑𝑒𝑔𝑟éሾ𝐴ሺ𝑞ିଵሻሿ                                   

                     𝑇ሺ𝑞ሻ ൌ 𝑚ଵ ሾ𝑞ேభ … 𝑞ேమሿ்       

                     𝑑𝑒𝑔𝑟éሾ𝑇ሺ𝑞ሻሿ ൌ 𝑁ଶ                                                                  

 

 

 

 

 

 

 

 

Figure 8.1: Régulateur polynomial équivalent 

8.2.3.1 Les avantages  

  Tout d’abord, l’utilisation du modèle CARIMA et le travail sur les incréments de commande 

assure la précision statique pour une consigne en échelon. 

𝑢
+ 

- 

1
∆𝑆ሺqିଵሻ

𝑇ሺ𝑞ሻ 

𝑅ሺqିଵሻ 

𝑞ିଵ𝐵ሺ𝑞ିଵሻ𝑟 𝑦 
+

+

1
𝐴ሺ𝑞ିଵሻ

 

𝜀

Régulateur RST équivalent 



CHAPITRE 8                                                                                                                  COMMANDE PREDICTIVE GENERALISEE (GPC) 

 

72 
 

 Ensuite, le non nécessité d’utiliser une représentation d’état lors de l’implantation du modèle 

du système, ce qui s’avère intéressant lorsque les modèles proviennent d’une identification 

discrète sous forme de fonction de transfert discrète. 

 En fin, la relation fournissant la commande se traduit par un algorithme simple, et  beaucoup 

de calculs peuvent être fait hors ligne ou il ne reste à faire en temps réel que l’acquisition de la 

sortie du processus et le calcul proprement dit de la commande, incluant néanmoins 

l’élaboration de la réponse libre. 
 

8.2.3.2 Les inconvénients  

  Tout d’abord, il n’existe aucune théorie précise permettant de démontrer la stabilité de la 

commande, à l’exception de travaux de Clarke assurant la robustesse sous certaines conditions 

de réglage très restrictives. 

 De plus, il n’y a pas de règles définies permettant de choisir les paramètres, sauf quelques 

compromis entre les différentes caractéristiques déduit par expérience dans le domaine. 
 

8.3 Conclusion 

 Les différentes techniques citées précédemment ont vraiment un intérêt considérable, 

mais dans la pratique le modèle dont elles sont basées est toujours non idéal. Surtout lorsqu’il 

s’agit des systèmes non linéaire et variant dans le temps. On est toujours amené à approcher la 

dynamique du processus à commander par un modèle paramétrique linéaire et stationnaire dans 

un domaine plus au moins restreint autour de son point de fonctionnement. 

La solution alors est le concept de commande adaptative qui permet d’éliminer l’effet de 

perturbations, sur la dynamique du processus, qui affectent les performances alors que la 

commande linéaire ne permet d’éliminer que les perturbations d’état du processus. Dans notre 

cas, on va exploiter le principe de la commande prédictive pour, le calcul de la loi de commande 

et l’adaptation dans le but d’éliminer les bruits. Ceci nous conduit à la commande adaptative 

GPC que son schéma synoptique est illustré par la figure 7.2.  
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                                      Figure 8.2: Commande GPC adaptative.  
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