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Avant-propos

AVANT-PROPOS

Le cours “ Commande avancée ” a pour but de présenter les aspects théoriques et numériques
des différentes parties, ainsi que des applications dans des domaines trés divers. La théorie de
commande analyse les propriétés des systémes commandés, c’est-a-dire des systémes
dynamiques sur les- quels on peut agir au moyen d’une commande (ou contrdle). Le but est
alors d’amener le systtme d’un état initial donné a un certain état final, en respectant
éventuellement certains criteéres. Les systémes abordés sont multiples : systemes différentiels,
systémes discrets, systémes avec bruit, avec retard... Leurs origines sont trés diverses :
mécanique, €lectrique, biologie, chimie, ... L’objectif peut étre de stabiliser le systéme pour le
rendre insensible a certaines perturbations (stabilisation), ou encore de déterminer des solutions

optimales et les meilleures performances.

Dans les industries modernes ou la notion de rendement est prépondérante, le role de
I’automaticien est de concevoir, de réaliser et d’optimiser, tout au moins d’améliorer les
méthodes existantes. Ainsi les domaines d’application sont multiples aérospatiale, automobile,
robotique, aéronautique, internet et les communications en général, mais aussi le secteur

médical, chimique, génie des procédés, etc.

La premiére partie concerne la commande optimale en temps continu et discret. Les
problémes de commande optimale se rencontrent dans la vie de tous les jours : comment arriver
a destination le plus rapidement possible, comment minimiser sa consommation... Pour un
systéme dynamique donné et dont les équations sont connues, le probléeme de commande
optimale consiste alors a trouver la commande minimisant un critére donné. C’est sous cette
forme que la commande optimale a été étudiée dés le XIX™ siécle avec le calcul des variations.
Une des grandes applications de la commande optimale a été 1’application au lanceur Apollo
dans les années 1960. Notons néanmoins que les difficultés soulevées par ce genre de probléme
sont loin d’étre complétement résolues comme en  témoignent les sessions d’dédiées a la
commande optimale dans les conférences d’automatique. La commande optimale reste donc un

sujet de recherche d’actualité.

La deuxiéme partie commence par un expos¢ d’évolution historique de la commande
adaptative et les différentes stratégies directes et indirectes appliquées sur des systémes linéaires
(chapitre 4). Ensuite, I’algorithme d’identification paramétrique a base des moindres carrés

récursifs et la méthode de commande polynomiale RST utilisés pour la conception de la
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commande adaptative auto-ajustable sont présentés (chapitre 5). Le reste de cette partie est

consacré a la commande adaptative a modele de référence (chapitre 6).

La troisieme partie concerne la commande prédictive. Le chapitre 7 présente une
introduction a la commande prédictive. Deux types de commande prédictive sont étudiés. Dans
le chapitre 8, la commande prédictive généralisée monovariable est étudiée avec application.
Le chapitre 9 traite la commande prédictive basée sur le modele, multivariable, permettant de
prendre en compte des contraintes, souvent utilisée dans I’industrie, présentée sous plusieurs

formes.
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CHAPITRE 1 CALCUL DE LA COMMANDE OPTIMALE

CHAPITRE 1
CALCUL DE LA COMMANDE OPTIMALE

1.1 Introduction

Fréquemment, 1’ingénieur en charge des procédés industriels a confronté les problémes
d’optimisation. Un tel probléme pourrait étre la maximisation de la portée d’un missile ou le
profil d’une entreprise, la minimisation de 1’erreur d’estimation de la position d’une cible, de
I’énergie ou encore le colit exigé pour atteindre le but final. La recherche d’une commande
permettant d’atteindre de tels objectifs tout en minimisant, ou bien maximisant, un critére donné
a priori, constitue le probléme fondamental dans la théorie d’optimisation. On subdivise ce
probléme en quatre parties :

1- Définition de 1’objectif,

2- Connaissance de la position actuelle par rapport a I’objectif,

3- Connaissance de I’influence de I’environnement sur le passé, le présent et le futur,
4- Détermination de la meilleure stratégie.

On s’intéressera dans une premiere partie a la commande optimale telle qu’elle a été posée
initialement et dans le cas des systémes les plus généraux. Dans un second chapitre, on
s’intéressera plus particuliérement aux systémes linéaires dans le cas d’un critére quadratique,
cas connu sous le nom de commande linéaire quadratique (LQ), et qui s’exprime sous la forme
d’un retour d’état statique. On s’intéressera ensuite a la commande linéaire quadratique
gaussienne (LQG) permettant de synthétiser un correcteur dynamique pour un systéme dont

I’état n’est que partiellement mesuré.

1.2 Introduction a la théorie d’optimisation

Soitun vecteur x € R™ de variables de décision et soit un critére / (x) a valeur dans R définie
d . . . .
sur E ¢ R™. On note AJ(x) = % le gradient de la fonction J(x). Il s’agit d’une fonction

n n eme ss e, 0J(x) _d?j() .
de R™ vers R™. La k™€ composante de AJ(x) s’écrit o On note H(x) = — le Hessien
k

de la fonction J(x). Il s’agit d’une fonction de R™ vers R™"™. La composante (k,l) de H

9%J(x)
6xk6xl ’

s’écrit

Définition 1.1 (minimum_global) : La fonction J(x) présente un minimum global en x, €

Esi]J(x) > J(xg), Vx # x,.
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Définition 1.2 (minimum local) : la fonction J(x) présente un minimum local en x, € E s’il

existe un voisinage V de x, tel que J(x) > J(x(),Vx €V \ x # x,.

1.2.1 Optimisation sans contrainte

Lemme 1.1 (Condition du premier ordre d’existence d’un extremum) :
Si le critére J(x) présente un extrémum en X, alors on a

dj (x) _
e Ml 0 (1.1)

Cette équation de premier ordre est une condition nécessaire mais n’est pas suffisante car la
connaissance des dérivées d’ordre supérieur sont nécessaires pour conclure a la présence d’un
extrémum et a la détermination du type d’extrémum (minimum ou maximum).

Lemme 1.2 (Condition suffisante d’existence d’un extremum) :

. d . d? s . ..
si 4™ =0 et si LD > 0 (D alors le critére J(x) présente un minimum en x,.
dx lyx=x, dx? x=x,
. d . d? \s . .
si &) =0 et si LY < 0 alors le critere J(x) présente un maximum en X.
dx lx=x, dx? ly=x,

Dans I’hypothése ou les conditions précédentes ne seraient pas satisfaites, il faut étudier les

conditions d’ordre supérieures. On est en présence d’un extrémum si la premicre dérivée non

nulle est d’ordre pair.
Exemple 1.1 : On considére la fonction f: I = R avec I = [—3, 3] dont la courbe représentative

est la suivante

-\.\,\. 1
™, i
i L1}

Figure 1.1 : extrémum local et global

f admet un minimum local en —3 : si je choisis I’intervalle /] =] — 4, —2[, alors pour tout

x €lInj=[-3,2]ona f(x) = f(—3)

®  f admet un maximum local en —2

Cette inégalité doit étre lue au sens des inégalités matricielles, c’est-"a-dire que le Hessien doit étre défini positif, ce qui revient
aussi a dire que ses valeurs propres sont toutes strictement positives.
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® f admet un minimum global, et donc local, en 1

® f admet un maximum global, et donc local, en 3.

1.2.2 Optimisation avec contrainte
Intéressons-nous désormais a la minimisation de J(x) sous la contrainte d’égalité
@(x) = Qpy;. La recherche du minimum se fait par I'introduction d’un vecteur de R appelé

Lagrangien et par I’introduction d’un critére modifié

JC, ) =](x) + 2"p(x) (1.2)

Lemme 1.3 (Condition du premier ordre d’existence d’un extremum)
Pour que x, soit solution du probléme d’extrema sous contrainte ci-dessus, il faut qu’il existe

un Lagrangien A, qui satisfasse les conditions suivantes :

0

2L (0, 10) = B (13)
af

ﬁ(xo;/lo) = @pxl (1.4)

Exemple 1 (Minimisation sous contrainte)
Pour x € R?, on considére le critére J(x) = xTx et la contrainte px = 1 oup = [1 1]. Trouvez
la solution du probléme de minimisation sous contrainte.
Solution
Ja, D) =Jx) +2Te(x) =xTx+A(px —1) = x2 + x2 + Ax; + Ax, — A
Les conditions d’optimalité

aJ 1
a_xl(xlo,/lo) = le +A = 0 . x1 = _5/1

aJ 1
a_x'z(xo,/lo) = 2x2 +/1 = 0 — xZ - _5/1

a..
é(xo,lo)le‘l‘xz_l:():)v:_l

Le point (0.5, 0.5, -1) est un point critique.

La matrice Hessienne

2 0 1
H = (0 2 1) = les mineurs hy = 2,h, = 4,h; = det(H) = —4
1 1 0

La matrice hessienne est indéfinie
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1.3 Calcul des variations

Le calcul des variations est la base des méthodes de la commande optimale. Dans ce
paragraphe, nous nous contentons de donner un exemple introductif. Dans ce cas, I’inconnue
n’est plus un scalaire ni un vecteur, mais une fonction. Autrement dit, la solution du probléme
est cherchée dans un espace de dimension infinie.

On cherche une fonction x(t) minimisant une intégrale de la forme :

b
o) = f o (x(6), %(0), ) dt (15)

Notons x*(t) la fonction optimale qui doit vérifier :

J&x) =J(x*)  vx
L’argument de J est une fonction, on qualifie souvent J de fonctionnelle, c’est-a-dire de
fonction. En notant §x une petite variation de la fonction x, et §x la variation de sa dérivée

correspondante, on a :

b 0
J(x + 6x) = f (<p(x(t),5c(t), t) + % (x(t), x(t),t)ox

0
+a—(£(x(t),5c(t),t)65c> dt (1.6)
Pour la trajectoire optimale, il faut que z—z (x(t), x(t),t)0x + z—(z (x(t), x(t),t)dx soit nul tout

au long de la trajectoire.

1.3.1 Equation d’Euler-Lagrange

Lemme 1.4 : la fonction optimale x(t) vérifie I’équation suivante
do d <6g0>

ox  dt\ax

Dans le cas ou ¢ ne dépend pas explicitement de t, la formule d'Euler-Lagrange se reformule

-0 (1.7)

de la maniére suivante :

Lemme 1.5 (Formule de Beltrami) : La fonction optimale x(t) vérifie I’équation suivante :
dp
—x|==)=k 1.8
L (ax) (18)
Ou k est une constante.

Démonstration :

On a
d .(6<p) PN do d(@(p) _0:6<p d(@(p)_o
ac\? " \ox) | TV T o Tac\ex) | T ox dt\ox)

Le résultat du lemme 1.5 est vérifié
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1.3.2 Prise en compte des conditions initiales et finales
Les conditions initiales et finales peuvent étre libres ou imposées. On peut imposer l'instant
et/ou la valeur de la fonction x. Consideére un critére intégrant éventuellement une pénalité sur

les conditions initiales et finales, la forme :

b
J(a) = f o (x(t), x(t), t)dt + 1/)(a, b,x(a),x(b)) (1.9
Les conditions correspondantes, appelées conditions de transversalité, s’écrivent :
d d
(-( ) — axzp ))Sx(a) +(p@ - L @i@ —%) Sa =0 (1.10)
(-( )+ é))&c(b) + (o) ——(b)x(b) +_¢) 5b =0 (111)

p(a) = p(x(a),x(a),a) et p(b) = @(x(b),x(b), b) pour alléger I’écriture.

Exemple 1.2 : déterminer la trajectoire x(t) optimale minimisation le critére

[2(tx(0) + 2%(1)) dt avec a = 0,x(a) = 1,x(b) = 5 et b libre.

1.3.3 Prise en compte des contraintes
Considérant le cas d’une minimisation du critére (1.2) avec les contraintes suivantes :
= Contrainte intégrale : f: r(x,x,t)dt =0, r € R"
®  (Contrainte instantanée s(x, x,t) = 0,s € R
La résolution se fait en introduisant les multiplieurs de Lagrange 4 € R" et u(x) € RS et en

substituant a la fonction ¢ 1’Hamiltonien

H(Oe, %, 6,4, 1) = o(x,x,t) + ATr(x, x, t) + uTs(x, x,t) (1.12)
L’équation d’Euler-Lagrange est inchangée

a—H—i(a—H) = (1.13)

Ox dt\ox

1.4 Commande optimale

Plutdt que de présenter de manicre approfondie le probléme de la commande optimale, cette
partie constitue plutdt une introduction au sujet. Le choix a été fait de présenter un résultat
s’appuyant sur le principe du maximum de Pontriaguine. Pour approfondir ce domaine.

Position de probléme

Soit un systéme a temps continu de représentation d’état :

x = f(x,u,t)etx(ty) =xpout € R,u € Rmetx € R" (1.14)
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Pour la condition initiale x, et la commande u, I’équation d'état (1.14) définit une trajectoire
unique x pour I’état sur [ty, tr ]. Celle-ci est fonction de la condition initiale x, et de la
commande u sur [¢o, tr ].
Soit le critere :
J(xo, to,u) = 0(xp, t7) + fttof(p(x,u, t)dt (1.15)

Avec xf = x(tf). Les fonctions 6 et ¢ ainsi que les instants t, et t; étant donnés, ce critere ne
dépend que de x, et de u sur [ty, tf ]. L’application qui au signal de commande u associe le
critére scalaire J(xg, ty, u) est une fonctionnelle. On peut noter que différents critéres existent
dans la littérature :

»  Leprobléme de Lagrange : |, ttof o (x,u, t)dt

»  Lecritéere de Bolza : H(xf) + [ ttof o(x,u, t)dt

= Le critere de Mayer : a(xf, tf)
Remarque :

®  L’instant final peut étre imposé ou libre

® Lacommande peut appartenir a un ensemble u € U #= R™

" Des contraintes peuvent exister sur I’état final : x¢ € y
Le probléme de la commande optimale consiste alors a trouver la commande @ minimisant
J (xo, to, u):

= lglelurjl J(x0, to, 1) (1.16)

On notera alors ¥ la trajectoire correspondante de 1’état et J(x,) = J(xo, to, %) la valeur du
critere.

1.4.1 Principe d’optimalité de Bellman

Soit le critére :

t
J(xg, to, 1) = H(xf, tf) + ftof(p(x,u, t)dt (1.17)
La trajectoire optimale sur [to, t; ] est @i et le critere optimal :
J(xo,t0) = min J(x, to, u) (1.18)
Ulto.ty ]

Soit t; € [to, t ] Le principe d’optimalité de Bellman énonce que la trajectoire optimale sur

[to, t ] contient la trajectoire optimale sur [tl, t ] avec comme condition initiale x; = x(t;).

Autrement dit :
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J(xo) = min (f:ol o(x,u, t)dt +j(x1)> (1.19)

Heots ™
Bien que les développements suivants ne s’appuient pas directement sur ce principe, mais sur
le principe du maximum, ce principe est un résultat classique de la commande optimale et se
trouve souvent utilisé dans la littérature. Il permet d’obtenir une solution optimale en découpant

I’intervalle et en résolvant un probléme récursif.

1.4.2 Principe du maximum de Pontriaguine
Soit un systéme d’équation d’état x = f(x,u,t)
Le critére de performance J(xo, to, u) = 0(xf, t7) + [ ti)f o (x,u,t)dt
On définit I’Hamiltonien du systéme

H(x,u,A,t) = o(x,u,t) + AT f(x,u, t) (1.20)
Ou A est appelé état-adjoint. Le principe du minimum de Pontriaguine énonce que la trajectoire
optimale minimise I’Hamiltonien du systéme. Autrement dit :

H(% % A) <HEuwA)Vuel (1.21)
Le long de la trajectoire optimale, on dispose d’un certain nombre d'équations permettant de

résoudre le probléeme de commande optimale. Ces €équations sont généralement établies en

utilisant le calcul des variations.

1) L’extrémité de la solution conduit a un jeu d’équations, appelées équations canoniques de

Hamilton, qui régissent les dynamiques de 1’état d’une part et de 1’état adjoint d’autre part :

= FEtat

0H

Fr i X (1.22)
= FEtat adjoint

0H .

Frie -1 (1.23)

2) Les équations provenant des conditions dites terminales, en t, d’une part et en ty d’autre
part sont appelées équations de transversalité :

= A l'origine
a6 20
— _ Z7NT _
< H(ty) + at()) Sty + (A(ty) + axO) 6xy =0 (1.24)
" A larrivée

a0 a0
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3) Enfin, selon la nature du probléme, on aura encore certaines relations additionnelles :

®  Si aucune contrainte (de type saturation) n’est imposée sur u(¢) a I’instant ¢, on a :

S (©=0 (1.26)

Si H n'est pas une fonction explicite du temps, on a :

d—H = O_H = (1.27)
dt 0t
1.4.3 Lien avec le calcul des variations

Il s’agit d'un probléme d’optimisation sous contrainte égalité f(x,u,t) —x = 0. En
appuyant sur le calcul des variations, on est amené a introduire un multiplicateur de Lagrange A,
qui est une fonction du temps, et a introduire I’Hamiltonien.

H(x,u,A,t) = o(x,u,t) + ATf(x,u, t)

Le critere s’écrit alors

3 t
T=00xt)+ | (pCut)+AT(f(x,ut) —x))dt (1.28)

to

ty
=0(xp, tr) + | (H(x,uAt) —ATx))dt

to
tf .
=0(xp,tp) + | (HOx,u,A,0) + ATx))dt — Afxp + AT (89) %0
to

= 0(xo, to, Xp, t7) + fttof (H(x,u, A, ) + ATx))dt

0 (xp, tr) — AL xp + AT (£0) %0

Le calcul des variations permet de donner des conditions nécessaires pour résoudre ce

probléme.

1.4.4 Equation d’Euler-Lagrange

L'équation d'Euler-Lagrange, bien connue en mécanique, peut étre retrouvée a partir du
principe du minimum. En notant 7, I'énergie cinétique et U 1’énergie potentielle d'un systeme
mécanique, le principe de moindre action énonce par Maupertuis postule que le systéme évolue

en minimisant I’intégrale :

10
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[(T = v)dt (1.29)

to
Notons ¢ les cordonnées généralisées du systeme. Soit L(q,q) = T(q,¢) — U(q) le lagrangien,

avec le critére :

J@orto, @) = J,) L(g, q)dt (130)

Exemple
On considere un systéme dont on commande la vitesse, 1’équation d’état du systéme s'écrivant
alors simplement :
qg=u
L’Hamiltonien s'écrit alors :
H(q,4,4) =L(q,4) +2"q

Et le principe du minimum donne les deux équations suivantes :

0H 0L

3q 9q
0H 0L

3q aq =0

En dérivant la seconde équation par rapport au temps puis en remplacant A grace a la premicre,

on obtient I'équation d'Euler-Lagrange :

d (aL) oL 0 (131)

de\og)  aq
1.5 Commande bang-bang

Un type de commande optimal particulier bien connu est la commande a temps minimal
Prenons un exemple : vous commandez 1’accélération d’un véhicule que vous devez amener
d’une position initiale d’arrét a une position finale, également a 1’arrét, dans le temps le plus
court possible. Si1’on considére un mouvement en ligne droite, on congoit intuitivement que la
commande optimale est dans ce cas une accélération maximale jusqu’a un certain instant a

partir duquel il faudra freiner au maximum.

On parle de commande bang-bang parce que la commande est toujours saturée,
alternativement a sa valeur minimale ou a sa valeur maximale. Quant a la robustesse de la
commande, c’est-a-dire la capacité a remplir la mission de maniere précise, lorsque la masse

du véhicule est imparfaitement estimée, vous imaginez bien que ce genre de commande n’est

11
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pas trés recommandable. Pour un exemple de ce type de commande. Un exemple complet de

commande en temps minimal sera traité : Celui du double intégrateur.

1.6 Problémes
Probléme Nol

Calculer la commande optimale amenant le systéme d’un état initial x(t,) = x, a 1’état

final x; = 0, en temps minimal. En minimisant la fonction / = [ ttof 1dt

Pour le systéme x(t) = Ax(t) + Bu(t), lorsque —1 < u < 1.

Application au systeme intégrateur double y = u (on posera t, = 0 pour simplifier).

Probléme Ne2: On considere le systéme linéaire du premier ordre :

x(t) =u
Partant de I’état initial donné x (0) = xo. Appliquer le principe du maximum pour résoudre les

problémes suivants.
1
] = f > (u?(t) + w?x%(t))dt
0

1) Au bout du temps 7 donné, amener le systéme en x(7) = 0, tout en minimisant le criteére.
2) Méme probléme, mais x(7) est laiss¢ libre.

3) Méme probléme, mais on considére le critere
1 1
J= f > (u2(t) + w?x?(t))dt + Exz(T)
0

Afin d’amener x(T) au voisinage de 0

4) Criteére identique a la question 2), mais avec une durée T qui est laissée libre.

Pour les questions 1 a 3 on expliquera ce que devient la commande en boucle fermée quand

t—>T ettfiniquand T - o

12
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CHAPITRE 2
COMMANDE LINEAIRE QUADRATIQUE

2.1 Introduction
On parle de commande linéaire quadratique : LQ ou LQR (Linear Quadratic Regulator). Le

systéme est linéaire et la commande est quadratique. La commande optimale est un retour d'état.

2.2 Commande LQR des systémes a temps continu
2.2.1 Commande LQ a horizon fini

Soit le probléeme de commande optimale du systéme :

x(t) = A(t)x(t) + B(t)u(t) (2.1)
Avec le critére
_1 4 1 T T
J(xg, to, u) = Ex FSXf +j; E(x Q(t)x + u"R(tH)u)dt (2.2)

Les matrices Q, R, et S étant symétriques avec QetS >0etR >0
Remarque : Remarquons que le critére | ti)f % (y"Q,()y + uTRu)dt est équivalent a celui de
de I’équation (2.2) avec Q(t) = CT(£)Q,, (£)C(t)

L’Hamiltonien s’écrit alors :

1
H(e,u, A, t) = ATA()x + ATB(H)u + 2 (xTQ(t)x + uTRu) (2.3)
AT f(x,u,t)

@(xut)

L’Hamiltonien vérifie les conditions suivantes :

= Equation de I’état adjoint

) oH
A=——=-AT(A1 - Q(t)x (2.4)
0x
= Condition de transversalité
A(ty) = Sxs (2.5)

= Absence de contrainte sur la commande

oH
== BT()A+R(t)u=0 (2.6)

Ondéduit  u=—-R'@®)BT(t)A

13
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x=A(t)x —B({t)R *(t)BT(t)A (2.7)

Les équations (2.4) et (2.7) peuvent se mettre sous la forme d’un systéme matriciel appelé

systeme Hamiltonien :

. — -1 T
(=49, oo

Avec A = P(t)x, comme nous y avec la condition finale P(tf) = S, I’équation (2.4) s’écrit

alors :
A=—(AT®PE®) +Q®)x (2.9)
A=P(t)x +P(t)x

Alors
(P(t) + P(D)A(L) + AT (£)P(t) — P(t)B(t)R™ ()BT (t)P(t) + Q(t))x = 0 (2.10)
La solution est alors obtenue en résolvant I’équation (différentielle) de Riceati suivante :
P(t) + P(D)A(t) + AT(®)P(t) — P()B(O)R" X ()BT(t)P(t) + Q(t) =0 (2.11)
Avec la condition finale P(tf) = §, on montre que la condition :
xT(P+PA+ATP —PBR™BTP+Q)x=0 (2.12)
S’écrit aussi :
d r T T
a(x Px)+x"Qx+u"Ru=0 (2.13)
Le critere :

tr

1 1
J(xo, to, u) = ExJTSxf + f 3 (xTQ(t)x + uTR(t)u)dt (2.14)

to

S’écrit alors :

1 7 vd o .
J(xg, to, 1) = E(foxf - jto a(x Px)dt)

1
](x0r tOr u) = Exgp(tO)xO

Le minimum du critére est donc

- 1
J(xo, to, ) = J(xp ) = Eng(tO)xo) (2.15)
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I1 est intéressant de noter que la commande optimale obtenue s’écrit comme un retour
d'état u = —K(t)x avec :

K =R7'BTP (2.16)
Néanmoins, n’oublions pas que, dans le cas présent, K varie en fonction du temps, méme dans
le cas d’un systéme et d’un critére a temps invariant (c¢’est-a-dire si les matrices 4, B, O et R ne
dépendent pas du temps). En effet, la matrice P(t) reste dépendant du temps dans le cas d’un
critére a temps fini.

2.2.2 Commande LQ a horizon infini

Nous intéressons ici au cas du systéme linéaire a temps variant précédent ou :

+ oo

J(xp, to, ) = f %(xTQ(t)x + uTR(t)u)dt (2.17)

to
On montre que ce critére est fini si le systéme est stabilisable a tout instant ¢, (c’est-a-dire qu’a
chaque instant, il existe un K(t) tel que les valeurs propres de (A — BK (t)) soient a partie
réelle négative). Remarquons par ailleurs que la partie du critére concernant 1’état final n’est
plus pertinente car, sur un horizon infini, I’état tend vers zéro si le systéme bouclé est stable.
Dans le cas d’un probléme LTI (linéaire a temps invariant), la commande optimale est un retour
d’état statique u = —Kx ou Kest exprimé par I’équation (2.16) ou P vérifie 1’équation

algébrique de Riccati :

PA+ ATP — PBRIBTP + Q=0 (2.18)
o T
us () | | Pl I o
= B(t) f—e(— [ SLiSN
1(t) =

1

R-1E
Pty (1)
T —

{ e recie iy _'r.rﬁ_l l'-ll'.'lll"u.'l.'-I

Claleal hiors Tigne

Figure 2.1: Shéma bloc de la commande LQR des systémes continus
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2.2.3 Robustesse de la commande LQ
A partir de I’équation de Riccati, faisons apparaitre les termes sI — A en ajoutant (Ps] —

sIP) ou I est la matrice unité.

P(sl —A) + (—sI — AT)P + PBR™BTP =(Q (2.19)
Multipliant a droite par (sI — A)™1B et a gauche par BT (—sI — AT)™!:

BT(—sI — AT)™'PB + BTP(sI — A)"*B + BT (—sI — AT)"*PBR~'BTP(s] — A)~'B
= BT (—sl — AT)"1Q(sI — A)™'B (2.20)

En notant que d’aprés (2.16), ona BTP = RK et PB = KTR, on obtient :

BT(—sI — AT)™*KTR + RK(sI — A)™*B + BT(—sI — AT)"'KTRK(s] — A)™'B
= BT (—sl — AT)"1Q(sI — A)™'B 2.21)

Le premier membre de 1’égalité s écrit : (I + BT (—sI — AT)"*KT)R(I + K(sI — A)"'B) — R
On obtient finalement 1’équation de la différence de retour :

(I +BT(—sl — AT")"1KT)R(I + K(sI — A)™1B) =

R+ BT(—sl — A")™1Q(sI — A)~'B (2.22)

2.2.4 Marges de stabilité
Reprenons 1’équation de la différence de retour en fréquentiel avec s = jw et en

notant H(jw) = (jwl — A)~1B. On obtient alors pour tout w :
(I + KH(j))"R(I + KH(jw)) = R + H(jw)! QH(jw) (2.23)
Ou N est I’hermitien de N, c’est-a-dire le conjugué transposé. On déduit alors I’inégalité de

Kalman :
(I + KH(jw))"R(I + KH(jw)) = R (2.24)

Nous restreignons au cas R = pl et factorisons Q en Q = LLT. L’égalité (2.23) s’écrit alors :
1
(I + KHGw)" (I + KH(jw)) = I + ; (LH(jw))" (LH(j»)) (2.25)

Dont on déduit les valeurs singuli¢res de (I + KH(jw))

o;(I + KH(jw)) = \/Ai ((1 + KH(jw))" (I + KH(jw)))

o,(1 + KH(jw)) = \/Ai <1 + % (LH(jw))H(LH(jw))>
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La marge de module on en déduit

o;(I+KH(jw)) = |1+ %al? (LH(jjw)) = 1 (2.26)

Ou A; représente la i™€ valeur propre (en utilisant les propriétés o (N) = A;(N7N) et A;(I +
N) =1+ 4;(N). En mono-variable, ce résultat s’interpréte facilement sur le lieu de Nyquist,
comme le fait que la distance au point -1 est toujours supérieure a 1. Ainsi, la commande LQ
présente la propriété de robustesse suivante : sa marge de module est égale a 1. On en déduit
ainsi les intervalles dans lesquels le gain et la phase peuvent varier :

® Le gain ]0.5; +oof

" Laphase] —60°; +60°[

=1

w—+0 KH(jw)

Figure 2.2 : Lieu de Nyquist de la fonction de transfert de boucle LQ.

2.2.5 Structure des régulateurs
Lorsque des signaux de consigne y* sont donnés pour certaines composantes y de x,

comment les intégrer a la loi de commande ? Imaginons que les consignes concernent les
premicres composantes de x et décomposons x et K ainsi :

Kx = [K, K,] 7] (2.27)
Alors la loi de commande sera

u=K,Q" -y —K,z (2.28)
Si y est donné par une loi de type équation de sortie, y = Cx, on peut effectuer un changement
d’état de sorte que le nouveau vecteur d’état contienne y, par exemple en utilisant la forme
canonique d’observabilité.
La commande LQ est de type proportionnel. Dans le but d’améliorer les performances en

régulation en présence de perturbations constantes, il est souhaitable d’ajouter un effet intégral.
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Imaginons, a titre d’exemple, que la premiére composante x;de x doit étre asservie a x; sans
erreur statique.

Construisons 1’état supplémentaire :

I, = ft(xl(r) — x{(r))dr (2.29)
0

Avec I} = x; — x4
En considérant x; comme une perturbation constante et de ce fait, en ne I’intégrant pas dans le

modele, I’équation d’état du systéme augmenté de son nouvel état I; s’écrit :
Xe = Ae(t)x, — B.(H)u (2.30)

[x _ A Onx1 _ B
xe_[11]' Ae = [[1 O1xp-1] 0 ]'Be B [@1xm]

X
Kexe = [K K] [11], K, € R™ ™+ de type LQ

Le régulateur obtenu, d’entrées x et xj et de sortie u est un systéme dynamique d’ordre 1 de

modéle d’état.

i1 =X — X1
2.31
{u = _K111 - Kx ( )

La consigne x;j peut aussi étre retranchée a x4 ; d’autres consignes peuvent étre intégrées de la

méme maniere en retranchant leur valeur a 1’état correspondant. Si une commande en boucle

ouverte (feed-forward) est disponible, elle peut étre ¢galement intégrée, la commande sera alors

la somme de la commande en boucle fermée et de la commande en boucle ouverte.

Remarques

= La matrice de Riccati P(t) est une matrice symétrique variant dans le temps indépendant de
I’instant initial (¢, = 0).

= [’équation de Riccati constitue un systtme de n(n+ 1)/2 équations différentielles
ordinaires non linéaires du premier ordre variant dans le temps

* La matrice de Riccati P(t) est une matrice définie positive sur [0, t5)

= La matrice P(¢) peut étre calculée hors ligne par intégration numérique arriere a partir

2.2.6 Choix de pondérations
Il est intéressant de remarquer d’abord que la multiplication des pondérations Q et R par un

méme scalaire laisse inchangé le gain K. En effet, soit P solution de I’équation de Riccati (et
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soit le nouveau probléme basé sur les pondérations Q = AQ et R = AR On vérifie que P = AP

est solution de I’équation de Riccati correspondante. En effet :

K=-R'B"P=—-R'B"P =K
Sans restriction, les pondérations peuvent étre choisies symétriques. Elles sont généralement
choisies diagonales. Ainsi, on se ramene au choix de n scalaires pour 1’état et de p scalaires
pour la commande. Voici une méthode simple de choix et de modification des pondérations en

vue d’aboutir 4 un correcteur satisfaisant.

1. Au départ, on choisit généralement des pondérations égales aux matrices identité.

2. Dans une seconde étape, on accélere ou décélere globalement le systéme en multipliant
la matrice Q par un scalaire A (accélération avec 4 > 1 et décélération avec 1 < 1),
jusqu’a obtenir une dynamique moyenne adaptée.

3. Dans le cas ou certains états auraient des dynamiques trop lentes par rapport a d’autres,
on peut choisir d'augmenter la pondération de Q correspondant aux premiers.

4. Dans le cas ou certains actionneurs seraient trop sollicités par rapport a d’autres, on peut
choisir d’augmenter la pondération de R leur correspondant.

Les étapes 2, 3 et 4 peuvent Etre réitérées dans 1’ordre souhaité jusqu’a obtenir un correcteur

satisfaisant le cahier des charges.

2.3 Commande LQ des systemes a temps discret
2.3.1 Commande LQ a temps discret a horizon fini
2.3.1.1 Formulation de probléme
Soit le systéeme dynamique a temps discret défini par
x(k+1) = A(k)x(k) + B(k)u(k) (2.32)
Avec la condition initiale x (ko) = xj, et cherchons la commande minimisant le critére :

k=N-1

1 1
Jtko) = ZE MSMXN) +5 > A (IQUOXI) +u (ORGKU()  (233)
k=kq

Ce probleme est plus simple que celui a temps continu car il s’agit ici d'un probléme dont les
inconnues sont les N et kyvaleurs de u(k) et non plus une fonction du temps. Il s’agit d’une

minimisation de (2.33) sous les contraintes (2.32). L’Hamiltonien s’écrit alors :

1 1
H(k) = > (xT(k)Qx(k) + 5uT(k)R(k)u(/!c)> + AT (k + D(AK)x(k) + B(k)u(k)) (2.34)
Et la solution optimale vérifie les équations suivantes :
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0H(k
W((k)) =R(Ku(k) +BT(KA(k+1)=0 (2.35)
Alk) = —aH(k) =Q(k)x(k) + AT(l)A(k + 1) 2.36
= ) Q(k)x (2.36)
0H (k)
La commande est
u(k) = =R Y (k)BT (k)A(k + 1) (2.38)

La derniére commande u(N) n’a aucun effet sur I’évolution du systéme sur I’horizon considéré
sa valeur optimale est donc nulleu(N) =0, A(N+1)=0. D’aprés (2.36) A(N) =
S(N)x(N).

11 s’agit d'un probléme aux deux bouts, une condition initiale est disponible pour I’état alors
que c’est une condition finale qui est disponible pour 1’état adjoint. Ainsi, la résolution du
probléme doit se faire pour I’ensemble de la trajectoire, ce qui peut représenter une charge de

calcul ¢élevée dans le cas d’un horizon N élevée.
x(k+1)=A(k)x — B(k)R™1(k)BT (k)A(k)

(x(k + 1)) _ (A(k) —B(k)R‘l(k)BT(k)>< x(k) )

(k) (k) ATy ) \Ak+1) 2:39)

Si déterminant de la matrice A différent de zéro 1’équation (2.38) est réécrite sous forme

<x(k)>_( A7 (k) A~ (k)B(k)R™1 (k)BT (k) )(x(k+1)> (2.40)
A(k)) ~\Qk)A™ (k) AT (k) + Q(k)A"*(k)B(k)R (k)BT (k)/ \A(k + 1) '

Sionax(N) et A(N) donc on peut calculer x(k) et A(k).

2.3.1.2 Formulation sous forme d’équation de Riccati
Les équations précédentes peuvent étre résolues directement en x et A. On peut aussi adopter
la démarche suivante, basée sur un changement de variable suivant pour la variable adjointe.
A(k) = P(k)x(k),avec P(N) = S(N)
R(K)u(k) = =BT (k)P(k + Dx(k + 1)

= —BT(k)P(k + 1)(A()x(k) + B()u(k))
u(k) = —K(k)x(k)
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K(k) = R™*(k)BT (k)P (k + 1)A(k)
R(k) = R(k) + BT (k)P(k + 1)B(k)

Il reste maintenant a déterminer la matrice P(k), on obtient :

P(k)x(k) = Q(k)x(k) + AT(k)P(k + V)x(k + 1)

P(k)x(k) = [Q(k) + AT(k)P(k + 1)(A(k) — B(k)K(K))]x(k)

P(k) = Q(k) + AT(k)P(k + 1)(A(k) — BI)K (K))

P(k) = Q(k) + AT(k)M(k + 1)A(k) (2.41)
M(k + 1) = P(k + 1) — P(k + 1DB(k)(R(k) + BT (k)P(k + 1)B(K)) " BT (k)P(k + 1)
Cette équation récursive a inconnue matricielle est appelée équation de Riccati discréte. Sa
condition finale est P(N) = S(N) et sa résolution se fait donc a rebours. Dans le cas de
systétmes LTV ou les matrices A, B dépendent effectivement de k ou bien si c’est le cas des
matrices de pondération Q et R, cela suppose de connaitre a I’avance 1’ensemble des matrices

pourk = kg, ...,N.

2.3.2 Commande LQ a temps discret a horizon infini
2.3.2.1 Criteére a horizon infini

Cherchons la commande minimisant le critére :

k=400

] =% Z T (k) Qx (k) + uT ()R (k)u (k) (2.42)
k=kq

Il s’agit du critére précédent ou N tend vers I’infini.

On peut montrer alors que pour un systéme LTI le gain du retour d’état est constant. Il s’écrit :

K = (R +BTPB)"'BTPA (2.43)

Ou P est solution de 1’équation algébrique de Riccati discrete :

P=Q+AT(P—PB(R+BTPB)"1BTP)A (2.44)

Interprétation : de déterminer la commande u(k) qui maintienne le vecteur d’état proche de

son état d’équilibre 0 sans une dépense trop forte en énergie de commande.
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2.4 Probléemes
Probléme Nel

Considérer le moteur a courant continu représenté par la figure ci-dessous avec K, =

10,et t,, = 2.0s

U K., X7
1+7,p

A 4

1
p

Pour le régulateur, on désire obtenir un systéme en boucle fermée avec coefficient
d’amortissement & = 0.707 et un temps de réponse a I’échelon (a 5%) de 300 ms.

1) Etudier le choix des gains du régulateur par retour d’état en appliquant la théorie du
régulateur lin¢aire quadratique (LQR). Tracer le lieu des racines quadratiques pour Q,, = 1 et

la pondération sur la commande r variant de 0 a une valeur trés grande.

J= f OO,y () + A (©)dt
0

2) Pour ce systéme ¢étudier une structure de commande régulateur-observateur.
3) Trouver les pdles en boucle fermée permettant de rencontrer les spécifications demandées

au niveau du régulateur.

Probléme Ne2 :

Considérer le modele du pendule inversé donné ci-dessous

(M +m)x(t) + mlé() = F() (1)
#(t) —go(t) +16(t) =0 (2)

Avec M = 0.445kg; m = 0.21kg; | =0.3m

1) Ecrire le modéle d’état de ce systéme en considérant que la sortie mesurée est la position du
chariot x(?).

2) Déterminer une commande par retour d’état qui stabilise le systéme en utilisant la technique
de placement de podles et la commande optimale avec un critére quadratique et simuler le
systéme avec cette commande.

3) Ecrire les équations d’un observateur d’état d’ordre complet et déterminer ses gains par
placement de pdles.

4) Simuler la structure de commande (régulateur + observateur) et comparer le comportement
du systéme avec le régulateur mis au point en 2).

Probléme Ne 3
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On considere le systéme

=) Jee [l
=[]

1) Vérifier que la matrice A = [8 (1)] est nilpotente.

2) Etudier la stabilité de ce systeme. Calculer le régime libre.

3) On boucle le systéme a 1’aide d’une commande par retour d’état de la forme
u=—[1,m]x

Ecrire les nouvelles équations d’état.

4) Pour quelles valeurs de m, le systéme est-il asymptotiquement stable.

5) Quelle valeur de m permettant de minimiser le critére :

1=3[ woxo + e

Quelle est la valeur du J ?

Probléme Ne 4

Considérant un systéme donné par
x(k +1) = 2x(k) + u(k)
1) Trouver la solution homogéne x (k) pour k = 0, 5 si x(0) = 3.
2) Trouver la séquence de commande a énergie minimale u(k) nécessaire pour dériver
x(0) = 3a x(5) = 0. Vérifier votre réponse en retrouvant la trajectoire d’état résultante.
3) Trouver la séquence gain de retour optimale K (k), pour minimiser 1’indice de performance

suivant

4
1
Jo =5t +5 ) G +ud)
k=0

Trouver la trajectoire d’état résultante et le cot pour aller J; pour k = 0, 5.
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CHAPITRE 3

COMMANDE LINEAIRE QUADRATIQUE
GAUSSIENNE (LQG)

3.1 Introduction

Par rapport a la commande LQ, la commande LQG présente l'intérét de s’appliquer a des
systémes dont 1’état n’est pas mesuré. Développée au début de la seconde moitié du 20°™ siécle
et appliquée lors du programme spatial Apollo pour la stabilisation de lanceurs, elle est apparue
comme la premi¢re méthode générale pour 1’asservissement des systemes multi-variables. De
ce fait, elle a connu un grand succeés comme en témoigne les nombreuses publications sur le
sujet. Depuis la fin du 20°™ siécle, la commande H1 apparait comme un sérieux concurrent
pour I’asservissement robuste des systémes multi-variables. Néanmoins, la commande LQG

n’en demeure pas moins un standard industriel.

3.2 Formulation
Soit un systeme dynamique stochastique d’équation d’état :
{ x(t) = Ax(t) + Bu(t) + b, (t)
y(t) = Cx(t) + b, (t) (3.1)

Ou byet le bruit de mesure b, sont des bruits blancs centrés de variance E {vab,,} =V=0

etE {bWTbW} = W > 0. Le probléme LQG consiste a minimiser le critére suivant :
1 (1
J(xo,to,u) = lim E —f —(xTQ(®)x + uTR(Huw)dt (3.2)
ty—oo tf to 2
AvecQ=QT >0 etR=RT>0

3.3 Principe de séparation
La solution du probléme LQG est donnée par les solutions de deux problémes connus :

1- Le probléme d’estimation optimale de 1’état d’un systéme dynamique stochastique (filtre de
Kalman donnant une estimée X de x qui est non biais¢ et a variance minimale.

2- Le probléme de commande LQ optimale en supposant X connu, donnant un retour d’état de

~

gain K. La commande LQG par retour de I’état estimé est donc finalement u = —KX.

3.4 Structure de la commande LQG

Equation de I’observateur (filtre de Kalman-Bucy) :

=A% +Bu+L(y—C) (3.3)
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Ou le gain de Kalman est :
L=PCTw1
Avec P la solution de 1’équation algébrique de Riccati
PAT + AP — PCTW™ICP+V =0 (3.4)
Modele d’état du correcteur
x=(A—BK—-LC)X + Ly (3.5)
u=—-KxX
Le suivi d'une consigne y* se fera par la loi de commande u = G(p)(y* — y) ou la fonction de

transfert du correcteur est :

G(p) =Kl —A+ BK +LC)™'L (3.6)
Ses équations d’état sont :

%= (A—BK—-LO)X + Le (3.7)

u=—-Kx (3.8)

Oue = (y* — y). Notons que ce correcteur LTI a méme ordre que le processus
3.5 Choix des pondérations

Le réglage du correcteur LQG nécessite la donnée de quatre matrices de pondération : Q et
R pour le retour d’état, V et W pour I’estimateur. La méthode de réglage la plus simple repose
sur un réglage séparé : régler V et W de sorte que 1’état soit bien' reconstruit et régler Q et R
pour avoir un bon retour d’état. Si les dynamiques de la régulation sont relativement lentes
devant celles de 1'observation, on peut supposer que 1’état est parfaitement connu du point de
vue du retour d’état et la commande sera robuste (marge de module égale a 1). Si cette
hypothése n’est pas respectée, et ce sera le cas dés que vous souhaiterez obtenir un régulateur
avec des dynamiques élevées, la robustesse n’est plus assurée. La méthode de réglage des
pondérations Q et R du retour d’état vue au paragraphe précédent reste valable. Abordons la
question du réglage de I’estimateur avant de présenter les méthodes de recouvrement du gain

destinées a rendre robuste la commande LQG.

3.6 Réglage de ’estimateur d’état

L’estimateur d’état s’appuie sur la commande u et sur la mesure y du systéeme pour donner
I’estimée de 1’état la plus plausible, compte-tenu des incertitudes et bruits affectant le modele
et la mesure.

Une premicre approche du réglage du filtre concerne le cas ou I’hypothese de départ sur le
modele est respectée; c’est-a-dire que le seul défaut du modele est d’étre affecté par des signaux

stochastiques blancs. Dans ce cas, le réglage se fera directement par une évaluation des
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variances des bruits. Evaluer le bruit de mesure b,, en observant y est direct, ce qui n’est pas le
cas du bruit d’état b,,. Ce bruit peut étre attribué a la commande u en choisissant V = BV, BTT,
avec V, la variance du bruit de mesure. Cependant, la principale source de bruit d’état d’un
modele provient généralement des erreurs de modélisation qui sont déterministes et non
stochastiques. Néanmoins ces erreurs de modélisation sont généralement mal connues et il n’est
pas aberrant d’en tenir compte globalement grace a un terme stochastique. La validation du
filtre de Kalman peut alors se faire en simulation en introduisant des erreurs sur le mod¢le telles

que des variations sur ses parametres.

3.7 Loop Transfert Recovery (LTR)

La présence d’un observateur fait, que les propriétés de robustesse du correcteur LQ ne sont
plus valables. Les méthodes de Loop Transfert Recovery (LTR ou en Frangais recouvrement
du transfert de la boucle) consistent a modifier les conditions de la synthése afin de se
rapprocher du transfert qui serait obtenu avec un retour d’état LQ. Si ce transfert est obtenu, la
robustesse est alors assurée. Depuis les premiers travaux de Doyle et Stein en 1981, de
nombreux travaux ont été menés sur ce sujet. C’est cette premiére approche qui est présentée
ici. Elle a I’inconvénient de ne pas convenir aux systemes a déphasage non-minimal Des
travaux de recherche sont attachés a ce type de systéme.

La méthode de recouvrement repose sur 1’écriture de la matrice de covariance V de la forme :
V =V,+q*BBT (3.9)
On montre que le gain de la boucle ouverte C(p)G(p) tend vers K(pl — A)™B, celui du
régulateur LQ, lorsque q tend vers I’infini. Ainsi, a partir d’un correcteur initial reposant sur
les pondérations V;, et W, on augmente petit-a-petit g jusqu’a obtenir la robustesse suffisante
Une approche duale consiste a retoucher le gain du retour d’état en choisissant la matrice de
pondération Q de la forme :
Q =Q,+q*C’C (3.10)
La méthode reste la méme : on augmente q jusqu’a obtenir la robustesse désirée. Dans tous les
cas, ’augmentation de la robustesse se fait au détriment des performances et un compromis doit
étre trouve.
3.8 Commande LQG a temps discret

A I’'image de la commande LQG a temps continu, la version a temps discret consiste en la

combinaison d’un filtre de Kalman a temps discret et d’un retour d’état. La méthode LTR

s’applique également.
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CHAPITRE 4
GENERALITES SUR LA COMMANDE ADAPTATIVE

4.1 Introduction

La terminologie de la commande adaptative désigne un ensemble de méthodes permettant
un ajustement automatique en temps réel des parametres des régulateurs mis en ceuvre dans une
boucle de commande afin de réaliser ou de maintenir un niveau de performance désiré, lorsque
les parametres du processus sont inconnus ou varient Iégerement dans le temps.

Le probléme essentiel d’un schéma de commande adaptative est d’assurer la stabilité du
systéme en boucle fermée. Nous trouvons actuellement dans la littérature des commandes
adaptatives €élaborées pour différents types de systémes parmi lesquels on trouve :

» Les systémes linéaires a déphasage minimal. Ce sont des systémes dont les zéros sont tous
dans la région stable.
> Les systémes linéaires a déphasage non minimal. Ce sont des systémes qui peuvent avoir

un ou plusieurs zéros dans la région instable.

4.2 Bref historique

= [ ’origine de la commande adaptative remonte au début des années 1950.

» [acommande adaptative a été motivée par ces problémes de I’aéronautique

= Beaucoup de recherches ont été activement menées

= Conception d’autopilotes pour une large fourchette d’altitudes et de vitesses.

= Forts changements dans la dynamique quand 1’avion change de point de fonctionnement.

= Les controleurs par feedback a gains constant n’étaient pas capables de garantir les
performances désirées lors du changement de point de fonctionnement.

= Des approches de commande sophistiquées, telle que la commande adaptative, étaient
nécessaires pour compenser ces fortes variations dans la dynamique de I’avion.

» La commande adaptative a mod¢le de référence a été proposée par Whitaker pour résoudre
le probléme de commande d’autopilotes.

= La méthode de sensibilité et la réegle d’adaptation du MIT a été largement utilisée.

=  Une méthode de placement de poles adaptatif basée sur le probléme linéaire quadratique
optimal a été proposée par Kalman.

= M¢éthode de sensibilité, régle du MIT, analyse de stabilit¢ limitée (les années 1960)
Whitaker, Kalman, Parks, etc
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= M¢éthode basée sur la technique de Lyapunov, de passivité (les années 1970) Morse,
Narendra, Landau, etc

= Preuves de stabilité globales (les années 1970-1980) Astrom, Morse, Narendra, Landau,
Goodwin, Keisselmeier, Anderson, etc

= Questions de robustesse, instabilité (Début des années 1980) Rohrs, Valavani, Athans,
Marino, Tomei, Egard, loanno, Anderson, Sastry etc

= Commande adaptative robuste (les années 1980) loanno, Sun, Praly, Jiang, Tsakalis, Tao,
Datta, Middleton, Basar, etc

= Commande adaptative non linéaire (les années 1990) Kokotovic, loannou, Narendra, Krstic,

Xu, Wang, Anderson, Safonov, Bernstein, etc

4.3 Classification des approches de commande adaptative
Les approches de commande adaptative peuvent étre classées en deux classes :
1. Commande adaptative directe (Direct adaptaive control).
2. Commande adaptative indirecte (Indirect adaptaive control).
I1 existe principalement quatre types d’approches de commande adaptatives :
1. Commande par gain programmé (Gain scheduling).
2. Commande adaptative a Modéle de Référence (Model Reference Adaptive Control).
3. Contrdleurs auto-ajustable (Self-Tuning Regulator)
4. Commande duale (Dual control)
Trois approches de base de la commande adaptative existent en boucle ouverte et fermée sont.

Les schémas-blocs de chacun de ces différentes commandes seront présentés par la suite

4.4 Commande a gain programmés (figure 4.1)

Dans ce type d’adaptation, on suppose qu’il existe une relation entre le point de
fonctionnement du systéme, certaines variables de 1’environnement, le temps écoulé et les
paramétres du processus. Les valeurs de régulateur sont prédéfinies et ajustées en fonction des
valeurs des mesures des différentes variables prises en compte. Ce type de d’adaptation s’avere
cependant suffisant pour de nombreux processus. Cette méthode suppose que les non linéarités
sont connues, car il n’existe pas de correction pour compenser une programmation incorrecte
(fonctionnement en boucle ouverte). Elle a cependant 1’avantage d’ajuster rapidement les

parametres du régulateur lors de changements rapides de la dynamique du processus.
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r Régulateur ‘ u

; — Processus
ajustable

v

A J

Figure 4.1 : commande a gains programmés

Les méthodes présentées dans la suite concernant la commande adaptative en boucle fermée,
qu’elle soit directe, c’est-a-dire avec un ajustement des parametres de controleur directement a
partir des mesures de ’indice de performance (comme modele de référence, MRAC), ou
indirecte c’est-a-dire en effectuant un ajustement des paramétres du modele du processus
(identification en ligne) suivi d’un nouveau calcul des paramétres du régulateur (commande
auto-ajustable).

Dans tous les cas, il est nécessaire dans une premiere €tape de préciser la structure et la

complexité de modele de procédé.

4.5 Commande adaptative a régulateur auto-ajustable

Schéma de la figure 4.2 comporte une boucle interne, la boucle classique processus-
contrdleur et une boucle externe comprenant un estimateur (identificateur des paramétres du
processus) et un mécanisme d’adaptation qui minimise 1’erreur entre la sortie du processus et
son estimateur. A 1’origine la commande a modele de référence traitait les problemes de
I’asservissement alors que le contréleur auto-ajustable était destiné aux problémes de

régulation.
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Specifications Estimation des paramétres
du processus

l Bouclyextenne

M¢écanisme
d’adaptation

Consigne

0 Processus \ Y (k)_>

Figure 4.2 : commande auto-ajustable (STR)

4.6 Commande adaptative par modele de référence

Commande adaptative a modele de référence fait partie d’'un ensemble de techniques
destinées a ajuster automatiquement les paramétres de controleur des systémes de commande.
Le comportement dynamique du processus est défini par un modele de référence et les
parametres de contrdleur sont ajustés par la boucle externe de fagon a minimiser I’erreur de
sortie de processus-modele. Cette méthode est utilisée en général pour les systémes continus et

déterministes. (e = y — ¥,,,). Le schéma fonctionnel est ;

Ym

v

Parameétres du Controleur

_——— -

\J

Uc >
Je - "
—>

Figure 4.3 : Schéma de la commande adaptative
a modele de référence
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4.7 Applications de la commande adaptative
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CHAPITRE 5
COMMANDE ADAPTATIVE AUTO-AJUSTABLE

5.1 Introduction

Une commande est dite adaptative si les parametres de controleur peuvent étre ajustés en
fonction des parameétres estimés du procédé a commander. La synthése de contrdleur se fait
normalement en utilisant la connaissance a priori de procédé. Lorsque ces paramétres de
systetme a commander sont mal connus ou varient dans le temps, on peut faire appel a une
commande adaptative. En général, on distingue deux niveaux de commande adaptative :
= [a commande adaptative directe : en estime directement les bons parameétres du régulateur

qui integre implicitement les parameétres du modéle.
= La commande adaptative indirecte : on procede d’abord a une estimation des parametres du

modele, puis on calcule le régulateur. La loi de commande adaptative est obtenue en utilisant

I’équivalence certaine, ¢’est-a-dire en remplacant le modele de procédé par son estimation

admissible lorsque la loi de commande est recherchée.

Ce chapitre est organis¢ en deux parties. La premicre partie regroupe la définition, principes
et différentes d’étapes des algorithmes d’identification paramétrique récursive. La seconde
partie présente la méthode de placement de pdles utilisée pour le calcul du régulateur RST.

Application de la commande auto-ajustable sur une éolienne a deux masses.

5.2 Identification paramétrique des systemes dynamiques

Dans le but de développer une méthodologie intégrée pour la commande adaptative itérative
indirecte ou auto-ajustable des systémes industriels le premier élément consiste dans
I’identification en ligne ou en temps réel des parameétres du modéle du systéme considéré. Le
principe de I’identification en ligne consiste a comparer, a chaque instantt = kT, (T, est le
temps d’échantillonnage), un signal de sortie y (k) a sa prédiction y (k). L’écart e(k) = y(k) —
y(k) appelé erreur de prédiction, est ensuite utilisé par [’algorithme d’identification
paramétrique approprié pour modifier les valeurs des paramétres (k) du modéle, de maniére

a minimiser I’erreur suivant un certain critére J (k).

5.2.1 Définition et principes
L’identification est 1’opération de construction d’un modele permettant d’analyser les
caractéristiques dynamiques d’un systéme et dont la connaissance est nécessaire pour la

conception et la mise ceuvre d’un systeéme permanent de régulation. L’identification est une
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technique expérimentale qui s’appuie sur l’utilisation de procédures et algorithmes issus
d’études théoriques. L’identification inclut quatre étapes :

1) acquisition des entrées/sorties sous un protocole d’expérimentation ;

2) choix ou estimation de la complexité du modele ;

3) estimation des paramétres du modéle ;

4) validation du modéle identifié.

Une opération complete d’identification doit nécessairement comporter les quatre étapes
indiquées ci-dessus. Il faut donc voir I’identification comme une procédure itérative telle quelle
est illustrée dans la figure 5.1. Toutes les méthodes d’estimation paramétrique peuvent étre

représentées selon la figure 5.2.

Acquisition de donnée Entrées/Sorties sous un protocole
expérimentale

A 4

\ 4

Estimation de la complexité du modéle (ou choix)

!

Choix du modeéle de bruit
Estimation paramétrique

v

A\ 4

Validation du modéle

A 4

Non l Oui

—»  Calcul de régulateur

Figure 5.1 : Méthodologie de I’identification

k k
“® I PROCEDE y (k)
” +l e(k) ALGORITHME
| 4 ) D’ESTIMATION _
P h PARAMETRIQUE (PAA)
|
MODELE

\4

AJUSTABLE 900

- ek —1)
B (k)

Figure 5.2 : Structure d’identification récursive
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5.2.2 Les étapes de I’identification

Nous donnerons dans ce qui suit les éléments de base de chaque étape de I’identification.

5.2.2.1 Acquisition des données entrée/sortie

L’acquisition des données entrée/sortie est la premicre étape de la procédure d’identification.
Etant donné que le modele résultant a I’issue de la procédure dépend essentiellement des
données utilisées, le protocole d’acquisition (et sa mise en ceuvre) conditionne la qualité de
I’identification. En conséquence, une attention particuliere doit étre donnée a toute contrainte
possible et aspect d’ordre pratique li¢ au systetme avant d’appliquer les algorithmes qui
détermineront les parameétres du modéle.

Les signaux d’excitation utilisés pour 1’identification d’un modé¢le paramétrique du systéme
doivent étre suffisamment riches en fréquence pour pouvoir exciter convenablement la
dynamique du systeme. Cela correspond a 1’utilisation des signaux qui couvrent un intervalle
de fréquence spécifié¢ avec une énergie constante a toutes les fréquences (bruit blanc ou bruit a
bande limitée). Une classe de signaux largement utilisée dans le domaine pratique de
I’identification est I’ensemble des signaux pseudo-aléatoires. Les séquences binaires pseudo-
aléatoires (SBPA) sont des successions d’impulsions rectangulaires modulées en largeur qui
approchent un bruit blanc discret. Les signaux SBPA sont engendrés a partir d’un registre a
décalage bouclé. La longueur maximale d’une séquence est 2¥ — 1, ou N est le nombre de

cellules du registre. Pour des détails sur la SBPA.

5.2.2.2 Définition d’une classe de modeles

La structure choisie pour les modéles linéaires et invariants dans le temps est

_2B@™h
A(@™Y)

Flg)=q (5.1)

ou

A =1+a1q +aq % ...+ a,q™

B(@Y) =biqg +byq ..t bpqg™

d=n—-m
d est le retard du systéme en nombre entier de la période d’échantillonnage et A(q~1), B(q™1)
sont des polyndmes en g~ ! (opérateur de retard) d’ordre 7 et m respectivement. Un modéle de
ce type exprime la relation entre ’entrée u(k)et la sortie y(k) du systeme qu’on désire estimer

sous I’hypotheése qu’un bruit additif sur la sortie soit présente et que.
y(k) = F(qQu(k) + w(k) (5.2)
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ou w(k) représente 1’effet du bruit.
Les principaux mod¢les de bruit sont :

e 1% cas

C -1
w(k) = %e(k) (5.3)

Ou e(k) est un bruit blanc discret gaussien de valeur moyenne nulle et d’écart type o, dans ce

cas, (5.2) est un modele ARMAX (Auto Regressive Moving Average with eXogenous input).

o 2%mecqq

__ @ |
A(q=HD(@™)

Dans ce cas, (5.2) est un modéle AR-ARMAX (pour C(q~1) = 1 ce modele est appelé AR-

ARX).

w(k)

(k) (5.4)

Les polyndomes C(g~1) et D(q~1) sont supposés asymptotiquement stables et ont la forme :

C@H=14+cq ' +cq % +cpeq™=14+q"1C*"(@q™H) (5.5)

D@V =1+d,qg7 +dq%..+dpuq ™ =14+qD*(qY) (5.6)

Les deux structures (5.3) et (5.4) correspondent au filtrage de la perturbation par les poles

de modele de procédé. Nous supposons aussi que la structure choisie (ordre des différents

polyndmes) pour I’estimateur est telle qu’il existe un vecteur des paramétres 8 pour lequel
I’erreur de prédiction e(k), dans un environnement déterministe (sans bruit), est nulle.

L’équation de I’estimateur a posteriori est donnée par :

. _aBl@™ k)
y(k) = F(q, k)u(k) = q dm

gk +1) =BTk + DI(k) (5.8)

u(k) (5.7)

ou
A k) =1+ a;(k)g "+ a,(k)qg™? ..+ ay(k)g™

B(q~',k) = by(k)q™' + by (k)q ™% ...+ byn (k)q™™

BT (k) = [ay(k), az(k), ..., an(k), by (k), by (K), ..., by (k)] (5.9)
T (k) = [=9 (), =9k = 1), o, =9k = n+ 1), ulk = d), ., ulk —d —m + 1] (5.10)

B (k) est le vecteur des paramétres et 9 (k)est le vecteur des mesures (appelé aussi régresseur).
La démarche pour le développement des différentes méthodes d’identification peut se résumer
de la facon suivante :

1) Choix d’un modéle “procédé + perturbation”.
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2) Construction d’estimateur optimal qui, pour § = 8 assure les conditions pour une estimation
non biaisée.
3) Choix du critére de I’erreur.

4) Construction des algorithmes de minimisation du critére (algorithmes itératifs ou récursifs).

5.2.2.3 Algorithmes d’identification récursifs
Plusieurs approches peuvent étre considérées pour engendrer des algorithmes récursifs :
- Transformation d’algorithmes non récursifs en algorithmes récursifs
- Utilisation de la technique d’optimisation du gradient dans le domaine temporel,
- Utilisation de la théorie des systémes adaptatifs,
- Rapprochement avec filtre de Kalman.
Pour une représentation exhaustive de différentes approches. Mais quelle que soit 1I’approche

utilisée pour les obtenir, les algorithmes récursifs ont toujours la forme générale.

Bk +1) =pBk) +P(R)I(k)e(k + 1)

= p(k) + P(k + DI(K)E(k + 1) (5.11)
ek+1) =yk+1) -9k +1) (5.12)
P~1(k + 1) = 4, (k)P (k) + A, (K)I(K)IT (k) (5.13)

0<Ak)<1,0<A,(k)<2 PO)>0
P Y(k) >aP™1(0); 0 < a <+
é(k+1)
1+ 9T (k)P (k)I (k)

ek +1) = (5.14)

L’ensemble des équations (5.11), (5.12), (5.13) et (5.14) porte le nom d’algorithme
d’adaptation paramétrique (Parametric Adaptation Algorithm PAA). Dans 1I’équation (5.14)
9(k)é(k + 1), correspond a une évaluation de gradient du critére a minimiser, é(k + 1) et
€(k + 1) correspondent aux erreurs d’estimation, €(k + 1) a le sens d’une erreur d’estimation
a priori (elle dépend de B (k) et e(k + 1) a le sens d’une erreur d’estimation a posteriori (elle
dépend de B (k + 1)), P(k + 1) correspond au gain d’adaptation (pas de gradient). Ce pas est
en général variable dans le temps et la variation de ce pas est définie par I’équation (5.13) qui,

en utilisant le lemme d’inversion matricielle, peut s’écrire :

P(R)I (k)" (k)P (k)

O :
i TP

P(k+1) =

P(k) —

RE3 (5.15)
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Les séquences A, (k) et A,(k) permettent de modifier la loi de variation du gain d’adaptation
dans le temps. Dans de nombreuses applications il est néanmoins utile d’utiliser les séquences

A4 et A, pour obtenir d’autres caractéristiques pour la variation du profil du gain d’adaptation.

5.2.2.3.1Choix du gain d’adaptation

Considérons I’équation (5.13), a noter que A, (k) et 1, (k) dans I’équation (5.15) ont un effet
opposé, 1, (k) < 1tend a augmenter le gain d’adaptation (I’inverse du gain décroit), 4, (k) tend
a décroitre le gain d’adaptation (I’inverse de gain augmente). Pour chaque choix des séquences
A1 (k) et A, (k) correspond un profil de variation du gain d’adaptation et une interprétation en

termes de critére d’erreur qui est minimisé par 1’algorithme PAA.

a) Gain constant (’algorithme de gradient amélior¢)
Dans ce cas

ME)=24=1; 1,(k)=21,=0 (5.16)
C’est I’algorithme le plus simple mais aussi le moins performent, car il n’est pas facile a choisir
les meilleures valeurs des gains d’adaptation et les performances sont trés sensible a ces valeurs.
On peut utiliser cet algorithme pour identification des systémes stationnaires ou variables dans

le temps, mais avec peu de parameétres (< 3) et en présence d’un nivaux de bruit réduit.

b) Gain décroissant
Dans ce cas
Cet algorithme est appliqué en général pour I’estimation des parameétres des processus

stationnaires.

¢) Gain est variable et décroissant
Dans ce cas
Pour éviter la convergence vers zéro du gain d’adaptation, ces algorithmes sont initialisés soit

en détectant un changement de la dynamique du processus, soit a période fixe.

d) Facteur d’oubli fixe

Dans ce cas
0< 41 <1; Lk)=2,=1 (5.19)
Les valeurs typiques pour A4; sont de 0.95a 0.99. L’effet de (4; < 1) est d’introduire une

pondération de plus en plus faible sur les données anciennes (i < k). C’est pour cette raison

que 44 est appelé « facteur d’oubli ». Le point maximum est donné a la dernicre erreur. Ce type
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d’algorithme convient pour I’identification des systémes lentement variables. Le gain
d’adaptation a une capacité de poursuite (convergence exponentielle), dans le cas ou les signaux
d’entrée-sortie sont excitants. Or cette condition n’est pas réalisée lorsque le régime stationnaire
est atteint. Dans ce cas, le gain d’adaptation tend a croitre exponentiellement et conduit a
I’explosion de vecteur des paramétres.
e) Facteur d’oubli variable
Dans ce cas

Lk)=2=1 L1(k)=244(k—-—1)+1-2; 0<1; <1 (5.20)
Les valeurs typiques pour 1, (0) et A, sont de 0.95 a 0.99, A, (k) peut étre interprétée comme

la sortie d’un filtre de premier ordre avec un gain statique égale a 1 qui est:

(5.21)
Ce type de profil est trés recommandé pour 1’identification des systémes stationnaires.

f) Trace constante

Dans ce cas, 4, (k) et A, (k) sont choisis automatiquement a chaque pas pour assurer une trace

constante de la matrice de gain.

tr(P(k + 1)) = tr(P(k)) = tr(P(0)) =né (5.22)

ou n est le nombre de paramétres et § est le gain initial (valeurs typiques § = 0.1 a 4), la matrice

P(0) ayant la forme :

§ - 0
PO)=[: -~ : (5.23)
0 - 6 uxn
Les valeurs de 1, (k) et A, (k) se déterminent a partir de 1’équation :
P (k)9 (k)" (k)P (k)
tr(P(k+1) = tr IP(k) — = = 5.24
( NG Y () + 97 (P30 628
En fixant le rapport y (k) = 40 (I’équation (5.24) est obtenue a partir de (5.15)). Ce type de

Ax (k)

profil convient pour I’identification des systémes a parameétres variables dans le temps.

5.2.2.3.2 Choix du gain initial P(0)

Le gain d’adaptation initial P(0) est de la forme donnée par 1’équation (5.23). En absence
d’information initiale sur les parameétres a estimer, on prend les estimations initiales nulles et
on choisit le gain initial (§=1000). On peut interpréter le gain d’adaptation comme une mesure

de la précision de I’estimation, ceci explique le choix de P(0).
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5.2.2.4 Stabilité de I’algorithme d’identification PAA
L’erreur paramétrique est définie par
Bk) = Bk) - B (5.25)

Pour analyser les méthodes d’identification itérative (récursive), nous disposons d’un
résultat général de stabilité qui est obtenu en prenant en compte la structure équivalente a
contre-réaction des algorithmes (voir la figure 5.3). Nous ferons les hypothéses suivantes :
i) L’algorithme d’adaptation paramétrique est donné par les équations (5.11) a (5.14) ;
ii) La commande adaptative conduit a écrire I’erreur généralisée, ou I’erreur d’adaptation a

postériori, sous la forme

e(k +1) = —H(g™HB" (kI (k) (5.26)

\ -1\ Hl(q_l)
ou H(g™) = TR } (5.27)
avec H@YHY=14+qH (@Y =1+ z hig~/;i=1,2 (5.28)

j=1
ou 9 (k) est une séquence bornée ou non bornée.

iii) § est une valeur constante du vecteur des paramétres.

Y

v

! .

; 2

LU 007 et D) ! Pl e 0 e
W - |_ BuoF+ ’

1

Figure 5.3 : Représentation équivalente a contre-réaction associée a I’algorithme PAA

Théoréme 5.1: Sous hypothese (1), (ii) et (iii) si :

— A
HzYH=H(zY - 72 (5.29)
est une fonction de transfert strictement réelle positive ou :

max A, (k) < 4, < 2 (5.30)
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alors pour tout €(0) et £(0) bornés, on a :

(1) lim Y etk +1) <C (6(0),[?(0)); 0<C< oo (5.31)
() lim e(k+1)=0 (5.32)
() Jim [8= B+ D] 9l) =0 (5.33)
4) kl_i)rpoo[ﬁ(k +1) = BU"PH(R)[Bk + 1) = (k)] = 0 (5.34)
(S5) [Ble+1)—BI"PL)|[fk +1)—B] <R, < (5.35)

(6) si H(z™') est strictement passive en sortie :

Jim [1+ 97 (PO (k) ]e? (k + 1)

. [€(k + 1)]?
= lim — —— = (5.36)
k—>+00 1 + 9T (k)P (k)9 (k)
si les conditions suivantes sont vérifiées
P Y(k) = aP~1(0); P(0)>0; a>0; Vk=0 (5.37)
donc
Jim PU)I(k)e(k +1) = Jim [Blk+1)—L(k)] =0 (5.38)
dim [|3Ck +1) = U] = 0; k < oo (5.39)
|1BUO|| < Ry < o0; Yk =0 (5.40)

La relation (5.32) de ce théoréme assure la convergence vers zéro de I’erreur d’adaptation a
postériori, les autres résultats prouvent que les parameétres du processus convergent et 1’entrée

et la sortie du systéme sont bornées. La démonstration de ce théoréme se trouve dans’.

5.2.2.5 Validation des mode¢les identifiés

La derniere étape de la procédure d’identification est la validation du modéle obtenue au
terme de la phase d’identification paramétrique. Dans le paragraphe précédent, on a mentionné
la méthode d’identification récursive utilisée. Paralléelement, nous allons rappeler les techniques
de validation associées a cette méthode. Pour les méthodes d’identification basées sur le
blanchissement de I’erreur de prédiction, il est nécessaire de vérifier que 1’erreur de prédiction,
obtenue comme différence entre la sortie réelle du systeme y(k)et la sortic du modele
identifi¢ y(k), est assimilable au bruit blanc. Si on note avec €(k) I’erreur de prédiction, cela
implique :

kl_iH]oo[e(k)E(k -N]l=0,j=1,2,.. (5.41)
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Le test de blancheur appliqué a la séquence €(k) centrée (la valeur moyenne a été soustraite)
est:

N
1 R(O
R(0) = Nz e2(k), Ry(0) = RE 03 (5.42)
R(j) = Nz e(k)e(k —j), Ry() = R((é)) =12, ..., Jmax (5.43)
ou Jmax = max(n, m+d) (5.44)

et les Ry (j) sont les estimations des auto corrélation (normalisées). La condition (5.41) devient

alors :

Ry(0) =1; Ry() =0; j=1 (5.45)

Dans les situations pratiques cela ne se produit jamais car €(k) contient des erreurs
résiduelles de structure et le nombre d’échantillonnes utilisés ne peut pas étre infini. En
conséquence on considére comme critére pratique de validation (sous 1’hypothése que la

séquence Ry (j) (j # 0) tend vers une distribution gaussienne a valeur moyenne nulle et écart

1
type o = «/_N) :
2.17

Ry(0) = 1; |Ry()I SW; j=1 (5.46)

ou N est le nombre d’échantillonnes. Une comparaison dans le domaine temporel entre y (k) et
¥y (k) termine la phase de validation (pour les détails théoriques sur la méthode des moindres

carrés voire I’annexe A).

5.3 Régulateur RST numérique syntheése par placement de poles
La deuxiéme étape de la méthodologie de commande adaptative d’un systéme industriel est

la conception d’un régulateur numérique sur la base d’'un modele du procédé (identifié en
boucle ouverte ou en boucle fermée). La méthode retenue pour la synthése de régulateurs
numériques robustes dans le cas linéaire est le placement des poles avec calibrage des fonctions
de sensibilité. Cette méthode repose sur un ensemble de techniques qui ont été développées au
cours de ces dernieres années. Comme pour toute structure de correction, le concepteur devra
déterminer les paramétres de correction (ici les polynomes R, S et T) pour assurer :

- la stabilité en boucle fermée ;

- le suivi asymptotique d’une certaine classe de consigne ;

- le rejet asymptotique d’une certaine classe de perturbation ;

- un régime transitoire satisfaisant.
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Cependant, le respect des spécifications n’est pas suffisant pour assurer un fonctionnement
satisfaisant de ’installation. Il faudra tenir compte :

- des saturations de procédé¢ ;

- du niveau du bruit de mesure ;

- des erreurs de modélisation.

5.3.1 Principe de synthése du régulateur RST

Le schéma de régulation qui sera considéré comme base pour les discussions qui suivent est
celui représenté en figure 5.4. Le procédé est contrélé par un régulateur polynomial de type R-
S-T a deux degrés de liberté (permettant d’imposer un comportement différent pour la poursuite
et la régulation). Le modé¢le échantillonné du procédé F(q) et les polyndmes du régulateur ont
les formes suivantes :

B(@")  biq ' +b,q 4+ bypg™

F = = 5.47
@) A(@q™Y) 1+4+agt+aqg2+--+a,q™ (47)
et
R@™M) =1+nqg +nq 2+ +nq" (5.48)
S@ D) =so+51a7" +5,7%+ - +5,,q7" (5.49)
T@ ) =to+tq  +t,q 2+ +t,q ™ (5.50)

Avec n,m,n,,ng,n; les degrés des polyndmes et d = n — m est le retard pur du modele. La
période d’échantillonnage en seconds de systéme est T, et ¢~ est soit I’opérateur temporel de

retard, soit I’opérateur fréquentiel avec w, € [0, TE] la pulsation discréte normalisée.
e

régulateur Pertg(?‘:)ation
S i modele
ye(k) : — V'), ~ (k) 1 éu(k) B ()
ek L )
|
| S@™") P A
w(k)

bruit de mesure
Figure 5.4 : Structure de la commande RST

La loi de commande dans le domain

e temporelle est :
R(g~Yu(k) = T(q Dy (k) — S(@™ Dy (k) (5.51)
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qui exprime la commande u(k)comme moyenne filtrée des mesures y(k),y(k — 1), ..., des
valeurs précédentes de la commande u(k — 1), u(k —2),..., et les consignes (y.(k —
1),y.(k — 2),...) qui est enregistrée dans le microcontroleur ou générée a partir d’'un mode¢le

de référence :

F,(q) = Bn(q7)

=A@ (>32)

avec
Ap(@ Y =14+al*¢ +al'q >+ +apq™

Bn(q™") =b*"q '+ bT'q % + -+ bqg™™

La fonction de transfert en boucle fermée, entre la référence filtrée y.(k) et la sortie y(k)

(boucle de poursuite), est donnée par :

T(z"H)B(z™1)

Hpr (2) = App(z71)

(5.53)
ou

A(z7DRE™) + Bz H)S(z™) = Agr(z™1) (5.54)

Dans 1’équation (5.54), le polyndme Agr(z™1) représente les poles désirés de la boucle

fermée. La partie gauche de (5.54) est le dénominateur des fonctions de sensibilité.

5.3.1.1 Les spécifications des performances
Un probléme de commande est généralement décrit par un cahier des charges qui définit les

spécifications a atteindre, dans le domaine temporel et/ou fréquentiel.

5.3.1.1.1Spécifications temporelles

Les spécifications pour la commande d’un systéme sont souvent liées aux caractéristiques
de la réponse indicielle du systéme.
= Le temps de montée t,,est le temps nécessaire au systeme pour que sa sortie passe de 10%
a 90% de sa valeur finale.
= Le dépassement maximal D% est la différence entre la valeur maximale prise par la sortie
du systéme et la valeur finale divisée par la méme valeur finale.
= Le temps du premier maximum T), est I’instant caractérisant le premier maximum.
= Le temps d’établissement ¢, a X% ou encore le temps de réponse est le temps nécessaire
pour que la réponse du systeme demeure dans la fourchette +x% autour de la valeur finale (en

prend couramment x% = 10%, 5% ou 2%).
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Ces quatre quantités permettent de caractériser assez complétement le régime transitoire
d’un systeme. Si elles sont assez facilement mesurables pratiquement, leurs expressions

analytiques ne sont pas toujours évidentes a ¢tablir.

5.3.1.1.2 Spécifications fréquentielles
Les spécifications pour la commande d’un systéme peuvent étre aussi exprimées en termes

des caractéristiques de la réponse fréquentielle du systéme.

= La bande passante BP : est la fréquence maximale a laquelle une sinusoide a la sortie du
systéme peut reproduire, sans trop d’atténuation, une sinusoide sur la consigne. La quantité BP
est une mesure de la vitesse de réponse d’un systéme et sa valeur correspond a la fréquence a

laquelle le gain en dB devient inférieur & —3dB.

= Le facteur de résonance MR : est le rapport entre le gain maximum du module de la réponse
fréquentielle est le gain a la fréquence nulle. La quantité MR est une mesure de I’amortissement
du systéme. L’étude d’un systéme en boucle fermée dans le domaine fréquentiel est
extrémement importante. Car, il permet d’évaluer ses caractéristiques de robustesse de manicre
trés significative.
5.3.1.1.3 Les marges de robustesse

Nous rappelons ici les marges de robustesse (voir aussi la figure 5.5) communément utilisées
pour mesurer la réserve de stabilité du systeme en boucle fermée par rapport a une variation de
la fonction de transfert Hg,(e/“) de la boucle ouverte :
* La marge de gain MG : correspond a ’inverse du gain de Hg,(e’/®) a la fréquence ou le
déphasage est égale a —180. Physiquement, elle représente donc la quantité de gain que I’on
peut ajouter (en dB) dans la boucle avant que la boucle fermée ne devienne instable. Des valeurs
typiques sont MG = 2 (6dB).

La marge de phase Mo : définit la marge de sécurité sur la phase. Elle est donnée par (M@ =
180 — arg (HBO (ej“’w)) ; oll w,, est la pulsation a laquelle |Hp,(e/®¢)| = 1. Physiquement

la marge de phase représente la quantité de phase que I’on peut perdre dans la
= boucle avant que la boucle fermée ne devienne instable. D’un point de vue pratique, un

réglage assez courant (mais on peut évidemment avoir d’autres exigences) est d’ imposer :

{MG=10

Mg > 45° (5.55)
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= Lamarge de module AM : est la mesure de la distance minimale entre le point critique dans
le plan de Nyquist (—1, 0j) et ’hodographe de la fonction de transfert de la boucle ouverte

(AM = ?\;111341 + Hpo (e’ “’<P)|). La valeur de AM mesure I’incertitude additive non-structurée
w

toléré par le Hp, a toutes les fréquences, on donne souvent comme contrainte AM >
0.5 0uAM > —6dB.

= La marge de retard At: est le retard supplémentaire maximal tolérable pour Hp,
. [Ag; . , .
At = min [%] avec Ag; marge de phase en w; exprimée en rad. C’est le retard parasite
l

maximum que 1’on acceptera. Pour les systémes temps discret échantillonnés avec une période
d’échantillonnage T,, une condition typique a atteindre est At > T,. Par ailleurs, une bonne
marge de module implique des bonnes marges de gain et phase, mais I’inverse n’est pas toujours
vrai (pour des détails sur les relations entre les marges voir [Lan02]). Les marges de module et

de retard sont des indices plus fiables.

AmF(w)

TN 1\Re(F(jw))
~ M
AN ¥

W = Wer

|Hgol =1
Figure 5.5 : Marges de robustesse

5.3.1.2 Calcul de la dynamique de régulation
Les polyndmes R et S du régulateur sont généralement factorisés en une partie fixe (les
polyndmes R et Sy imposés par les spécifications de synthese, soit fixés pour calibrer des

fonctions de sensibilité) et une autre partie liée au placement de poles (R, et Sy).

R(z™Y) =Rs(z" YRy (271
{S(<z-1)) = Sﬁéz-lisoo((z*)) 520
Les polyndmes R(z™1) etS(z™1) de maniére générale sont les solutions de 1’équation de Bézout
(5.57) de placement de poles.

A DR(Z"DRo(z™) + B(z71)Ss(z71)Se (z71) = App(z™)
= Afp(z™Y) Agp(z™) (5.57)
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Les poles désirés doivent étre fixés afin de satisfaire les spécifications de performance et de
robustesse imposées. L’identité de Bézout a une solution unique minimale sous les conditions
suivantes :

deg(Apr(z™Y)) =ngp <n+m—1;

deg(R(z™H)) =n,=m—1;

deg(S(z™)) =ng=n-1 (5.59)
ou si on consideére les parties fixes imposées au régulateur, la condition devient :

deg(Ry) =n,, =m+ deg(Sf) —1; deg(Sy) =n, =n+ deg(Rf) -1

0

5.3.1.3 Calcul de la dynamique de poursuite

La partie T(z~1) de la poursuite est utilisée dans le régulateur pour compenser la dynamique
de la boucle fermée afin que la fonction de transfert entre y.(k) et y(k) soit trés proche du
modele de référence F,,(z™1). La fonction de transfert de la boucle de poursuite, en tenant

compte de ce modele de référence est exprimée comme :

Bz )T(z™") Bp(z™)
Apr(z™)  Ap(z™h)

H,, (z) = (5.60)

Le polyndome T (z~1) peut avoir I’une des trois structures suivantes :

-1
= T(z7Y) = % qui correspond a simplifier les poles imposés par la boucle de

régulation, normaliser le gain statique a 1 et imposer comme dynamique de poursuite de

modele spécifié par le modeéle de référence E,,(z™1).

= T(z7)) = AGr(z~1)AGr(D)

e qui correspond a simplifier les seuls pdles dominant (donnés par

le polyndme A%;(z~1) de la régulation en laissant les pdles auxiliaires inchangés
(spécifiés par A%(z71)) et son gain statique est ajusté.
» T(z7Y) = A'%S) est un gain constant (= S(1) si R(z™1) contient un termel — z~1) et on

impose la méme dynamique soit en poursuite qu’en régulation F,,(z) = 1.

Dans la pratique, on choisit souvent un modeéle de référence de 2°™ ordre avec la dynamique

désirée de la poursuite.

5.3.1.4 Calcul du régulateur : comment placer les poles
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On a montré auparavant que 1I’emplacement des pdles de la boucle fermée caractérise
complétement la nature de la réponse temporelle du systéme et ses propriétés de robustesse. 11
est intéressant de fournir un ensemble de régles qui puissent aider a déterminer la configuration
des poles qui conduit a la boucle fermée désirée.

Dans la pratique on classifie les pdles en rapides et lents (ou dominants), en faisant référence
a la rapidité avec laquelle le mode naturel associé tend a disparaitre. On placera, comme poles
dominants, les poles qui correspondent a la dynamique désirée (spécifiée par n paires de pdles
complexes conjugués placés aux fréquences désirées). On rappelle que du point de vue de la
robustesse un bon choix initial (si on ne veut pas accélérer le systéme) correspond généralement
a imposer en boucle fermée les pdles de la boucle ouverte (si stables et bien amortis, les cas
échéants on imposera un amortissement compris entre 0.7 et 1). Les poles qui restent (pdles
auxiliaires) sont utilisés pour améliorer la robustesse de la boucle fermée. En général on place

des poles de la forme :
fr(z7) =1 —az )" (5.61)

ou «a est le pole en haute fréquence de multiplicit¢ n, placé suffisamment loin de poéles

dominants mais tel que les marges de robustesse soient respectées, et

ng<n+m-—1+deg (Sf(z‘l)) + deg (Rf(z‘l)) — deg (A%F(z‘l)) (5.62)
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Problémes

Probléme Nel: On considére la fonction

V(x) =xTAx +bTx + ¢
Ou x et b sont des vecteurs colonnes, A est une matrice et ¢ est un scalaire.
1- Vérifier que le gradient grad,V(x) = (A+AT)x+b

2- Utiliser la premiére question pour calculer le minimum x*.

Probléme No2 : considére

y(k) = bou(k) + byu(k — 1) +e(k),k =1,2, ...

{e(k)} est une séquence indépendante normale N (0, o) variable aléatoire.
1) Déterminer 1’estimation des by, b; utilisant les la méthode des moindres carrés avec un
échelon comme entrée {u(k)} .

2) Si {u(k)} est un bruit blanc interpréter les résultats.

Probléme Ne3 : On considére un procédé du double intégrateur donné par la fonction de

transfert
G(p) = !
p) = oz
En prenant comme entrée de référence un échelon. Souhaitant déterminer les parametres d’une
loi de commande de type RST permettant d’annuler 1’erreur statique en un temps fini.
1- Trouver le mod¢le discret du procédé.
2- Calculer le régulateur RST utilisant 1’équation de diophantienne. Avec T, = 1s

3- Etudier la réponse par rapport un échelon.

Probléme Ne4 : Soit le systeme

1
G =—
s(@) P2+ 1

1- Montrer que la fonction de transfert de ce systtme échantillonné a la période

T,(convertisseur numérique analogique modélisé par un bloqueur d’ordre zéro) est :

(1—-cos(T))(z+1)
z2—2cos(T,)z+ 1

G(z) =

2- Choisir en premiére approximation pour T, = 1s, calculer la fonction de transfert G (z).
3- Ecrire la fonction G (z)sous la forme de z71.

4- Donner le schéma de principe d’un systéme asservi avec la commande R.S.T.

48



CHAPITRE 5 COMMANDE ADAPTATIVE AUTO-AJUSTABLE

5- On souhaite calculer un correcteur sous forme R.S.7 qui assure les spécifications suivantes
(¢=0.7,w, =5rad/s):

- Calculer le polyndme de dénominateur 4,,(z~1) du modeéle de référence G,,(z)

- Déterminer les degrés minimaux pour les polyndomes R, S pour assurer les spécifications.

- Donner la fonction de transfert en boucle fermé entre la sortie et la consigne Y,.(z) et Y (2).

- Calculer les polyndomes R(z™1), S(z71) et T(z™1) qui assurent les spécifications de

régulation et de poursuite.

Indices :
11 p
p(2+1) p p*+1
1 2_ T
Transformée enz: Z (—) = LetZ( p 2) _ _ z7—zcos(woTe)
v/ z-1 p?+wj 22-22c0s(woTe)+1
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CHAPITRE 6
COMMANDE ADAPTATIVE A MODELE DE REFERENCE

6.1 Introduction

La commande adaptative a modele de référence (MRAC : Model Reference Adaptive
Control) est une des commandes adaptatives les plus connues. Cette approche de commande a
été originalement proposée pour résoudre un probléme dans lequel les spécifications de
performances sont données en termes d’un modele de référence. Ce modele de référence donne
une indication sur comment la sortie du systéme doit idéalement répondre a un signal de
commande. Son principe de base (détaillé dans la suite) consiste a adapter les parameétres du

controleur en fonction de I’erreur entre le systéme et le modele (voir la figure 6.1).

Modéle de Ym
référence

Paramétres du Contrdleur
Meécanisme

> d’adaptation

Figure 6.1 : Schéma de la commande adaptative
a modele de référence
6.2 Principe de base
Comme il est montré sur la figure 6.1, un schéma de commande adaptative compote
principalement deux boucles :
= Une boucle interne qui a la structure d’une boucle classique de régulation,

= Une boucle externe qui est la boucle adaptative.

Les parametres du régulateur adaptatif sont calculés a partir de I’erreur e = y — y,,, par la
boucle adaptative pour un modele de référence donné. On peut classer les méthodes

d’ajustement des parametres du correcteur adaptatif @ modeéle de référence en deux catégories
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1) Les méthodes du gradient,

2) Les méthodes basées sur la théorie de la stabilité.

6.3 Les méthodes du gradient
6.3.1 Régle d’adaptation du MIT

Soit un systéme en boucle fermée dont le correcteur possede un seul parametre 6. Soit y,, la
sortie du modéle de référence et e = y — y,,, I’erreur de poursuite du modele de référence. On

consideére la fonction colt suivante :

1
](9) = Eez (61)
0 Représente le vecteur des paramétres du controleur a adapter

Pour minimiser J, il est logique de faire varier les parameétres dans la direction négative du

gradient de J :
do aJ de
PR TR (2
df  de  dedd  (de\’
7= s e () (63)

de ey eqel, \ . . Py
38 représente la sensibilité de 1’erreur par rapport aux parameétres. Il indique comment I’erreur

est influencée par une variation de parametres.

6.3.2 Autres critéres

D’autres critéres peuvent étre utilisés

J(6) = le (6.4)
Ce qui donne en appliquant I’algorithme du gradient la régle de mise a jour suivante :
do aJ de .
= V35" —y%ﬂgn(e) (6.5)
On utilise aussi une autre régle de mise a jour appelée sign-sign algorithme
do a] . de\ .
P _VO_H = —ysign (%) sign(e) (6.6)
S-i.f};r‘z(c’-)
1 , >0 +1
Sign(e) = {0 , e= R
-1 , e<0 <
-1
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Ce dernier algorithme est simple et rapide. La version discréte est utilisée en
télécommunications.
Exemple 6.1 (Commande adaptative en boucle ouverte), soit le systéme linéaire monovariable

représenté sur la figure 6.2.

Y

k,G(s)

_r
5

Process

kG(s)

Figure 6.2 : Adaptation de gain en boucle ouverte

La fonction de transfert du systéeme kG (s) avec G(s) est connue mais le gain k est inconnu.
L’objectif est de trouver un correcteur en boucle ouverte pour que systeme corrigé possede la
fonction de transfert de modele de référence G,,(s) = koG (s) :
On utilise pour cela un correcteur proportionnel. La commande est alors donnée par
u = 0u, (6.7)

Avec @ le paramétre ajustable du correcteur et u, la consigne. Cette fonction de transfert est
¢gale a G,,(s) si le paramétre 6 est choisi

ko
Tk

Le gain k est inconnu. On utilise alors la régle MIT pour la mise a jour du parameétre 6

0 (6.8)

L’erreur est

e=Y~—VYmn= kG(p)euc - kOG(p)uc = G(p)(ke - ko)uc

La régle MIT donne la loi d’adaptation suivante

do , de ko k
i AT A —ykk—OG(p)uce = Vg, Ymé = T¥Ime (6.9)
Ouy-= —)7%0 a été introduit a la place de y

Le schéma de la commande est donné par la figure. 6.2

Remarque 6.1. Pour avoir le signe correct de y, il faut connaitre le signe k.
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Exemple 6.2 (Commande adaptative d’un systéme du premier ordre). Soit un systéme
linéaire décrit par un modele du premier ordre :

dy
— 1
; ay + bu (6.10)

Ou u est la commande variable, et y est la sortie mesurée. Supposant que, on veut obtenir un

systéme en boucle fermé décrit par

d
Dm _ —AmYm + bpuc (6.11)
dt

Soit le contréleur donné par

u=_06u.—0,y (6.12)
En remplagant u dans (6.10)

dy

P + b(O,u, — 6,y) = —(a+ bO,)y + bO,u, (6.13)

Qui représente le systéme en boucle fermée. On aura un comportement similaire (perfect

model-following) au modele de référence si :

b
bm=b91=>91=9{)=7m

a, —a
am =a+bh,=0,=09= ’"b

L’ordre du systéme et du modele de référence étant le méme, il est possible de faire une

: : . o . : . et e d
poursuite parfaite du modele de référence. En introduisant 1’opérateur de différentiation p = =

I’équation (6.13) devient
b6,

= — t — —
p+a+b02uce €=y Im

y

On calcul alors

de _ b
96, p+a+bo, e

de b2, b

90,  (+a+tbd)r T pra+be,’

On ne peut pas utiliser directement cette formule, car les parametres du systéme a et b sont
inconnus, une approximation est donc nécessaire. On considére maintenant cette approximation
basée sur I’observation, p + a + b8 =~ p + a,, quand les paramétres donnent une poursuite
parfaite de mod¢le de référence. On utilisera donc I’approximation.

p+a+bl,=p+a,

Par conséquent
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do, am

e 14
dt y(p+amuc)e (6.14)
do, am

dt _V<p+amy>e (6:12)

Avec y = yb/a,,, le signe de paramétre b doit étre connu pour avoir un gain y de signe correct
On remarque que, le filtre a également été normalis€ pour que son gain statique égal unité.

Schéma bloc d’implémentation

= (G, (3

Oy py
. el -
S+ a,, s+ a,,

Figure 6.3 : Schéma bloc d’une commande adaptative MRAC
pour un systéme de premier ordre

Application a un systéme de premier ordre

Les différents paramétres sonta = 1,b = 0,5 et a,, = b,, = 2, I’entrée est un signal carré avec

une amplitude égale 1, ety = 1.

L’évolution de la sortie et la commande

am -.
",Ztvt_f \_/ Lr—kf—k

-1 - ".:“-r.- k=--..— —
. -
0 0 <40 100
Time
st i
. . - M A -
ot | ] | |
- - L—— - — —
-5 . . . . -
0 20 40 &0 R0 100
Time

Figure 6.4 : L’évolution de la sortie et la commande
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& 80 100
Time

0 20 40 1] 1] 100
Time

Figure 6.5 : Evolution des paramétres selon différents
gains d’adaptation

Remarque 6.2 : Méme si lerreur e = y — y,,, = 0, cela n’implique pas forcément que 8 — 6°

qui est la vraie valeur des parameétres.

6.3.3 Normalisation de la régle MIT
Pour I’algorithme de la régle MIT :

do
I ype (6.16)
Ou on a introduit
de
?="%
La normalisation de 1’algorithme est donnée par
%=%,a>0 (6.17)

Rend I’algorithme moins sensible au signal d’entrée. Le paramétre a est introduit pour éviter

les difficultés quand ¢ est petit.

6.4 Theorie de Lyapunov
I1n’y a pas de garantie qu’une commande adaptative basée sur la régle MIT donnera un systéme
en boucle fermée stable.
6.4.1 Stabilité des systéme non linéaires a temps variant
Soit le systéme non linéaire libre a temps variant

x=f(x,1t) (6.18)
On va rappeler les principales définitions relatives a la stabilité.

Définition 6.1 (Point d’équilibre). Le point x, = 0 est un point d’équilibre du systéme (6.18)
s
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f(xe,t) =0Vt=0
Définition 6.2 (Stabilité uniforme). Le point d’équilibre x, = 0 est stable si
Vt, =0 Ve > 0,36(ty,€) : |lx(t)ll < 8(e, ty) = |lx(O)|| <e Vt=0
Si & (ty, €) = 6(¢) est indépendant de t, alors le point d’équilibre est uniformément stable.

Définition 6.3 (Stabilité asymptotique) Le point d’équilibre x, = 0 est asymptotiquement
stable s’il est stable et qu’en plus :

dR > 0,Vty, =0 ||x(ty)l| <R = tlim x(t)=0

On introduira maintenant la notion de fonction de classe k
Définition 6.4 (Fonction de classe «). La fonction continue a: [0, a) — [0, ) est de classe k si
a est strictement croissante et a(0) = 0. La fonction a est de classe k,, si elle est de classe k
etque:a =oeta(r) — oo commer — ©
6.4.2 Théoréme de Lyapunov pour les systémes a temps variant
Théoreme 6.1 (Stabilité d’un systéme a temps variant). Soit x, = 0 un point d’équilibre de
x = f(x,t). Soit D = {x € R"/||x|| < r} la boule de rayon r, alors s’il existe une fonction
V' continument différentiable tel que :

a(llx|) S V(x, t) < az(llx]) (6.19)

v ov adv

FTaRlET: + af(x, t) < —az(||lx|]), pourt = 0

Les fonctions ay, a, et a; sont de classe k, alors xe = 0 est uniformément asymptotiquement
stable.

Remarque 6.3. En pratique, il faut borner supérieurement V(x,t) par une fonction

indépendante de ¢.

6.4.3 Lemme de Barbalat

Lemme 6.1 (Lemme de Barbalat). Soit g : R = R une fonction définie et uniformément
continue pour ¢ = 0. Si la limite de I’intégrale t11_>r£1O fot g(s)ds existe et qu’elle est finie alors
im,9(8) =0

Théoréme 6.2 (Bornitude et ensemble de convergence). Soit D = {x € R"/||x|| < r}
Supposons que f(x,t) est Lipschitzienne sur D X [0,00). Soit V une fonction continiment
différentiable tel que

a ([lx]) = V(x,t) < az(llx[D

W _ WV ) < —W(x) < 0,pourt = 0 et vx €D
at = ot Tox /0t = W) < 0.pourt = 0et vx
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Avec a; et a, des fonctions de classe k définies sur [0,7) et W (x) continue sur D. De plus, on
suppose que dV /dt est uniformément continue en t, alors les solutions de 1’équation (6.18)

avec |[x(ty)]l < az‘l(al (r)) sont bornées et vérifient lignW (x(t)) = 0. De plus, si toutes les
—00

hypothéses sont vérifiées globalement et que @, € Kk, alors le résultat est vrai Vx(t,) € R"

Remarque 6.4 : 11 suffit d’avoir d2V /dt? bornée pour avoir dV /dt uniformément continue.

6.5 Synthese de la commande MRAC par la théorie de Lyapunov
L’utilisation de la théorie de Lyapunov sur la stabilité des systémes non stationnaires pour

la synthése d’une commande adaptative par modele de référence (MRAC) passe par les étapes

suivantes :

= Formuler I’équation différentielle de I’erreur de poursuite du modele de référence
€=Y~"Ym

= Trouver une fonction candidate de Lyapunov et un mécanisme d’adaptation pour assurer
firg, e(t) =0

= Généralement dV /dt est seulement semi-définie négative. Il est alors possible d’utiliser le

théoréme 6.2 pour démontrer la convergence de 1’erreur vers zéro.

Exemple 6.3 (Synthése MRAC par la méthode de Lyapunov). Soit le modele de référence

linéaire a temps invariant du premier ordre (voir I’exemple 6.2).

ddL;n = —QmYm + bmU. (6.20)
On souhaite imposer son comportement a un systéme qui est aussi de premier ordre

dy

P —ay + bu (6.21)
par une commande proportionnelle sur la mesure et la consigne

u=60;u. — 0,y (6.22)
On rappelle que I’erreur de poursuite est donnée par

€=y~ Vm
ce qui conduit apres simplification a I’équation différentielle suivante de 1’erreur de poursuite

de dy dy,

F7imiv i el + b(O,u, — 6,Y) + anVm — bpuc + Ay — amy

de

Tp = "ame— (bB, +a—ay)y+ (b6, — by)u, (6.23)

Si les parametres du systeme a commander étaient connus, alors en posant
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b

0, =60 ="
b (6.24)
m

02=03= b

Comme les parametres a et b sont inconnus, on construira le mécanisme d’ajustement des
paramétres qui va faire converger 8, vers 8) et 8,vers 82 pour t — oo.

On introduit la fonction quadratique suivante
1 1 1
V(e,0,,6,) = E(e2 + 3 (08 @ = a)? 4 (b, — bm)Z) (6.25)

Avecy > 0 une constante strictement positive. On remarque que V (0, 89, 69) = 0. La dérivée

temporelle de la fonction V est donnée par
av de+1(b9 N )d92+1(b9 , )d91
dt ~ Car Ty AT Gm) g T W T bm) Ty
1 do 1 do
= —ape’ + ;( (b0 + a —ap,) (d_tz — yye) + ;(bﬁl —by) (d_1:1 + yuce>

Si les parametres sont ajustés comme

ae, e
;9’52 ‘ (6.26)
ar e
On trouve
dv 5
I = T9me (6.27)
Lyapunov MIT
do, do, am
e Ve a7 (s + am) Uet
@ @)

Table 6.1 : Comparaison des méthodes de Lyapunov et MIT.

On constate que V < O carsie = Oet0; # 6 ouf, # 62 onauraV = 0 On peut alors déduire
que V(t) < V(0) car V(t) est décroissante, ce qui implique que e, 6;et 8, soient bornés et que
y = e + Yy, soit aussi borné en supposant que le modele de référence G,,(s) est stable et la
consigne u, bornée. De plus, la dérivée seconde par rapport au temps t de V est donné par

d?v de
7 —Zamea = —2ane(—ane — (b0, +a—ay)y + (b6; — by)u,)

58



CHAPITRE 6 COMMANDE ADAPTATIVE A MODELE DE REFERENCE

Comme e, y et u, sont bornés, alors 7 est aussi bornée, donc V est uniformément continue le
théoréme 6.2 permet de conclure que

i, e(t) =0
Toutefois, ceci n’assure pas la convergence 8; — 89 et 8, — 63 Il faut imposer une condition

sur I’excitation.

Figure 6.6 : Schéma bloc d’'une commande MRAC basée
sur la méthode Lyapunov
Le tableau suivant compare les méthodes de synthése d’'un MRAC sur I’exemple du systéme
du premier ordre pour la poursuite d’'un modele de référence du premier ordre avec une
commande proportionnelle sur la consigne et la sortie. La régle de mise a jour utilisant la

méthode MIT peut étre obtenue de la régle la méthode de Lyapunov en remplagant les signaux

u, et y par leur valeur filtrée (a—m) u, et ( i )y. Dans les deux cas, la régle d’adaptation
s+am s+am

peut étre écrite comme suit
do
P ype (6.27)

Avec

0 vecteur des parameétres

¢ = [~ucyl"
Reégle de Lyapunov
_ (_Gm ) _ T
<p—(s+am [~uc ¥l

Regle MIT

La régle de Lyapunov est plus simple et ne nécessite pas de filtrage.

59



CHAPITRE 6 COMMANDE ADAPTATIVE A MODELE DE REFERENCE

5.6 Synthese de MRAC dans ’espace d’état

Soit le SLTI décrit par sa représentation d’état

d_x = Ax + Bu (6.28)
dt

On souhaite poursuivre un modele de référence donné également par sa représentation d’état
dx,
? = Amxm + Bmuc (629)

On utilise une commande qui combine un retour d’état linéaire et une action proportion-
nelle sur la consigne

u=Mu,— Lx (6.30)
Le systéeme en boucle fermée devient

dx
i (A—-BL)x + BMu, = A.(8)x + B.(6)u, (6.31)

La paramétrisation de la loi de commande peut se faire de différentes manieres. Ceci
revient a choisir les paramétres des matrice M et L.

5.6.1 Condition de compatibilité

Elle exprime le fait qu’il existe des valeurs de paramétres de commande tel que le systéme en

boucle fermée soit identique au modele de référence

36°: {Ac(eo) =Am (6.32)
BC(HO) = Bp,
Dans ce cas, on réalise une poursuite parfaite du modele de référence. On a alors
A—A, =BL
{ B, = BM (6.33)

On peut conclure de 1’équation (6.33) que les colonnes de la matrice (A — A4,,) sont une
combinaison linéaire des colonnes de B et que les colonnes de B, sont aussi une
combinaison linéaire des colonnes de B. Si B et B,, sont linéairement indépendantes, on
peut écrire

L= (B"B)"'BT(A-A,,) = (BLB) 1Bl (A—A,)

M = (BTB)"'B"B,, = (BLB)"'BI'B,,

5.6.2 Equation différentielle de I’erreur

L’erreur de poursuite du vecteur d’état est définie par

€=Y"Ym

sa dérivée temporelle est alors
@=d—x—dx—m=Ax+Bu—A Xm — Bpu
dt dt dt mem emee
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en rajoutant en soustrayant A, x au second terme de I’équation, on obtient

% =Anpe+ (A—A,, —BL)x + (BM — B,)u,
= Ane+ (A0°) — A,)x + (B(6°) — B)u,
= Ane+W¥(O —0°% (6.34)
Supposant que 1’équations (6.32) sont vérifiées

On choisit la fonction quadratique candidate suivante
1
V(e 0) = E(yeTPe +(0-027((6-0%) (6.35)

Avec P > 0 une matrice symétrique définie positive. En supposant que Q est une matrice
symétrique définie positive qui vérifie I’équation suivante

AT P + PA,, = —Q
La dérivée temporelle de V, aprés calcul, est donnée par

av deg
= —%eTQe +y(0 —8°)T¥YTpPe + (0 — )T —

dt dt
do
= _Yerge+ 0 -0607 (— + lyTPe) (6.36)
2 dt
Afin de rendre V semi-définie négative, on choisit la régle d’adaptation suivante
46 _ pTp 3.37
Ce qui donne
dv Y r
- -_°r 3.38
It e Qe (3.38)

De méme qu’avec I’exemple 6.3, en procédant de la méme facon et en utilisant le théoréme
6.2 et le Lemme de Barbalat, on conclut que

lim e(t) = 0 (3.39)
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CHAPITRE 7
INTRODUCTION A LA COMMANDE PREDICTIVE

7.1 Philosophie de la commande prédictive

Grace a ses propriétés intrinseques et sa facilité¢ de mise en ceuvre, la commande prédictive
se situe parmi les commandes avancées les plus utilisées dans le milieu industriel, si exigeant
en termes de performances et de simplicité d’implémentation. De nombreuses applications
industrielles existent, surtout pour des systémes pour lesquels la trajectoire a suivre est connue
a I’avance, comme des robots ou bras de robots, des machines-outils, des applications dans
I’industrie pétroliere, biochimique ou chimique, aéronautique, thermique, I’industrie du ciment.
Il est a noter cependant que, malgré des calculs hors-ligne simples caractéristiques de la
commande prédictive sans contraintes, les structures d’asservissement a base de correcteurs
PID s’averent encore les plus utilisées dans 1’industrie, peut-étre a cause de l’inertie des
ingénieurs habitués a régler manuellement ce type de correcteur et a les maintenir.

S’¢éloignant quelque peu de la simplicité requise par le milieu industriel, et partant des
stratégies de base initiales de la commande prédictive, le monde de la recherche propose
désormais des structures encore plus évoluées, pour lesquelles, tout en conservant la simplicité
des concepts, des outils mathématiques nouveaux spécifiques aux théories de la stabilité et de
la robustesse, font leur apparition. Ces nouveaux domaines rigoureux et captivants ouvrent des
perspectives toujours renouvelées pour la méthodologie prédictive. Aprés un bref historique
non exhaustif de cette stratégie, les paragraphes suivants détaillent les grands principes

communs a I’ensemble des méthodes.

7.2 Historique de la commande prédictive

Depuis la fin des années 70, de nombreuses catégories et dénominations de la commande
prédictive ont été proposées. La liste ci-dessous propose un apergu non exhaustif des plus
classiques :
= MPHC (Model Predictive Heuristic Control) : Connue ensuite sous le nom de MAC (Model
Algorithmic Control). Cette approche, appliquée aux systémes industriels multi variables, basée
sur des prédictions sur un horizon temporel long, impose des trajectoires de référence pour les

sorties et minimise la variance de ’erreur ;

= DMC (Dynamic Matrix Control) : Proposée par Shell, utilise I’incrément de commande a la

place de la commande dans le critére de performance pour un horizon fini de prédiction ; cet
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algorithme est appliqué a des systémes multi variables linéaires sans contraintes ; 1’erreur de
poursuite est minimisée en spécifiant le comportement futur des sorties ; les commandes

optimales sont calculées par la méthode des moindres carrés ;

= EHAC (Extended Horizon Adaptive Control) : Stratégie de commande prédictive pour les
systémes mono-variables, utilise des modeles E/S pour maintenir la sortie future (calculée via
la résolution d’une équation diophantienne) le plus prés possible de la consigne pendant une

période donnée au-dela du retard pur du systéme ;

= EPSAC (Extended Prediction Self-Adaptive Control): Introduit une commande constante
pour un systéme non-linéaire (en linéarisant le systéme) et utilise un prédicteur sous-optimal a

la place de la résolution de 1’équation diophantienne ;

= GPC (Generalized Predictive Control) : Cette méthode la plus connue, basée sur un modele
de type CARIMA, introduit un horizon de prédiction sur la commande, agit conformément au
principe de 1’horizon fuyant et peut étre appliquée aux systémes a non minimum de phase, aux

systémes instables en boucle ouverte, aux systémes avec retards purs variables ;

= PFC (Predictive Functional Control) : Est un algorithme prédictif simple, utilisé surtout pour
des systemes SISO industriels rapides et/ou non linéaires, s’avérant pratique pour I’ingénieur
en permettant le réglage direct des parametres (par exemple la constante de temps) associées au
temps de monté; pour garder la simplicité, une manque de rigueur en performance et surtout

dans la garantie des contraints est associée avec cet algorithme ;

= CRHPC (Constrained Receding Horizon Predictive Control) : Propose de prendre en compte
des contraints terminales sous forme « €galité » sur la sortie sur un horizon fini au-dela de

I’horizon de prédiction ;

= MPC (Model Predictive Control) : formulée dans I’espace d’état, utilise le formalisme de la

représentation d’état pour faciliter ’analyse de la stabilité et de la robustesse.

En fait, toutes ces variantes de stratégies de commande prédictive sont aujourd’hui
regroupées sous le terme générique MPC, illustrant ainsi le role fondamental du mod¢le. Par
ailleurs, les derniéres années ont été marquées par la mise en ceuvre de lois de commande

prédictives robustes.
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7.3 Principe de la commande prédictive

La commande prédictive MPC représente un moyen relativement simple d’aborder une loi
de commande dans le domaine temporel, et a démontré a travers de nombreuses applications
ses qualités liées a la régulation des systemes multi-variables, des systémes instables, des
systémes a retard, des systémes non-linéaires, des systémes a non minimum de phase, des
systémes hybrides. Le principe « philosophique » de la commande prédictive est le suivant

(Figure 6.1).

— Consigne
Prédiction de la sortie
T , = Sortie |
Fe] N\ T
:— Horizon de Honizon de
prédiction NV & > % prédiction N :\\\
Pr\'- 1 ;\' ;\"".'\"' P:\'-l .."\' .."\"" 1 ( ﬂ‘\""l }+‘_\r
Temps Temps

Figure 7.1 : Principe de fonctionnement de la commande prédictive :
Prédiction de la sortie a I’instant k sur un horizon fini (a gauche) ;
Réitération a I’instant suivant (a droite)

Un modele discret du processus permet dans un premier temps de prédire la sortie du systéme
sur un horizon fini. Puis, a chaque instant, en minimisant un critére de performance sur cet
horizon fini, une séquence de commande est obtenue dont seul le premier élément est appliqué
au systéme. La méme procédure est enfin reprise a la période d’échantillonnage suivante, selon
le principe de I’horizon fuyant. Le but est de maintenir la sortie du systéme la plus prés possible
de la référence désirée, supposée connue sur I’horizon fini de prédiction de fagon a mettre en

évidence un certain caractere anticipatif.

La technique prédictive permet en fait de reproduire de fagon théorique le comportement
intuitif naturellement prédictif ou anticipatif de I’étre humain : en conduisant une voiture, en
marchant, en faisant du ski, en respectant le budget alloué a certaines activités sur une période
limitée, en traversant une rue... Ainsi, les skieurs font une prédiction de la trajectoire a suivre
sur un horizon fini, et élaborent les actions qui vont leur permettre de la suivre, et puis a chaque
¢tape I’horizon de prédiction glisse avec eux. En utilisant des commandes classiques, les
décisions sont réalisées a partir des erreurs passées entre la sortie et la consigne, et non des

erreurs prédites. Or il apparait clairement dans le cas du ski que la structure prédictive faisant
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intervenir des erreurs futures est fortement nécessaire, le cas contraire étant équivalent a skier

en regardant a I’arriére pour réduire 1’erreur entre la trajectoire désirée et la position réelle.

Les étapes spécifiques a toutes les lois de commande prédictive peuvent étre classifiées comme

suit :

= ¢laboration (choix) du mod¢le du systéme sur lequel est basée la prédiction de la sortie ;

= spécification de la trajectoire que doit suivre la sortie ;

= minimisation d’un critére quadratique a horizon fini élaborant une s€quence de commandes
futures ;

= application du premier ¢lément de la séquence de commande au systéme et au modéle ;

Les deux derniéres étapes sont répétées a chaque instant d’échantillonnage, conformément au

principe de 1’horizon fuyant.

Remarque
Pour les systémes multi-variables, cet algorithme est appliqué simultanément a chaque sortie,

il en résulte une commande différente pour chaque entrée du systéme.

7.4 Choix du modéle du processus

La loi de commande prédictive implique la connaissance du comportement futur du systéme
prédit a I’aide d’un modéle du processus. Ainsi 1’élément central de la commande MPC est le
modele du systéme. Ce point fort peut devenir aussi son point faible, selon la qualité du mode¢le.
Trouver le bon modele (le plus simple possible, mais malgré tout suffisamment significatif et
adapté aux besoins, en offrant des prédictions suffisamment précises) implique une
connaissance appropriée du systetme. Les modeles résultent souvent d’une phase
d’identification, qui peut se faire en utilisant les lois de la physique, de la chimie ou encore de
facon expérimentale en effectuant diverses expériences sur le systeme. Le modele doit étre
capable de prédire le comportement du systéme en réponse a une sollicitation donnée. Des
techniques existent également, qui utilisent un modéele variant dans le temps sur I’horizon de
prédiction, d’autres congues sur un mode¢le a base de techniques floues. Prendre en compte les
parties non-linéaires des systeémes par une modélisation floue et commander de fagon prédictive
ce modele peut conduire a une amélioration des performances. Grace a la simplicité du modéele,
corrélée avec la souplesse du correcteur prédictif, cette vision devient intéressante en milieu
industriel.

Certes, les systemes industriels sont rarement linéaires, mais dans la pratique la
représentation choisie est souvent un modele linéaire, induisant en 1I’absence de contraintes une

structure linéaire de la loi de commande prédictive. Ainsi, de cette maniére, 1’optimisation et
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I’analyse hors ligne du comportement en boucle fermée sont beaucoup plus faciles. En dernier
lieu, si la modélisation linéaire s’avére insuffisante, une mise en ceuvre via un modéle non-
linéaire peut s’envisager. Ces modeles servant a la prédiction sont classiquement des modéles
a temps discret, dés lors que la commande prédictive est plutot implémentée sous forme discrete

sur calculateur. Malgré tout, des techniques de synthése a temps continu existent.

En conclusion partant d’un modéle initial (qui n’est pas forcément le meilleur choix de modele),
apres un premier essai de commande prédictive qui ne donne pas les résultats souhaités, rien
n’empéche I'ingénieur de retoucher le modéle du systéme en vue de 1’¢laboration d’une

nouvelle loi de commande prédictive.

7.5 Parameétres de réglage de la commande prédictive
Choisir le bon modele du systéme et un correcteur MPC comme stratégie de commande ne
résout pas encore le probléme. Il reste a déterminer les paramétres de réglage spécifiques a la

commande prédictive, qui interviennent généralement dans le critére de minimisation suivant.

N3
] = z (rk + ) =9k +j/k)NTQ;(r(k + j) — 9(k + j/k))
Jj=N1
+ Z(Au(k +j— D)7 R, (Aulk +j — 1)) (7.1)
=1

Ces paramétres sont en fait assez semblables d’une structure prédictive a une autre, se
composant d’horizons de prédiction et de pondérations. Si I’on se base sur une stratégie

prédictive de type GPC (sans doute la plus connue), ces parametres de réglage sont les suivants

= les horizons inférieur N; et supérieur N, de prédiction sur la sortie ;
= J’horizon de prédiction sur la commande N,, ;

» les facteurs de pondérations sur I’erreur de poursuite Q ; et sur I’effort de commande R ).

Dans le cas de la commande prédictive avec contraintes, il convient de régler également les
horizons sur les contraintes. Le critére d’optimisation peut englober aussi des colits terminaux
qui doivent étre bien choisis. Il faut noter que non seulement ces parametres de réglage, mais
aussi la structure du critere quadratique, jouent un role fondamental sur les performances de
la commande résultante. Dans la pratique, la période d’échantillonnage a aussi un role essentiel.

Plusieurs stratégies de choix de ces parameétres existent. Ainsi, si 1I’on se référe au cas GPC,
on notera que pour un systéme a retard, I’horizon inférieur de prédiction sur la sortie peut étre

choisi égal a la valeur du retard pur divisé par la période d’échantillonnage, pour les autres

66



CHAPITRE 7 INTRODUCTION A LA COMMANDE PREDICTIVE

systemes il peut étre égal a 1. L’horizon supérieur de prédiction sur la sortie peut étre choisi
approximativement égal au temps de réponse du processus divise par la période
d’échantillonnage. Si N, augmente, les performances nominales en boucle fermée sont
améliorées si toutefois N, est suffisamment grand (ceci est nécessaire pour un bon
conditionnement). Pourtant dans la pratique, pour beaucoup de systemes, on constate qu’une
valeur de N,, supérieure a 3 n’apporte pas de différences significatives. Une autre régle générale
est de choisir N, — N,, supérieur au temps de réponse. L horizon de prédiction sur la commande
doit étre augmenté en fonction de la complexité du systéme a piloter. Pour les systémes stables
simples (SISO), N,, peut étre choisi égal a 1, parce que dans ce cas le comportement du systéme
en boucle fermée suit le comportement du systéme en boucle ouverte, en restant stable. Pour

les systémes instables, N,, doit étre choisi (strictement) supérieur au nombre des poles instables.

Généralement la pondération sur I’erreur de poursuite Q ; est considérée comme unitaire,
dans ce cas seule la pondération sur 1’effort de commande R ) intervient et est choisie
conformément au critére suivant : I’augmentation de R ; conduit a une réponse plus lente du
systéme bouclé avec le correcteur. Pour les systémes multi-variables, les pondérations Q set R )
jouent un réle trés important sur le dépassement et sur la largeur relative de la bande passante.
Ces matrices sont utilisées en vue de moduler la pondération relative entre les différentes voies
d’un modéle MIMO. Une normalisation de I’erreur de poursuite par rapport a 1’effort de
commande s’impose en vue de donner un sens physique au choix des pondérations. Une bonne
sélection de ces pondérations pour le cas MIMO peut s’avérer relativement longue.

Notons enfin que dans le cas des lois de commande prédictives adaptatives, pour lesquelles il
est nécessaire d’estimer le modele du systéme en ligne a chaque période d’échantillonnage, les
parametres de réglage de la commande MPC adaptative peuvent éventuellement rester les

mémes des lors que le systéme varie lentement au cours du temps.

Remarque : Dans le cas de la commande prédictive multi-variable, les mémes horizons de
prédiction sur toutes les sorties, ainsi que les mémes horizons de commande sont généralement
choisis, sauf si le comportement du systeme est vraiment trés différent sur chaque voie

entrée/sortie.
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CHAPITRE 8
COMMANDE PREDICTIVE GENERALISEE (GPC)

8.1Introduction

La commande GPC nécessite un modele numérique de représentation pour son
fonctionnement. Il peut étre obtenu par la discrétisation du systéme continu (utilisant la
transformée en z avec le BOZ) et de choisir un mod¢le pour 1’identification préalable.

Cette technique de commande comprend, plusieurs approches qui sont identiques par rapport

au principe général de base de la commande GPC :

v" Approche algorithmique.

v" Approche polynomiale synthése RST.

v Recherche Automatique des paramétres.

v" Extension en structure cascade multi échantillonnée et en J.
v' Approche sous contraintes terminales.

v" Approche multi-variable.

De I’ensemble des techniques proposées ci-dessus. La structure cascade garantit la rejection
des perturbations, la commande prédictive permet quant a elle de prendre en compte la
connaissance de la trajectoire future. L’auto calibrage, permettant la recherche automatique des
paramétres de réglage, est le garant de I’implantation réelle et effective de ce type de commande
dans un secteur industriel. Cela montre que toutes les méthodes prédictives sont simples et
efficaces en milieu industriel.

Concernant, I’approche polynomiale synthése RST sera exposée en détaille plus loin puisque

c’est la technique utilisée dans notre travail. Dans le cas des autres stratégies.

8.2 Principe de la commande prédictive approche polynomiale (RST)

Parmi toutes les méthodes prédictives reprenant bien slr les principes exposés
précédemment, la Commande Prédictive Généralisée est peut-étre celle qui a connu le plus
grand nombre d’applications et qui demeure une référence dans le cas de la commande
prédictive des systémes monovariables. C’est pourquoi ce paragraphe propose une description
des idées principales de cette stratégie. Il s’agit ici de reprendre tous les points fondamentaux

de I’algorithme GPC pour aboutir aux trois polynomes RST du régulateur équivalent.
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8.2.1 Mode¢le de représentation du procédé et calcul du prédicteur

La commande GPC se différentie des autres algorithmes prédictifs par deux caractéristiques
majeures. Méme si toute représentation demeure admissible, elle utilise le plus souvent pour la
prédiction du comportement un mod¢le entrée/sortie par fonction de transfert de type CARIMA

(Controlled Auto-regressive Integrated Moving Average).

(k)
A(g™)

A(qDy(k) = B(@Du(k — 1) + C(q™) (8.1

Al =14aqg7t + - +agq ™"

B(q™") =bg + byq™" + =+ by, g™

AgH=1-q7"
Ce modele est un modéle incrémental, ou u , y représentent 1’entrée et la sortie du systeme a
commander, € est un signal aléatoire centré non corrélé avec I’entrée, A et B sont des polynomes

1 est

en opérateur de retard g~ de degrés n, et n, respectivement, et A(g™1) =1—gq
’opérateur différence, C(g~1) est un polyndme en 1’opérateur retard, lié aux perturbations et
par la suite, sans une connaissance supplémentaire sur la nature des perturbations, il sera choisi
¢gal a 1 (sa valeur n’influe pas par ailleurs sur le comportement en suivi de trajectoire, il peut

jouer un réle en rejet de perturbation).

8.2.2 Critére de performance
Le critére de performance est représenté par une fonction de colit quadratique considérant

I’erreur de poursuite et I’effort de commande sur un horizon glissant de la forme :

NZ Nu
JW Ny, M) = ) (ke +) = 9k + /01 +2 ) [Aulk+] = DI (82)
J=Ny Jj=1

Ou y(k + j/k) représente la prédiction optimale a I’instant k + j connaissant les parameétres
de contexte a I’instant présent k, N;, N, caractérisent le début et la fin de la fenétre de prédiction
sur la sortie, N,, est I’horizon de prédiction sur la commande, A > 0 un facteur de pondération
sur I’effort de commande et enfin 7 est la consigne a suivre supposée connue sur 1’horizon de
prédiction.

Remarque : En régle générale, 1’horizon de prédiction sur la sortie est supérieur a I’horizon de
commande et pour la cohérence de la prédiction il est supposé qu’a la fin de I’horizon de
commande :

Au(k +j) =0, Jj =Ny (7.3)
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Remarque : Le modele CARIMA fait intervenir les incréments de commande et non la
commande effective. Cet aspect permet d’imposer au final une action intégrale au sein du
régulateur et assure par conséquent une erreur statique nulle pour des consignes et perturbations
constantes. L’aspect incrémental du mod¢le se retrouve aussi dans le critére par la présence
de Au. En se basant sur le modéle mentionné en (8.2) et en appliquant les idées de modélisation

présentées par Clark et ses coauteurs, un prédicteur p optimal peut étre construit sous la forme

y(k +j/k) = Fi(g™)y(k) + Hi(g~DAulk — 1) + Gi(q DAulk +j — 1) +J;(g De(k +j) (8.4)

réponse libre réponse forcée

Avec F;,Gj, Hj, ] polynomes solutions uniques des €quations diophantiennes suivantes :

{A(q‘l)A(q‘l)]j(q‘l) +q7F@@ ) =1 (8.5)

G(@ D +qH (@) =B(g Y@@
deg (J;(g) =j—1, deg(Fj(g™") = deg(A(g™)),
deg (Gi(g™) =j—1, deg(H;(q™') =deg(B(qg™1)) -1

Le prédicteur optimal déduit de la considération que la meilleure estimée du signal perturbateur

dans le futur est égale a sa moyenne, nulle ici, prend la forme :

Y +j/k) = (@ Dy + Hi(q™HAulk — 1) + G;(gDdu(k +j — 1) (8.6)

réponse libre réponse forcée

8.2.3 Synthése de régulateur RST
La minimisation du critére se base sur la mise sous forme matricielle de I’équation de prédiction
(8.6)
y=G6u+ify(k)+ihAu(k — 1)
] = (Gu+ify(k) + ihAu(k — 1) — )T (Gu + ify(k) + ihAu(k — 1) — 1) + AuTu

ih = [Hy, (@), .. Hy, (@] if = [Fx, (@), o, Fy, (@] (8.7)
u’ = [Au(k), ..., Au(k + N, — D]T

De facon similaire, la réponse forcée peut €tre réécrite sous forme matricielle :
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N N
gNi 9N, -1 0
Ny+1 Ni+1
I, +1 In,
G — E e T 0 , go = O (88)
N» Ny N
9N, Ina-1 = INg—Ny+1.

Avec les coefficients gij issus des polynomesG; correspondant a ceux de la réponse indicielle
du modele.

La minimisation analytique du critére conduit a la séquence optimale de commande future :

U,pe = M[r — ify(k) — ih Au(k — 1)]

-1
M= (G"G+ Aly,xy,) G"=[m],.. my]"
Qui constitue en fait un régulateur linéaire représentable sous forme polynomiale RST Avec :

S(g~")Au(k) = —R(@™Hy(k) + T(q)r(k) (8.9)
S(@H=Q0+myifq™)
avec degré[S(q1)] = degré[B(q~1)]
R(g™") =my if
degré[R(q~1)] = degré[A(q~1)]
T(q) =my [g™ ...q"2]"
degré[T(q)] = N,

i + "l + 1
T‘_T_’ T(Q) AS(q_l) :; q_lB(q—l) —>®_> A(q‘l) »

Figure 8.1: Régulateur polynomial équivalent
8.2.3.1 Les avantages
= Tout d’abord, I’utilisation du modéle CARIMA et le travail sur les incréments de commande

assure la précision statique pour une consigne en échelon.
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= Ensuite, le non nécessité d’utiliser une représentation d’état lors de I’implantation du modéle
du systéme, ce qui s’avere intéressant lorsque les modéles proviennent d’une identification
discréte sous forme de fonction de transfert discrete.

= En fin, la relation fournissant la commande se traduit par un algorithme simple, et beaucoup
de calculs peuvent étre fait hors ligne ou il ne reste a faire en temps réel que I’acquisition de la
sortic du processus et le calcul proprement dit de la commande, incluant néanmoins

’¢laboration de la réponse libre.

8.2.3.2 Les inconvénients
= Tout d’abord, il n’existe aucune théorie précise permettant de démontrer la stabilité de la
commande, a I’exception de travaux de Clarke assurant la robustesse sous certaines conditions
de réglage tres restrictives.
= De plus, il n’y a pas de regles définies permettant de choisir les paramétres, sauf quelques

compromis entre les différentes caractéristiques déduit par expérience dans le domaine.

8.3 Conclusion

Les différentes techniques citées précédemment ont vraiment un intérét considérable,
mais dans la pratique le mod¢le dont elles sont basées est toujours non idéal. Surtout lorsqu’il
s’agit des systémes non linéaire et variant dans le temps. On est toujours amen¢ a approcher la
dynamique du processus a commander par un mod¢le paramétrique linéaire et stationnaire dans

un domaine plus au moins restreint autour de son point de fonctionnement.

La solution alors est le concept de commande adaptative qui permet d’¢liminer 1’effet de
perturbations, sur la dynamique du processus, qui affectent les performances alors que la
commande linéaire ne permet d’éliminer que les perturbations d’état du processus. Dans notre
cas, on va exploiter le principe de la commande prédictive pour, le calcul de la loi de commande
et I’adaptation dans le but d’éliminer les bruits. Ceci nous conduit a la commande adaptative

GPC que son schéma synoptique est illustré par la figure 7.2.
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Boucle d’adaptation

Algorithme prédictif

! Identification du processus <+
- » I E—— |

, ’ Loi de commande L PROCESSUS

Y (régulateur) i'

i !

i u y

Figure 8.2: Commande GPC adaptative.
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