Chapitre 4 : Les tableaux

Comment un algorithme peut-il mémoriser plusieurs valeurs d’un
méme type sans devoir déclarer une variable pour chacune d’elles ?
Est-il possible de traiter une série de notes, de températures ou de
valeurs saisies par utilisateur sans écrire plusieurs lignes répétitives
? Comment accéder facilement a la dixiéme ou la centieme donnée
saisie ?

Ce chapitre répondra a ces questions.

4.1 Introduction

valeur. Cependant, dans de nombreux problemes, il est nécessaire de gérer un ensemble de
valeurs du méme type en méme temps : par exemple, les notes d’un étudiant, les
températures d’une semaine, les salaires des employés d’un service, etc.

' usqu’a présent, nous avons manipulé des variables simples, chacune représentant une seule

Restons sur I’exemple des notes : Pour un étudiant, nous avons besoin de dix notes afin de
calculer sa moyenne générale.

A ce stade, deux solutions s’offrent a nous :

1. Utiliser une seule variable (par exemple note) et la réutiliser a chaque saisie : dans ce
cas, chaque nouvelle lecture écrase la précédente, et il devient impossible de retrouver
ou de réutiliser les anciennes valeurs dans le calcul.

2. Déclarer dix variables différentes : N1, N2, N3, ..., N10 : cette méthode permet de
conserver toutes les valeurs, mais elle rend 1’algorithme long, répétitif et difficile a
maintenir, car il faudrait dix lectures, dix additions, et des traitements similaires pour
chaque note.

Ces deux approches montrent bien les limites des variables simples. C’est pourquoi
I’algorithmique met a notre disposition un nouvel outil qui permet de regrouper plusieurs
valeurs de méme type sous un seul nom, tout en accédant individuellement a chacune grace a
un indice. Ce type de structure de données est appelé un tableau.

4.2 Structures de données

Une structure de données est une organisation logique et physique des données qui permet de
regrouper plusieurs valeurs et de les manipuler efficacement au sein d’un programme.

Autrement dit, une structure de données permet :
- de stocker plusieurs informations sous un méme nom,
- d’y accéder facilement,

- et de les traiter collectivement ou individuellement.

11 existe plusieurs types de structures de données (tableaux, listes, piles, files, arbres, etc.).

4.3 Définition du tableau

Un tableau est une structure de données homogene qui permet de stocker plusieurs valeurs du
méme type sous un nom unique. Il existe deux types de tableaux : les tableaux a une dimension
(Vecteurs) et les tableaux a deux dimensions (Matrices).

4.4 Tableau a une dimension (Vecteur)

Un tableau a une dimension, ou vecteur, est un ensemble d’éléments de méme type, repérés par
un seul indice. Cet indice permet d’indiquer sa place dans le tableau, il permet d’accéder
directement a la valeur située dans une position donnée.

Exemple :

SiI’on souhaite stocker les notes de dix matieéres d’un étudiant, on peut créer un vecteur nommeé
Notes comportant 10 cases :

Indicess — 1 2 3 4 5 6 7 8 9 10

Notes

Syntaxe (Déclaration)

Algorithmique : En langage C :
Variables id_tab : Tableau [1..Taille_max] de type ; Type id tab[Taille max];
Exemple : En langage C :

Variables Notes : Tableau [1..10] de réel ; float Notes[10];

4.5 Manipulation d’un vecteur

Une fois le vecteur déclaré, il est possible de manipuler ses ¢léments individuellement ou
collectivement a 1’aide de leur indice.

a.

Accés a un élément
L’acces a un élément d’un vecteur se fait en utilisant son indice a travers la syntaxe

suivante : id_tab[indice], c'est la méme syntaxe que nous utilisons en langage C.

Lecture d’un élément/Lecture d’un vecteur

La lecture d’un élément d’un vecteur consiste a lire une composante du vecteur en
utilisant son indice. La lecture d’un vecteur, quant a elle, consiste a lire I’ensemble
de ses éléments et ce, a 1’aide d’une boucle. Comme le nombre d’éléments du
vecteur est connu, la boucle pour est la plus adaptée pour effectuer cette opération.

Ecriture d’un vecteur
L’écriture d’un vecteur permet d’afficher 1’ensemble de ses ¢léments.
Elle s’effectue également a I’aide d’une boucle.

Affectation d’un élément
L’affectation permet de modifier la valeur d’un ¢élément du vecteur en utilisant son
indice.

Syntaxe id tab[indice] «— valeur ; ou id tab[indicel] «<— id tab[indice2] ou

Exemples

id_tab[indice]«— Expression ; id_tab[indice]«— Constante ;

¢ Soit T et V deux vecteurs d’entiers et a et b des entiers
T[1] < 40 ;
T[2] « T[3];
T[10] < V[1];
T[5] «— a+b*3;

Algorithme de lecture et d d’écriture d’un vecteur :

Algorithme LE Vect ;

Variables

Début
Répéter

T : Tableau [1..100] d’entier;
n, i: entier ;

Ecrire("Donner le nombre d’¢léments du vecteur:") ;

Lire(n) ;

Jusqu’a (n>0 et n <= 100) ;

Pour i1 < 1 a n faire
Lire(T[i]);

Fin-pour;

Ecrire(" Voici votre vecteur : T=[") ;

Pour i < 1 a n faire
Ecrire(T[i]);

Fin-pour;

Ecrire("]") ;

Fin.

En langage C :

#include <stdio.h>
int main () {
int T[100], n, 1 ;

do {
printf ("Donner le nombre de composantes du vecteur:");
scanf ("%d", é&n);

} while (n<= 0 || n >100) ;

for (i = 0; 1 < n; i++) {
scanf ("%d", &T[i]);
}

printf ("Voici votre vecteur : T = [");
for (1 = 0; 1 < n; i++) {

printf ("sd ", T[i]):

}
printf (" 1 \n");

return 0;}

4.6 Tableau a deux dimensions (Matrice)

Un tableau a deux dimensions, ou matrice, est un ensemble d’éléments de méme type, repérés
par deux indices.

Ces indices permettent d’indiquer la position de chaque ¢lément dans le tableau : le premier
indice correspond généralement a la ligne et le second a la colonne. Ils permettent ainsi
d’accéder directement a la valeur située a ’intersection d’une ligne et d’une colonne données.

Exemple :

Si I’on souhaite stocker les notes de dix étudiants dans cinq matiéres, on peut créer une matrice
nommeée Notes comportant 10 lignes (étudiants) et 4 colonnes (maticres).

Notes 1 2 3 4 5 6 7 8 9 10 —> qndices des
étudiants

2

3

4

Indices des T
matiéres

Syntaxe (Déclaration)
Algorithmique : En langage C :
Variables id tab : Tableau [1..maxLigne, 1.. maxCol] de type ; Type id_tab[maxLigne] [maxCol];

Exemple :
En langage C :
Variables Notes : Tableau [1..20, 1.. 10] de réel ;
float Notes[20][10];

4.7 Manipulation d’une matrice

Une fois la matrice déclarée, il est possible de manipuler ses ¢léments individuellement ou
collectivement a 1’aide de leurs indices.

a. Acces a un élément
L’accés a un ¢élément d’une matrice se fait en utilisant deux indices : le premier pour

la ligne et le second pour la colonne, selon la syntaxe suivante :
id_tab[indL, indC].

b. Lecture d’un élément/ Lecture de la matrice
La lecture d’un ¢élément d’une matrice consiste a lire une composante située a
I’intersection d’une ligne et d’une colonne, en utilisant ses deux indices.

La lecture d’une matrice, quant a elle, consiste a lire I’ensemble de ses éléments a
I’aide de deux boucles imbriquées.

c. Ecriture d’un vecteur
L’écriture d’une matrice permet d’afficher I’ensemble de ses éléments.
Elle s’effectue également a 1’aide de deux boucles imbriquées, afin de parcourir
successivement les lignes et les colonnes de la matrice.

d. Affectation d’un élément
L’affectation permet de modifier la valeur d’un élément de la matrice en utilisant ses
deux indices.

Syntaxe id tab[indL, indC] « valeur ; ou id tab[indL, indC] « id tab2[indL, indC] ou
id_tab[indL, indC] «— Expression ; id_tab[indL, indC] «— Constante ;

Exemples : Soit A et B deux matrices d’entiers et a et b des entiers
All, 2]« 31;
A[2,7] < B[3,7];
A[1,10] — A[1,4];
Al4,4] < a+Db*3;

Algorithme de lecture et d’écriture d’une matrice :

Algorithme LE Mat ;
Variables A : Tableau [1..100,1..100] d’entier;
n, m, i, j : entier ;
Début
Répéter
Ecrire("Donner le nombre de lignes:") ;
Lire(n) ;
Jusqu’a (n>0 et n <= 100) ;

Répéter
Ecrire("Donner le nombre de colonnes:") ;
Lire(m) ;

Jusqu’a (m>0 et m <=100) ;

Pour i < 1 a n faire
Pour j < 1 a m faire
Lire(Ali, j]);
Fin-pour;
Fin-pour;

Ecrire(" Voici votre matrice : ") ;
Pour i «— 1 a n faire
Pour j < 1 a m faire
Ecrire(A[i, j]);
Fin-pour;
Fin-pour;

Fin.

En langage C :

#include <stdio.h>

int main () {
int A[100][1007;
int n, m, i, Jj;

do {
printf ("Donner le nombre de lignes : ");
scanf ("sd", &n);

} while (n <= 0 || n > 100);

do {
printf ("Donner le nombre de colonnes : ");
scanf ("%d", &m);

} while (m <= 0 || m > 100);

for (1 = 0; 1 < n; i++) {
for (J = 0; j < m; j++) {
('

scanf ("%d", &A[i][j]);

printf ("Voici votre matrice :\n");
for (1 = 0; 1 < n; i++) {
for (J = 0; j < m; j++) {
printf("sd ", A[i][]j]);
}
printf ("\n");
}

return O;

4.8 Exemples usuels

4.8.1 Addition de deux vecteurs

Soient T1 et T2 deux vecteurs de méme taille n.
L’addition de deux vecteurs consiste a additionner les ¢léments de méme indice pour obtenir
un troisiéme vecteur T.

. En langage C :
Algorithme AdditionVecteurs ;

Variables #include <stdio.h>
T1, T2, T : Tableau [1..100] d’entier; _ ,
. . int main () {
n, 1: entier ; int T1[100], T2[100], T[100];
Début int n, i;
Repeter do I
Ecrire("Donner la taille des vecteurs :") ; printf ("Donner la taille des vecteurs :
Lire(n) ; ") .

. scanf ("%d", &n);
Jusqu’a (n> 0 et n <=100) ; } while (n <=0 || n > 100);
P . 1anfai for (i = 0; 1 < n; i++) {

ourt<—1anfaire scanf ("%d", &TL1[i]);
Lire(T1[i]) ; }
Fin-Pour ;

Pour i« 1 an faire }

Lire(T2[i]) ;

.] for (1 = 0; i < n; i++) {
Fin-Pour ; T[i] = T1[i] + T2[il;

Pour i« 1 an faire

) printf("sd ", TI[i]);
Fin-Pour ; }

Pour i« 1 an faire printf ("\n");
Ecrire(T[i]) ;

return 0;}

Fin-Pour ;

Fin.

4.8.2 Soustraction de deux matrices

Soient Al et A2 deux matrices de méme dimension n X m.
La soustraction de deux matrices consiste a soustraire les éléments de méme position pour

obtenir une matrice A.

Algorithme SoustMatrices ;

Variables

Al, A2, A : Tableau [1..100, 1..100] de réel;

n, m, 1,] : entier ;

Début

En langage C :

#include <stdio.h>

int main () {

float A1[100]1[1007,

A[100][100];
int n, m,

i, 3s

A2[100]1[1007,

Répéter

Ecrire("Donner le nombre de lignes :") ;

Lire(n) ;

Jusqu’a (n>0etn<=100);

Répéter

Ecrire("Donner le nombre de colonnes :") ;

Lire(m) ;

Jusqu’a (m >0 et m <=100) ;

Pour i« 1 an faire

Pour j « 1 a m faire

Lire(Al[4,]]) ;
Fin-Pour ;
Fin-Pour ;

Pour i« 1 an faire

Pour j « 1 a m faire

Lire(A2[1, j])
Fin-Pour ;
Fin-Pour ;

Pouri « 1 an faire

Pour j « 1 a m faire
AlL j] — Al[L, j1 - A2[1,]

Fin-Pour ;
Fin-Pour ;

Pour i« 1 an faire

Pour j « 1 a m faire
Ecrire(A[1, j]) ;

Fin-Pour ;
Fin-Pour ;

Fin.

do {

printf ("Donner le nombre de lignes

scanf ("%d",
} while (n <= 0

do {

printf ("Donner le nombre de colonnes

scanf ("%d",
} while (m <= 0

for (i = 0; 1 <
for (3 = 0;

scanf ("%f",

}
}

for (1 = 0; 1 <
for (3 = 0;

scanf ("%f",

for (3 = 0;

printf ("%.2f ",

}

&n) ;
[l n >

&m) ;
|| m >

n; 1i++)
J < m;

n; i++)
Jj < m;

< m;

n; i++)
3
= Al[i]

n; i++)
J < m;

printf ("\n");

}

return 0;

100) ;

100) ;

{
j++) Ao

&AL[1][3]1) 7

{
Jj++) Ao

&AZ2[1][3]1) 7

{

Jj++) Ao

[J] - AZ2[1]([3];
{

j++) Ao

A[i1[3D) 7

")

")

4.9 Conclusion

Dans ce chapitre, nous avons introduit les tableaux comme premiére structure de données, en
expliquant leur définition et leur manipulation. En effet, les vecteurs et les matrices constituent
la base pour traiter des collections d’éléments en algorithmique et en C.

	En langage C :
	En langage C :
	Algorithme LE_Vect ;
	n, i : entier ;
	Début
	Répéter
	Écrire("Donner le nombre d’éléments du vecteur:") ;
	Lire(n) ;
	Jusqu’à (n>0 et n <= 100) ;
	Fin.
	En langage C :
	#include <stdio.h>
	int main() {
	int T[100], n, i ;
	do {
	printf("Donner le nombre de composantes du vecteur:");
	scanf("%d", &n);
	printf("Voici votre vecteur : T = [");
	printf("] \n");
	En langage C :
	En langage C :
	Algorithme LE_Mat ;
	n, m, i, j : entier ;
	Début
	Répéter
	Écrire("Donner le nombre de lignes:") ;
	Lire(n) ;
	Jusqu’à (n>0 et n <= 100) ;
	Répéter
	Écrire("Donner le nombre de colonnes:") ;
	Lire(m) ;
	Jusqu’à (m>0 et m <= 100) ;
	Pour i ← 1 à n faire
	Fin.
	En langage C :
	En langage C :
	En langage C :

