
Copyright © BENADDA Meriem

Chapitre 4 : Les tableaux

Comment un algorithme peut-il mémoriser plusieurs valeurs d’un
même type sans devoir déclarer une variable pour chacune d’elles ?
Est-il possible de traiter une série de notes, de températures ou de
valeurs saisies par l’utilisateur sans écrire plusieurs lignes répétitives
? Comment accéder facilement à la dixième ou la centième donnée
saisie ?

Ce chapitre répondra à ces questions.

4.1 Introduction
usqu’à présent, nous avons manipulé des variables simples, chacune représentant une seule
valeur. Cependant, dans de nombreux problèmes, il est nécessaire de gérer un ensemble de
valeurs du même type en même temps : par exemple, les notes d’un étudiant, les

températures d’une semaine, les salaires des employés d’un service, etc.

Restons sur l’exemple des notes : Pour un étudiant, nous avons besoin de dix notes afin de
calculer sa moyenne générale.

À ce stade, deux solutions s’offrent à nous :

1. Utiliser une seule variable (par exemple note) et la réutiliser à chaque saisie : dans ce
cas, chaque nouvelle lecture écrase la précédente, et il devient impossible de retrouver
ou de réutiliser les anciennes valeurs dans le calcul.

2. Déclarer dix variables différentes : N1, N2, N3, …, N10 : cette méthode permet de
conserver toutes les valeurs, mais elle rend l’algorithme long, répétitif et difficile à
maintenir, car il faudrait dix lectures, dix additions, et des traitements similaires pour
chaque note.

Ces deux approches montrent bien les limites des variables simples. C’est pourquoi
l’algorithmique met à notre disposition un nouvel outil qui permet de regrouper plusieurs
valeurs de même type sous un seul nom, tout en accédant individuellement à chacune grâce à
un indice. Ce type de structure de données est appelé un tableau.

J

Copyright © BENADDA Meriem

4.2 Structures de données
Une structure de données est une organisation logique et physique des données qui permet de
regrouper plusieurs valeurs et de les manipuler efficacement au sein d’un programme.

Autrement dit, une structure de données permet :

- de stocker plusieurs informations sous un même nom,
- d’y accéder facilement,
- et de les traiter collectivement ou individuellement.

Il existe plusieurs types de structures de données (tableaux, listes, piles, files, arbres, etc.).

4.3 Définition du tableau
Un tableau est une structure de données homogène qui permet de stocker plusieurs valeurs du
même type sous un nom unique. Il existe deux types de tableaux : les tableaux a une dimension
(Vecteurs) et les tableaux a deux dimensions (Matrices).

4.4 Tableau à une dimension (Vecteur)

Un tableau à une dimension, ou vecteur, est un ensemble d’éléments de même type, repérés par
un seul indice. Cet indice permet d’indiquer sa place dans le tableau, il permet d’accéder
directement à la valeur située dans une position donnée.

Exemple :

Si l’on souhaite stocker les notes de dix matières d’un étudiant, on peut créer un vecteur nommé
Notes comportant 10 cases :

Syntaxe (Déclaration)

Algorithmique :

 Variables id_tab : Tableau [1..Taille_max] de type ;

Exemple :

 Variables Notes : Tableau [1..10] de réel ;

1 2 3 4 5 6 7 8 9 10 Indices

Notes

En langage C :

Type id_tab[Taille_max];

En langage C :

float Notes[10];

Copyright © BENADDA Meriem

4.5 Manipulation d’un vecteur
Une fois le vecteur déclaré, il est possible de manipuler ses éléments individuellement ou
collectivement à l’aide de leur indice.

a. Accès à un élément
L’accès à un élément d’un vecteur se fait en utilisant son indice à travers la syntaxe
suivante : id_tab[indice] , c'est la même syntaxe que nous utilisons en langage C.

b. Lecture d’un élément/Lecture d’un vecteur
La lecture d’un élément d’un vecteur consiste à lire une composante du vecteur en
utilisant son indice. La lecture d’un vecteur, quant à elle, consiste à lire l’ensemble
de ses éléments et ce, à l’aide d’une boucle. Comme le nombre d’éléments du
vecteur est connu, la boucle pour est la plus adaptée pour effectuer cette opération.

c. Écriture d’un vecteur
L’écriture d’un vecteur permet d’afficher l’ensemble de ses éléments.
Elle s’effectue également à l’aide d’une boucle.

d. Affectation d’un élément
L’affectation permet de modifier la valeur d’un élément du vecteur en utilisant son
indice.

Syntaxe id_tab[indice] ← valeur ; ou id_tab[indice1] ← id_tab[indice2] ou
id_tab[indice]← Expression ; id_tab[indice]← Constante ;

Exemples : Soit T et V deux vecteurs d’entiers et a et b des entiers
T[1] ← 40 ;
T[2] ← T[3] ;

 T[10] ← V[1] ;
 T[5] ← a + b*3 ;

Algorithme de lecture et d d’écriture d’un vecteur :

Algorithme LE_Vect ;
Variables T : Tableau [1..100] d’entier;

n, i : entier ;
Début
Répéter
 Écrire("Donner le nombre d’éléments du vecteur:") ;
 Lire(n) ;
Jusqu’à (n>0 et n <= 100) ;

Pour i ← 1 à n faire
 Lire(T[i]);
Fin-pour;

Écrire(" Voici votre vecteur : T = [") ;

Copyright © BENADDA Meriem

Pour i ← 1 à n faire
 Ecrire(T[i]);
Fin-pour;
Écrire("] ") ;

Fin.

En langage C :

#include <stdio.h>
int main() {
 int T[100], n, i ;

 do {

printf("Donner le nombre de composantes du vecteur:");
 scanf("%d", &n);
 } while (n<= 0 || n >100) ;

 for (i = 0; i < n; i++) {
 scanf("%d", &T[i]);
 }
 printf("Voici votre vecteur : T = [");

 for (i = 0; i < n; i++) {
 printf("%d ", T[i]);
 }
 printf("] \n");

 return 0;}

4.6 Tableau à deux dimensions (Matrice)

Un tableau à deux dimensions, ou matrice, est un ensemble d’éléments de même type, repérés
par deux indices.

Ces indices permettent d’indiquer la position de chaque élément dans le tableau : le premier
indice correspond généralement à la ligne et le second à la colonne. Ils permettent ainsi
d’accéder directement à la valeur située à l’intersection d’une ligne et d’une colonne données.

Exemple :

Si l’on souhaite stocker les notes de dix étudiants dans cinq matières, on peut créer une matrice
nommée Notes comportant 10 lignes (étudiants) et 4 colonnes (matières).

1 2 3 4 5 6 7 8 9 10 Indices des
étudiants

Notes

1
2

3

4

Indices des
matières

Copyright © BENADDA Meriem

Syntaxe (Déclaration)

Algorithmique :

Variables id_tab : Tableau [1..maxLigne, 1.. maxCol] de type ;

Exemple :

 Variables Notes : Tableau [1..20, 1.. 10] de réel ;

4.7 Manipulation d’une matrice
Une fois la matrice déclarée, il est possible de manipuler ses éléments individuellement ou
collectivement à l’aide de leurs indices.

a. Accès à un élément
L’accès à un élément d’une matrice se fait en utilisant deux indices : le premier pour
la ligne et le second pour la colonne, selon la syntaxe suivante :

id_tab[indL, indC].

b. Lecture d’un élément/ Lecture de la matrice
La lecture d’un élément d’une matrice consiste à lire une composante située à
l’intersection d’une ligne et d’une colonne, en utilisant ses deux indices.

La lecture d’une matrice, quant à elle, consiste à lire l’ensemble de ses éléments à
l’aide de deux boucles imbriquées.

c. Écriture d’un vecteur
L’écriture d’une matrice permet d’afficher l’ensemble de ses éléments.
Elle s’effectue également à l’aide de deux boucles imbriquées, afin de parcourir
successivement les lignes et les colonnes de la matrice.

d. Affectation d’un élément
L’affectation permet de modifier la valeur d’un élément de la matrice en utilisant ses
deux indices.

Syntaxe id_tab[indL, indC] ← valeur ; ou id_tab[indL, indC] ← id_tab2[indL, indC] ou
id_tab[indL, indC] ← Expression ; id_tab[indL, indC] ← Constante ;

Exemples : Soit A et B deux matrices d’entiers et a et b des entiers
A[1, 2] ← 31 ;
A[2, 7] ← B[3,7] ;

 A[1,10] ← A[1,4] ;
 A[4,4] ← a + b*3 ;

En langage C :

Type id_tab[maxLigne][maxCol];

En langage C :

float Notes[20][10];

Copyright © BENADDA Meriem

Algorithme de lecture et d’écriture d’une matrice :

Algorithme LE_Mat ;
Variables A : Tableau [1..100,1..100] d’entier;

n, m, i, j : entier ;
Début
Répéter
 Écrire("Donner le nombre de lignes:") ;
 Lire(n) ;
Jusqu’à (n>0 et n <= 100) ;

Répéter
 Écrire("Donner le nombre de colonnes:") ;
 Lire(m) ;
Jusqu’à (m>0 et m <= 100) ;

Pour i ← 1 à n faire
 Pour j ← 1 à m faire
 Lire(A[i, j]);
 Fin-pour;
Fin-pour;

Écrire(" Voici votre matrice : ") ;
Pour i ← 1 à n faire
 Pour j ← 1 à m faire
 Ecrire(A[i, j]);
 Fin-pour;
Fin-pour;

Fin.

En langage C :

#include <stdio.h>

int main() {
 int A[100][100];
 int n, m, i, j;

 do {
 printf("Donner le nombre de lignes : ");
 scanf("%d", &n);
 } while (n <= 0 || n > 100);

 do {
 printf("Donner le nombre de colonnes : ");
 scanf("%d", &m);
 } while (m <= 0 || m > 100);

Copyright © BENADDA Meriem

 for (i = 0; i < n; i++) {
 for (j = 0; j < m; j++) {
 scanf("%d", &A[i][j]);
 }
 }

 printf("Voici votre matrice :\n");
 for (i = 0; i < n; i++) {
 for (j = 0; j < m; j++) {
 printf("%d ", A[i][j]);
 }
 printf("\n");
 }
 return 0;
}

4.8 Exemples usuels
4.8.1 Addition de deux vecteurs
Soient T1 et T2 deux vecteurs de même taille n.
L’addition de deux vecteurs consiste à additionner les éléments de même indice pour obtenir
un troisième vecteur T.

Algorithme AdditionVecteurs ;
Variables
 T1, T2, T : Tableau [1..100] d’entier;
 n, i : entier ;
Début
 Répéter
 Écrire("Donner la taille des vecteurs :") ;
 Lire(n) ;
 Jusqu’à (n > 0 et n <= 100) ;

 Pour i ← 1 à n faire
 Lire(T1[i]) ;
 Fin-Pour ;

 Pour i ← 1 à n faire
 Lire(T2[i]) ;
 Fin-Pour ;

 Pour i ← 1 à n faire
 T[i] ← T1[i] + T2[i] ;
 Fin-Pour ;
 Pour i ← 1 à n faire
 Écrire(T[i]) ;

En langage C :

#include <stdio.h>

int main() {
 int T1[100], T2[100], T[100];
 int n, i;

 do {
 printf("Donner la taille des vecteurs :
");
 scanf("%d", &n);
 } while (n <= 0 || n > 100);

 for (i = 0; i < n; i++) {
 scanf("%d", &T1[i]);
 }

 for (i = 0; i < n; i++) {
 scanf("%d", &T2[i]);
 }

 for (i = 0; i < n; i++) {
 T[i] = T1[i] + T2[i];
 }

 for (i = 0; i < n; i++) {
 printf("%d ", T[i]);
 }
 printf("\n");

 return 0;}

Copyright © BENADDA Meriem

 Fin-Pour ;
Fin.

4.8.2 Soustraction de deux matrices
Soient A1 et A2 deux matrices de même dimension n × m.
La soustraction de deux matrices consiste à soustraire les éléments de même position pour
obtenir une matrice A.

Algorithme SoustMatrices ;
Variables
 A1, A2, A : Tableau [1..100, 1..100] de réel;
 n, m, i, j : entier ;
Début
 Répéter
 Écrire("Donner le nombre de lignes :") ;
 Lire(n) ;
 Jusqu’à (n > 0 et n <= 100) ;

 Répéter
 Écrire("Donner le nombre de colonnes :") ;
 Lire(m) ;
 Jusqu’à (m > 0 et m <= 100) ;

 Pour i ← 1 à n faire
 Pour j ← 1 à m faire
 Lire(A1[i, j]) ;
 Fin-Pour ;
 Fin-Pour ;

 Pour i ← 1 à n faire
 Pour j ← 1 à m faire
 Lire(A2[i, j]) ;
 Fin-Pour ;
 Fin-Pour ;

 Pour i ← 1 à n faire
 Pour j ← 1 à m faire
 A[i, j] ← A1[i, j] - A2[i, j] ;
 Fin-Pour ;
 Fin-Pour ;

 Pour i ← 1 à n faire
 Pour j ← 1 à m faire
 Écrire(A[i, j]) ;
 Fin-Pour ;
 Fin-Pour ;
Fin.

En langage C :

#include <stdio.h>

int main() {
 float A1[100][100], A2[100][100],
A[100][100];
 int n, m, i, j;

 do {
 printf("Donner le nombre de lignes : ");
 scanf("%d", &n);
 } while (n <= 0 || n > 100);

 do {
 printf("Donner le nombre de colonnes :");
 scanf("%d", &m);
 } while (m <= 0 || m > 100);

 for (i = 0; i < n; i++) {
 for (j = 0; j < m; j++) {
 scanf("%f", &A1[i][j]);
 }
 }

 for (i = 0; i < n; i++) {
 for (j = 0; j < m; j++) {
 scanf("%f", &A2[i][j]);
 }
 }

 for (i = 0; i < n; i++) {
 for (j = 0; j < m; j++) {
 A[i][j] = A1[i][j] - A2[i][j];
 }
 }

 for (i = 0; i < n; i++) {
 for (j = 0; j < m; j++) {
 printf("%.2f ", A[i][j]);
 }
 printf("\n");
 }

 return 0;
}

Copyright © BENADDA Meriem

4.9 Conclusion
Dans ce chapitre, nous avons introduit les tableaux comme première structure de données, en
expliquant leur définition et leur manipulation. En effet, les vecteurs et les matrices constituent
la base pour traiter des collections d’éléments en algorithmique et en C.

	En langage C :
	En langage C :
	Algorithme LE_Vect ;
	n, i : entier ;
	Début
	Répéter
	Écrire("Donner le nombre d’éléments du vecteur:") ;
	Lire(n) ;
	Jusqu’à (n>0 et n <= 100) ;
	Fin.
	En langage C :
	#include <stdio.h>
	int main() {
	int T[100], n, i ;
	do {
	printf("Donner le nombre de composantes du vecteur:");
	scanf("%d", &n);
	printf("Voici votre vecteur : T = [");
	printf("] \n");
	En langage C :
	En langage C :
	Algorithme LE_Mat ;
	n, m, i, j : entier ;
	Début
	Répéter
	Écrire("Donner le nombre de lignes:") ;
	Lire(n) ;
	Jusqu’à (n>0 et n <= 100) ;
	Répéter
	Écrire("Donner le nombre de colonnes:") ;
	Lire(m) ;
	Jusqu’à (m>0 et m <= 100) ;
	Pour i ← 1 à n faire
	Fin.
	En langage C :
	En langage C :
	En langage C :

