Chapitre 5 : Les sous-algorithmes
(Procédures et fonctions)

Comment faire pour réutiliser un méme calcul dans plusieurs
algorithmes sans le réécrire a chaque fois ? Peut-on demander a
un algorithme d’exécuter un traitement précis, mais seulement
quand c’est nécessaire, sans toucher au reste du programme ?
Quelles erreurs peut-on éviter en utilisant des sous-algorithmes
plutot qu’un seul gros algorithme ?

Ce chapitre répondra a ces questions.

5.1 Introduction

Lorsqu’un algorithme devient complexe, il peut contenir de nombreuses instructions
répétitives ou des traitements qui se répetent a plusieurs endroits. Ecrire plusieurs fois les
mémes instructions rend le programme long, difficile a lire et a maintenir.

Pour résoudre ce probléme, on utilise les sous-algorithmes, c’est-a-dire des parties
d’algorithme que 1’on peut isoler, nommer et réutiliser a volonté. Un sous-algorithme peut
recevoir des informations (paramétres), effectuer un traitement précis, puis retourner un
résultat.

5.2 Notion de sous-algorithme

Un sous-algorithme est un algorithme a l'intérieur d'un autre algorithme. Il posséde la
méme structure que I’algorithme principal. Il peut étre appel€ par I’algorithme principal ou
par un autre sous-algorithme pour réaliser un certain traitement et retourner des résultats
(un ou plusieurs résultats).

5.3 Déclaration d’un sous-algorithme

La déclaration d’un sous-algorithme consiste a préciser sa structure avant son utilisation
dans un algorithme principal.

Un sous-algorithme se déclare dans la partie déclarative de I’algorithme principal, juste
apres la déclaration des variables et constantes.

EnC:

#include <stdio.h>

Algorithme id Algorithme ;

Variables <Déclaration des variables>;
Constantes <Déclaration des constantes>;
<Déclaration des sous-algorithmes> ;

<Déclaration des variables>;
<Déclaration des constantes>;

<Déclaration des sous-programmes> ;
Début int main() {
<instruction 1> ;
. <instruction 1> ;
<Appels des sous-algorithmes> ; <Appels des sous-programmes> ;

<instruction N> ;

<instruction N> ;
return 0;

Fin. }

[] .
& Remarque : En langage C, les sous-programmes sont déclarées avant la fonction
main, afin de permettre leur appel a I’'intérieur du programme principal.

Il existe deux types deux sous-algorithmes : Les fonctions et les procédures.

5.3.1 Déclaration d’une fonction

Une fonction est un type de sous-algorithme qui permet de retourner une valeur unique,
elle posseéde, donc, un type de retour. Une fonction est déclarée en suivant la structure
suivante :

Fonction id_fonction (P1 : Typel ; P2 : Type2; ... ; PN : TypeN) : Type Fonction ;
Variables <Déclaration des variables ;>
Début
Instruction(s) ;
Retourner Resultat ;
Fin ;

id_fonction est I’identificateur de la fonction.

Pl1, P2, ..., PN représentent les parametres formels, chacun est associé a un type,
permettant de transmettre des données a la fonction.

Type Fonction désigne le type de la valeur retournée par la fonction.

La partie Variables contient les déclarations locales des variables utilisées par la fonction
en plus des parameétres.

L’instruction Retourner Résultat permet de renvoyer la valeur calculée.

EnC:
Type Fonction id fonction (Type 1 P1, .., TypeN PN) {
<Déclaration des variables ;>
Instructions ;
return Resultat ;

5.3.2 Déclaration d’une procédure

Une procédure est un type de sous-algorithme qui réalise un traitement donné sans
retourner de valeur, contrairement a la fonction. Une procédure ne posséde, donc, pas un
type de retour. Une procédure est déclarée en suivant la structure suivante :

Procédure id procédure (P1: Typel ; P2 : Type2 ;... ; PN : TypeN);
Variables <Déclaration des variables ;>
Début
Instruction(s) ;
Fin ;

EnC:
void id procedure (Type 1 P1, .., TypeN PN) {
<Déclaration des wvariables ;>
Instructions ;

5.4 Passage de Parametres et Portée des Variables

Le passage de parametres est un mécanisme de communication permettant aux sous-
algorithmes d’échanger des informations entre eux et avec 1’algorithme principal.

Il existe deux types de passage de paramétres : par valeur et par adresse.

5.4.1 Passage par valeur (Transmission par valeur)

= Une copie de la valeur du parametre effectif est envoyée au sous-algorithme.
= Le sous-algorithme travaille sur cette copie, pas sur la variable d’origine.
= Tout changement local n’affecte pas la variable dans 1’algorithme principal.

® Utilisé pour les parametres d’entrée.

- Remarque : Un paramétre passé par valeur est précédé soit de la lettre E (Entrée),

soit de rien du tout ; par défaut, tout parametre est considéré comme passé par valeur.
5.4.2 Passage par adresse / par référence

- Le sous-algorithme recoit I’adresse de la variable.

- Toute modification affecte directement la variable réelle (parametre effectif).

- Utilisé pour les paramétres de sortie ou d’entrée-sortie.

- En algorithmique, on utilise S (Sortie), ou E/S (Entrée-Sortie) devant le paramétre formel

passé par adresse.

- Remarque : En langage C, lorsqu’un paramétre est passé par adresse, il est précédé
par un astérisque * dans la déclaration du sous-algorithme (paramétre formel).

Lors de I’appel, le paramétre effectif correspondant est précédé par une esperluette &.

5.5 Appels des sous-algorithmes

L’appel d’un sous-algorithme permet d’exécuter une fonction ou une procédure a partir de
I’algorithme principal ou d’un autre sous-algorithme.

Lors de I’appel, les valeurs transmises sont appelées parametres effectifs.

Pour que I’appel soit correct, il doit respecter les régles suivantes :

e Le méme nombre de paramétres que dans la déclaration,
e Le méme ordre des parameétres,

e Le méme type pour chaque parametre correspondant.

Exemple :

Algorithme ExemplePassage ;
Variables y : entier ;
Procédure SA1 (x : entier) ;
Début

X —x+10;
Fin ;
Procédure SA2 (E/S x : entier) ;
Début

X —x+10;

Fin ;

Début

y <35

SAL(y);

Ecrire(y) ; // Iciy reste 5
SA2(y);

Ecrire(y) ; // Ici y devient 15
Fin.

Dans I’exemple, ci-avant, lors de I’appel de SA1, le parameétre est passé par valeur : la
modification de x n’affecte pas la variable y, qui conserve donc sa valeur initiale.
En revanche, lors de I’appel de SA2, le parameétre est passé par adresse : toute modification

de x agit directement sur y, qui prend alors la nouvelle valeur.

5.6 Portée des variables

Lorsque un algorithme contient des sous-algorithmes (fonctions, procédures), toutes les
variables n’ont pas la méme « portée », c’est-a-dire la zone ou elles sont visibles et
utilisables.

5.6.1 Variables globales

Les variables globales sont déclarées avant les sous-algorithmes. Elles sont accessibles
partout : dans 1’algorithme principal et dans les sous-algorithmes (lecture et modification).

Les variables globales permettent de partager des informations entre le programme
principal et les sous-algorithmes.

5.6.2 Variables locales

Les variables locales sont déclarées a I’intérieur d’un sous-algorithme. Elles sont
accessibles uniquement dans ce sous-algorithme (elles n’existent pas avant ni apres son
exécution).

Les variables locales servent pour des calculs internes sans modifier le reste du programme.

Remarques :

1. Lorsqu’une variable locale porte le méme identificateur qu’une variable
globale, la variable locale masque la globale a I’intérieur du sous-algorithme.

Autrement dit, dans le sous-algorithme, toutes les opérations utilisent la variable locale, et
la variable globale est ignorée jusqu’a la fin du sous-algorithme.

2. Les paramétres formels d’un sous-algorithme sont considérés comme des variables
locales.

5.7 La récursivité

La récursivité est une méthode naturelle pour programmer des fonctions définies par
récurrence, car elle reprend exactement le méme principe : un cas simple (Cas trivial) et un
appel sur un sous-probléme plus petit. Le cas trivial, permet de stopper les appels récursifs
et a procéder au renvoi des résultats.

Sil’on considére la suite S = 1+2+3+---+N, qui permet de calculer la somme des N premiers
nombres, on peut tout d’abord écrire sa fonction itérative comme suit :

Fonction Somme(N : entier) : entier ;
Variables S , i: entier ;
Début

S<0;

Pour i< 1 aN faire

S<—S+i;

Fin-Pour ;
Retourner S ;
Fin ;

On remarque ensuite que ce probléme est défini par récurrence, car la somme de N nombres
peut s’exprimer comme la somme des (N-1) premiers nombres plus N.
On peut donc écrire une fonction récursive :

Fonction Somme(N : entier) : entier ;
Variables S : entier ;
Début
Si (N =1) alors
S < 1;// Cas trivial
Sinon
S <= N+ Somme(N-1) ;
Fin-Si ;
Retourner S ;
Fin ;

Pour N =1, la somme des N premiers nombres se réduit a ce seul nombre, donc la somme
vaut 1. On connait ce résultat directement, ce qui en fait le cas trivial.
De plus, ce cas ne nécessite aucun autre appel récursif, ce qui permet d’arréter la récursion.

B Remarques :
[]
[]

Les fonctions récursives peuvent étre transformées en procédures récursives et de maniere
générale, toute procédure peut étre transformée en procédure et vice versa.

5.8 Etapes de transformation d’une fonction en
procédure et d’une procédure en fonction
Pour transformer une fonction en procédure, on suit les étapes suivantes :

1. Remplacer le mot-clé Fonction par Procédure.

2. Supprimer le type de retour de la fonction.

3. Prendre la variable résultat de la fonction et I’ajouter comme parameétre formel de
la procédure, passé par adresse (E/S).

4. Supprimer I’instruction Retourner dans la procédure.
Dans I’algorithme principal, il faut :

e Ajouter une variable qui servira de parametre effectif correspondant au parameétre
formel résultat lors de I’appel de la procédure.

o Sil’appel de la fonction se trouvait dans une affectation, il faut extraire cet appel et
I’écrire comme instruction a part entiére, puis utiliser la variable ajoutée pour
récupérer le résultat.

Pour transformer une procédure en fonction, il suffit de procéder inversement a toutes les
étapes précédemment décrites.

5.9 Conclusion

Ce chapitre a présenté les sous-algorithmes, en distinguant fonctions et procédures, ainsi
que leurs déclarations et appels.

Ces notions constituent la base pour structurer efficacement un programme et réutiliser
des traitements dans différents contextes.

	Chapitre 5 : Les sous-algorithmes (Procédures et fonctions)
	5.1 Introduction
	Algorithme id_Algorithme ;
	Variables <Déclaration des variables>;
	Constantes <Déclaration des constantes>;
	<Déclaration des sous-algorithmes> ;
	Début
	<instruction_1> ;
	.
	<Appels des sous-algorithmes> ;
	.
	<instruction_N> ;
	Fin.

	En C :
	#include <stdio.h>
	<Déclaration des variables>;
	<Déclaration des constantes>;
	<Déclaration des sous-programmes> ;
	int main() {
	<instruction_1> ;
	<Appels des sous-programmes> ;
	5.4 Passage de Paramètres et Portée des Variables
	Le passage de paramètres est un mécanisme de communication permettant aux sous-algorithmes d’échanger des informations entre eux et avec l’algorithme principal.
	Il existe deux types de passage de paramètres : par valeur et par adresse.
	- Le sous-algorithme reçoit l’adresse de la variable.
	- Toute modification affecte directement la variable réelle (paramètre effectif).
	- Utilisé pour les paramètres de sortie ou d’entrée-sortie.
	5.6 Portée des variables

