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Dualité lagrangienne



Dualité lagrangienne

Probléeme Primal min f(x) s.c.
XEX

gi(x)<0,i=1,..,m
hi(x) =0, j=1,..,p

avec XcR"

m p
Fonction de Lagrange L(x, A, u) = f(x) + Z Aigi(x) + Z nih;(x)
i=1 =1

avech; =0i=1,..,m

Fonction duale (A, p)=m€i)r(1 L(x, A, )
X

Probléme Dual max 6(\, |
A=0, L



Dualité lagrangienne

Théoreme de dualité

f)z 60, )
VxeX satisfaisant les contraintes du primal

VA>0, YV

Corollaire

Soit x* € X satisfaisant les contraintes du primal
et A">0, u*
tels que:
fx®) = 607, 1)
Alors x™ est solution du primal et (A", u*) est solution du dual



Programmation Linéaire et dualité



Pb du pharmacien : fournir une potion contenant un minimum d’unités

en vitamines A, B, C
en utilisant les poudres fournies par 2 laboratoires

1009 de poudre | laboratoirel laboratoire 2
vitamine A 20 unités 5 unités
vitamine B 30 unites 20 unites
vitamine C 5 unites 10 unités

colt 6 9

Il lui faut au moins

25 unités de vitamine A
60 unités de vitamine B
15 unités de vitamine C




Pb du pharmacien : fournir une potion contenant un minimum d’unités
en vitamines A, B, C
en utilisant les poudres fournies par 2 laboratoires

1009 de poudre | laboratoirel laboratoire 2

vitamine A 20 unités 5 unités

vitamine B 30 unites 20 unites

vitamine C 5 unites 10 unités

colt 6 9
min 6x; +9X,

Il lui faut au moins (20, +5X, =25
25 unités de vitamine A c.c. ) 30x,  +20x, =60
60 unités de vitamine B S5x  +10x, 215

15 unités de vitamine C (X >0 X, >0




Majorants et minorants

Quelques solutions
X;=3,%X,=0,z=18

X;=2,%,=1,2=21

Ce sont des solutions sous-optimales donc majorants de la valeur optimale z*
z* <18

Comment obtenir des minorants ?

? < z*



3/10 x la contrainte VitA=7,5<6 x; +3/2 X, <6 X, +9X, =2

Donc 7,5 < z*

3/20 x vit.A+1/10 x vit.B = 75/20+6 <6x; +(15/20+2)x, < 6X, +9X, =2
Donc3,75+6=9,75 < z*

2/10 x la contrainte vit.B =>12<6x;+4x, < 6x,+9x,=2

Donc 12 < z*

On sait dejaque 12 < z¥ <18

Peut-on faire mieux ?



Généralisons cette approche

Introduisons les variables
Y220, y520, y20

25<20x; +5x, X Ya
60 <30x, +20x, X Yg
15<5x;,+10x, XY

25y, +60yg+15y. <x,(20y, +30yg+5yc)+%x, (5y,+20y,+10vy,)

On impose
20y, +30yg+5y.<6 (1)
5y,+20y,+10y. <9 (2)

On a alors
25y, +60yg+15y.<6Xx,+9x%x, =2

Comme on veut le minorant le plus haut possible, il ne reste plus qu’a
maximiser 25y, +60yg+ 15y,

sous contraintes (1), (2)

et avec y,20, yg20, y-20



Résumons

N . Probléme dual (D)
Probleme primal (P)

n = b:v:
minz = Z ¢jX; maxw i1 iVi
n = imragyi ¢ (=1lan)
.c. Dj=1ajXj = by (l' =1 zjlm) s.C. >0 G=1am)
xj =0 G=1lan)
Exemple:
min 6, +9x, max 25y, + 60y, +15Y,
s.C. 0% +20%, 260 s.c.y 5y, +20y; +10y. <9

5, +10x, =15

>0 >0 >0
>0 Xx,20 Ya Ye Ye




Dualité et programmation linéaire

Primal (P) mincx s.c.Ax = b
x=0
bs.c.yA <
Dual (D) rjr}gg(y s.c.YA<c

Format des données et des variables
A I




Construction du dual

[ min cx max yb
P Ax>D D A<c
(P) S_C.{ X (D) S.C.{y

I X>0 y>0

20 5 25
X
c=(6 9) x=(1] A=|30 20 y=(ya Vg VYc) b=]|60
X
’ 5 10 15
min 6x; +9X, max 25y, +60yg +15y,

(20x, +5x, =25 20y, +30yg +5y. <6
.. 30x, +20x, =60 s.c.y 5y +20yg +10y. <9
i O

5%,  +10x, =15 Ya20 yg=20 yc20

1,20 Xx,20



Définition du dual dans le cas général

On rajoute des contraintes d’égalités et des variables sans signe (20)

Tableau de correspondance primal — dual

minimisation _____________| maximisation

Fonction objectif min Fonction objectif max
Second membre Fonction objectif

A matrice des contraintes AT matrice des contraintes
Contrainte i type 2 Variable y, 20

Contrainte i type = Variable y, sans signe
Variable x; 20 Contrainte j type <
Variable x; sans signe Contrainte j type =

On lit de gauche a droite quand le primal est en minimisation
De droite a gauche quand le primal est en maximisation

15



Remarque
Le dual de (D) est (P)

Pour le voir:
1- Ecrire (D) sous forme d’un probléeme de minimisation avec contraintes >

On note (D’) le probleme obtenu,
2- Ecrire le dual de (D’) en utilisant la transformation matricielle précédente

Vérifier que le dual de (D’) est (P)

Il en résulte que I'on peut lire la transformation pour passer du primal au dual
de gauche a droite mais aussi de droite a gauche

Exemple : écrire le dual de ce PL
[ maxv =25y, + 60y, +15Y,
20y, +30y, +5y. <6
s.c.y 9y, +20y; +10y. <9
Yya20 yg20 y.20




Dualité et programmation linéaire

Théoreme de dualité faible
Pour toute solution x admissible de (P) et toute solution y admissible de (D)
I'objectif de (P) est supérieur ou égal a 'objectif de (D) : z>w

démonstration
z=cx2 (YA)x=y(Ax)2yb=w
c2yA Ax=>b

WA



Dualité et programmation linéaire

Théoréeme de dualité faible
Pour toute solution x admissible de (P) et toute solution y admissible de (D)
I'objectif de (P) est supérieur ou égal a l'objectif de (D) : z>w

démonstration
z=cx2 (YA)x=y(Ax)2yb=w

c2yA Ax>b

Corollaire

Soit x* solution admissible de (P) et z* = cx* la valeur de I'objectif de (P)
Soit y* solution admissible de (D) et w* = y*b la valeur de l'objectif de (D)
telles que z* = w*

Alors x* et z* sont solutions optimales de (P) et (D) respectivement.



Exercice

Exercice

1- Ecrire le dual lagrangien de (P) avec y=A>0 comme variables duales
2- Donner les conditions sur vy telles que ce dual lagrangien ait une valeur>-oc
3- En déduire que le dual lagrangien de (P) est le probleme (D)



Saut de dualité

Le résultat suivant est tres important ;

- Sil'un des 2 problemes a un optimum fini,

alors les valeurs optimales des 2 problemes (P) et (D) coincident.

- Sil'un des 2 problemes a un optimum non fini,

alors I'autre probleme n’a pas de solution réalisable

pas de saut entre les valeurs optimales des problémes (P) et (D)




Absence de saut de dualité
Théoreme de dualité forte



Conditions de Karush-Kuhn-Tucker

Soit le programme mathématique suivant

min f(x)

s.c. gi(x)<0 i€l
Avec I un ensemble fini d’indices
f,g; i €1, fonctions de classe C?

Conditions nécessaires d’optimalité (Karush-Khun-Tucker)
Si x* « qualifié » est un minimiseur local alors il existe A; = 01 € [ tels que

PG + ) 2aPgix) =0 (D)
LE]

Aigix*)=0 i€l (c2)

(c1) est la généralisation de Vf(x)=0 (Vf désigne le gradient de f)
(c2) sont les conditions de complémentarité : une contrainte non saturée g,(x)<0 = A.=0
A, i€l sont appelés « multiplicateurs de Lagrange »



Conditions de Karush-Kuhn-Tucker
Qualification de Arrow-Hurwicz-Uzawa

Théoreme Arrow-Hurwicz-Uzawa

Soit x réalisable (satisfaisant les contraintes) et I(x) les indices des contraintes g;(x)<0
saturées par x (i.e. g;(x)=0).

Si les g; i€l(x) sont concaves alors x est qualifié.

Dans ce cas, les conditions KKT sont des conditions nécessaires d’optimalité.

Dans le cas de la PL, les fonctions définissant les contraintes sont affines donc concaves.
Donc tout x réalisable est qualifié et

les conditions KKT sont des conditions nécessaires d’optimalité



Conditions KKT Exemple

: : . : X1

Soit une bille de masse m sur des plans d’équation a,x > b, avec x = (x )
2

La bille cherche a minimiser son énergie potentielle

L'énergie potentielle z dépend de la hauteur x, de la bille : z=mgx,

vz = (n?g)

Considérons 3 plans : x;+x,2>2 (1), -x;+2x, 20 (2) , -X;+x, =-2 (3)
1 (-1 (-1
al_(1)'a2_(z)'a3_(1)

(3)



Conditions KKT Exemple

. Dessiner les vecteurs a,i=1,2,3 et vérifier qu’ils sont orthogonaux aux plans (i)
respectivement.

Mettre la bille au point P; = (6) La bille est supportée par le plan (3).

4
Ecrire les conditions KKT. Sont-elles satisfaites ?

. Mettre la bille au point P, = (4) Quels sont les 2 plans qui supportent la bille ?

2
Ecrire les conditions KKT. Sont-elles satisfaites ?

WIN Wb

. Mettre la bille au point P; = ( ) Quels sont les 2 plans qui supportent la bille ?

Ecrire les conditions KKT. Sont-elles satisfaites ?
Vérifier que le poids mg de la bille est « compensé » par les vecteurs a, des plans
supportant la bille.



Théoreme de dualité

Théoreme de dualité forte
Si le primal admet une solution optimale alors le dual admet une solution optimale,

et les valeurs optimales des 2 problemes coincident.



Théoreme de dualité

Théoreme de dualité forte
Si le primal admet une solution optimale alors le dual admet une solution optimale,
et les valeurs optimales des 2 problemes coincident.

Démonstration

On peut faire une preuve a partir des conditions nécessaires d’optimalité de
Karush-Khun-Tucker

Soit x* la solution optimale de (P)

Il existe >0 associé aux contraintes b-Ax<0, A>0 associé aux contraintes -x<0
tels que c-pA-A=0 et u(Ax*-b)=0 et Ax*=0




Théoreme de dualité

Théoreme de dualité forte
Si le primal admet une solution optimale alors le dual admet une solution optimale,
et les valeurs optimales des 2 problemes coincident.

Démonstration

On peut faire une preuve a partir des conditions nécessaires d’optimalité de
Karush-Khun-Tucker

Soit x* la solution optimale de (P)

Il existe >0 associé aux contraintes b-Ax<0, A>0 associé aux contraintes -x<0
tels que c-pA-A=0 et u(Ax*-b)=0 et Ax*=0

-point 1. A>0 = c-uA20 = ¢ > pA donc p satisfait les contraintes de (D)
-point 2. On multiplie c-pA-A=0 par x* = cx*-pAx*-Ax*=0 = cx*= pAx* = ub
Les valeurs des objectifs de (P) et (D) coincident .

Donc u est solution optimale de (D) (cf corollaire du th. Dualité faible)



Que se passe-t-il si I'un des 2 problemes (primal ou dual) est non borné ?

Il résulte de I'inégalité z>v (th. dualité faible) que
- si min z est non borné (-o0) alors max v= - c’est —a dire le dual n’a pas de solution
- et réciproquement si max v= +oo alors le primal n’a pas de solution

Exemple: soit le probleme (P)
maxv =y; + 2y,

(—2y, + v, <2
—y; + 2y, <5
V1 — 4y, <4
kyl > 0, 34 >0
Ecrire le dual de ce probleme. A-t-il une solution réalisable ?
Confirmer votre réponse en résolvant (P) par l'algorithme du simplexe.

S.C. <%




Il résulte de I'inégalité z>w (Th. dualité faible)

* Si(P) a un optimum non borné (-) alors le max de w vaut - o« c’est-a-dire (D) pas de solution réalisable
Exemple: (P) minz = —x; + x,
—x1 +2x, 21
>C x1=20,x=20
* Si (D) a un optimum non borné (+) alors le min de z vaut + « c’est-a-dire (P) pas de solution réalisable
Exemple: (D) maxw =y; + y,

s.c y1—2y, =<1
T 7120y220

(P) et (D) peuvent ne pas avoir de solution réalisable simultanément

Exemple : (P) minz = x; — X,
X1 + X9 >1
s.cy —2x1 =1

x120,x220



Algorithmes primal et dual du simplexe



Algorithmes primal et dual du simplexe

Probléme (P) sous forme standard mi(r)l cxs.c.Ax =b
>
(contraintes =) =

Probleme (D) dual de (P) maxyb s.c. yA < c
y

Attention pas de condition de sighe sury




Algorithmes primal et dual du simplexe

Base

Quitte a déplacer les colonnes de A,
on partitionne A en une matrice carrée B inversible et une matrice N

A=(B N)
On partitionne de fagcon identique le vecteur x et le vecteur c

XB
cx = (€ Cn) (XN) = cgXp + CyXy

cp est le vecteur extrait de ¢, correspondant aux colonnes de la matrice B
cy est le vecteur extrait de ¢, correspondant aux colonnes de la matrice B
Méme chose pour le vecteur x



Algorithmes primal et dual du simplexe

Solution de base de (P)

X
Ax=b o (B N)(xfl)=BxB+NxN=b

La solution de base (associée a B) est la solution du systeme particuliere suivante:

XN = O, Xp= B_lb

Le coOt de cette solution est cx = cgB~1b
On pose y = cgB™1

On constate alors que: cx =yb Egalité entre 'objectif de (P) et (D)

Maintenant si x satisfait les contraintes de (P) et y les contraintes de (D)
Alors x et y sont solutions (optimales) de (P) et (D) respectivement.
Voir le théoreme de dualité et son corollaire

34



Algorithmes primal et dual du simplexe

Colts réduits

CX = CpXp + CNXN

| Ax=b, Bxg+Nxy=b, xp +B 'Nxy=B'b

—= cx =cgxg+cyxy =cgB b+ (cy —cgB ! N)xy

L'objectif de (P) est exprimé en fonction de xj (variables hors-base) uniquement

Les coefficients de xy sont les colts réduits : ¢y — cgB™IN




Exemple

Prenons var. de base = x3, X,, X,
Donc hors-base = x;, Xs



Exemple (suite)

variables en base x5, X,, X,
variables hors-base x;, x
exprimons les variables de base en fonction des hors-base

1 0 1 1 0 1 0 -1 A | 2
B=<O 1 0>,N=<1 0,B'=(0 1 o0 |,B"IN=|1 0 |lB'h=|2
0 0 1 -1 1 0 0 1 -1 1 1

(2x1 + X3 _xs — 2
Ce qui donne le systeme: { x4 + X4 =2
—X{ X9 +x5 =1

\



Exemple (suite)

Calculons les colts réduits des variables hors-base x,, X:

c;=(00-2)
* Co(t réduit de x, = ¢;-cgB*A; (A;=colonne 1 de A)

2
-1-(00 -2)( 1 >=-1-2=-3
—1

* Co(t réduit de x; = c.-czB*A; (A;=colonne 5 de A)

—1
0-(00 -2)( 0 >=0+2=2
1

2
¢ ¢B1b=(00-2) <2>=-2
1

D'ou z = -2 -3x; + 2X.

z = -2 sur la solution de base x;=2, x, =2, x,=1, x, =0, x.=0 (var. hors-base nulles)



Algorithmes primal et dual du simplexe

Solution duale réalisable

yASC_) yBSCB
YN < cy

CBB_lB < Cp

En prenant y = cp,B~1, on obtient:
P Y B {CBB_lN < Cn

La premiére condition est toujours trivialement vérifiée.
La seconde est vérifiée si et seulement si cy — cgB~IN > 0

La solution y est duale réalisable si et seulement si les co(its réduits sont positifs ou nuls

39




Exemple (suite)

* Calculer y=czB*

1 0 -1
g=(00-2),B~ =10 1 0

0 0 1

e Cet y satisfait-il les contraintes du dual ? Pouvait-on prévoir la réponse ?



Algorithmes primal et dual du simplexe

Résumé
1- La matrice B induit une solution dite de base : x3 = B™'b, x5y = 0

La solution de base est primale réalisable (x = 0) si et seulementsi B~1h > 0

2- La matrice B induit une solution y = cgB~! duale réalisable
si et seulementsi ¢y — cgB™IN > 0 (codts réduits > 0)

3- Pour cette solution de base et cette solution y,
les objectifs du primal et du dual ont la méme valeur = cgB~1b



Algorithmes primal et dual du simplexe

Algorithme primal
On passe de solution de base primale réalisable en solution de base primale réalisable
Et on stoppe dés que I'on a atteint une base B qui est duale réalisable (colts réduits > 0)

Algorithme dual
On passe de base duale réalisable en base duale réalisable
Et on stoppe dés que I'on a atteint une solution de base primale réalisable (B~1b > 0)



Algorithmes primal et dual du simplexe

B’ et B adjacentes = ne different que d’une colonne

L’algorithme primal du simplexe

» Phase 1 : on trouve une solution primal réalisable B
» Phase 2 :

1. si B est aussi dual réalisable alors stop. retourner B

2. sinon soit on a une preuve d'infinitude,
soit on change de base : on trouve B’ adjacente a B, primal
réalisable et meilleure que B

3. remplacer B par B' et retour en 1.

L’algorithme dual du simplexe

» Phase 1 : on trouve une solution dual réalisable B
» Phase 2 :

1. si B est aussi primal réalisable alors stop. retourner B

2. sinon soit on a une preuve de non-réasibilité du primal
(infinitude du dual),
soit on change de base : on trouve B’ adjacente a B, dual
réalisable et meilleure que B

3. remplacer B par B' et retour en 1.

43



Algorithmes primal et dual du simplexe

Ecriture canonique de (P) relativement a une matrice de base B

min z = cgB™ b + (cy — cgB"1N)xy

xg + B 'Nxy =B~ 1b
Xp > O, xNZ 0

que I'on peut noter:

(
min z = cgB~ b + Z Ajx;

Jj hors—base
xX; + z a;jx; =b; Vienbase
j hors—base
L xg =0, xy=0




Algorithmes primal et dual du simplexe

Regles de pivotage (pour passer d’une base B a une base B’ adjacente)

Algorithme primal
Variable entrant dans la base
- Variable entrant dans la base : x,, tel que A,< 0 et le plus petit

Variable sortant de la base
- Sitouslesa;, < 0 (dans la colonne e) alors minimum non borné (-x)
(on peut augmenter indéfiniment la variable x, )
. . . . | b; . _
Sinon variable x sortant de la base ou s = argmin {a:‘ Vi t.q. a;, >0 }
i _ie
(cette regle permet de maintenir le second membre b>0)



Algorithmes primal et dual du simplexe

Regles de pivotage (pour passer d’'une base B a une base B’ adjacente)

Algorithme dual
Variable sortant de la base
- Variable sortant de la base : x tel que bg < 0 et le plus petit

Variable entrant dans la base
- Sitousles ag; = 0 (dans la ligne s) alors primal non realisable
(en ligne s, on a une équation avec membre gauche>0 et membre droit <0)
A; , _
Sinon variable x, entrant dans la base ol e = argmaxi{—L: Vjt.q.ag; <0
i @ !
(cette regle permet de maintenir les colts réduits >0)



Exercice

minz = 2x; + 3x,

( 4x, +x5, =8
x1+4x, =8
7x1 +10x, = 47
x1=0,x,=>20

S.C 4

\

1-Mettre ce probleme sous forme standard
2-Trouver une base duale réalisable évidente
3-Partant de cette base, résoudre le probleme par 'algorithme dual du simplexe



Annexes

* Dualité — Interprétation économique
e Ecarts complémentaires



Pb du pharmacien:

100g de poudre | laboratoirel laboratoire 2
vitamine A 20 unités 5 unités
vitamine B 30 unites 20 unites
vitamine C 5 unites 10 unités

colt 6 9

Il lui faut au moins

25 unités de vitamine A
60 unités de vitamine B
15 unités de vitamine C

Un 3¢me [aboratoire décide de commercialiser les vitamines A, B, C séparément.

Il lui faut trouver le prix y,, ¥s, Yc pour chaque unité de vitamine.

Pour étre concurrentiel avec le laboratoire 1 il faut : 20y,+30y,+5y.<6

Si le pharmacien achéte la préparation du 3¢ laboratoire, il ne paiera pas plus cher que pour la potion

du laboratoire 1

49




Pb du pharmacien:

100g de poudre | laboratoirel laboratoire 2 | lui faut au moins

vitamine A 20 unités 5 unites 25 unités de vitamine A

vitamine B 30 unités 20 unités 60 unités de vitamine B

vitamine C 5 unités 10 unités 15 unités de vitamine C
colt 6 9

Un 3¢me [aboratoire décide de commercialiser les vitamines A, B, C séparément.

Il lui faut trouver le prix y,, ¥s, Yc pour chaque unité de vitamine.
Pour étre concurrentiel avec le laboratoire 1 il faut : 20y,+30y,+5y.<6

Si le pharmacien achéte la préparation du 3¢ laboratoire, il ne paiera pas plus cher que pour la potion
du laboratoire 1

Pour étre concurrentiel avec le laboratoire 2 il faut : 5y,+20yg+10y<9.
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Pb du pharmacien:

100g de poudre | laboratoirel laboratoire 2 Il lui faut au moins

vitamine A 20 unités 5 unites 25 unités de vitamine A

vitamine B 30 unités 20 unités 60 unités de vitamine B

vitamine C 5 unités 10 unités 15 unités de vitamine C
colt 6 9

Un 3¢me [aboratoire décide de commercialiser les vitamines A, B, C séparément.

Il lui faut trouver le prix y,, ¥s, Yc pour chaque unité de vitamine.

Pour étre concurrentiel avec le laboratoire 1 il faut : 20y,+30y,+5y.<6

Si le pharmacien achéte la préparation du 3¢ laboratoire, il ne paiera pas plus cher que pour la potion
du laboratoire 1

Pour étre concurrentiel avec le laboratoire 2 il faut : 5y,+20yg+10y<9.

Le laboratoire désire maximiser les gains en vendant ses vitamines au
pharmacien

maximiser 25y, + 60 yg + 15 y..

51



Pb du pharmacien : se fournissant aupres des laboratoires 1 et 2
préparer sa potion a un moindre co(t
min 6x; +9X,
(20x, +5x, =25
pb primal 30x, +20x, >60
1By, +10x, >15
1,20 Xx,20

Pb du concurrent des laboratoires 1 et 2 : trouver le juste prix des vitamines

max 25y, +60yg +15y,
pb dual ( 20y, +30yg +3yc <6
S.C.< 9yn +20yg +10y. <9
Ya 20 yg20 yc=20




Ecarts complémentaires

Propriété.

Soit x une solution réalisable de (P) c’est-a-dire x vérifie les contraintes de (P) et
y une solution réalisable de (D) c’est-a-dire y vérifie les contraintes de (D).

x et y sont solutions optimales de (P) et (D) respectivement

si et seulement si y(Ax-b)=0 et (c-yA)x=0.

Vérifions la propriété sur le pb du pharmacien:

Yax(20x,+5x,-25) + )
ygx(30x,+20x,-60) +
ycx(5x,+10x,-15) + > termes>0 =si la somme=0 ils sont tous nuls
X;%(6-20y,-30y5-5y) +
X,%(9-5y,-20y,-10y ) =0

J

<> 6x,+9x,-25y,-60y,-15y = 0 < l'objectif (P)=I'objectif de (D) < x et y solutions
de (P) et (D)



il résulte du théoreme des écarts complémentaires que
une contrainte lache (non saturée) correspond a une variable duale nulle
et ceci pour les 2 problemes primal et dual

Exemple du probleme pharmacien

Une solution de (P) X;=1, %,=3/2

Une solution de (D) ya=1/5,ys=1/30,y.=1/5

La contrainte (vit.A) de (P) est non saturée (33,75 > 25) donc y, devrait étre nulle
La contrainte (2) de (D) est non saturée (3+2/3 < 9) donc x, devrait étre nulle.
Ces solutions ne satisfont pas les écarts complémentaires donc non optimales

Une solution de (P) X;=3/2,x,=3/4
Une solution de (D) yo=0,yp=3/40,y.= %
Elles vérifient les écarts complémentaires donc optimales pour (P) et (D) respectivement



Ecarts complémentaires

Exercice
Soit x = 0 satisfaisant les contraintes de (P)
et y = 0 satisfaisant les contraintes de (D)

Montrer que :

cx = yb si et seulement si
y(b—Ax) =0et(c—yA)x =0



Interprétation des variables duales
Soit (P) pb de type minimiser et son dual (D).

A | 'optimum de (P) et (D) on a z'=v'=yb

De combien varie | ‘optimum de (P)
lorsque b le second membre des contraintes varie ?

Az"=yAb si Ab pas trop grand
sinon Az">yAb les valeurs des var. duales y n ’étant plus optimales

Faisons varier un b, uniquement Az"=y.Ab. = Az"/Ab=y,

y; représente le prix a payer quand on fait varier la contrainte i



Exemple : si le pharmacien fait varier ses demandes en vitamines A, B, C

Solution du dual:
Ya=0, V=40, Yc=34,v=",

 min z = 6%, +9X,
(
20)(1 +5X2 225\ 25+8:>AZ:yAX8=OX8

(P) 30x, +20x, >60
s.c4 :
5%, +10x, =>15 60+ = Az=yyxe=3/,, x ¢

X =20 X,2>0
- 15+e => Az=y.xe=3/, X ¢

La vitamine A pas d’effet sur le colt, B un peu d’effet, C 10 fois plus d’effet



