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Dualité lagrangienne



Dualité lagrangienne

min
𝑥∈𝑋

𝑓(𝑥) s.c. ൝
𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚
ℎ𝑗(𝑥) = 0, 𝑗 = 1,… , 𝑝

𝐿 𝑥, 𝜆, 𝜇 = 𝑓 𝑥 +෍

𝑖=1

𝑚

𝑖𝑔𝑖 𝑥 +෍

𝑗=1

𝑝

𝑗ℎ𝑗 𝑥

𝑎𝑣𝑒𝑐 𝑖 ≥ 0 𝑖 = 1,… ,𝑚

𝜃(,)=min
𝑥∈𝑋

𝐿(𝑥, 𝜆, 𝜇)

avec  𝑋𝑅𝑛

max
≥0,

𝜃(,)

Problème Primal

Fonction de Lagrange

Fonction duale

Problème Dual
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Dualité lagrangienne

𝑓 𝑥  𝜃(,)
𝑥𝑋 satisfaisant les contraintes du primal 
≥0, 

Théorème de dualité  

Soit 𝑥∗𝑋 satisfaisant les contraintes du primal
et ∗≥0,∗

tels que:
𝑓 𝑥∗ = 𝜃(∗,∗)

Alors 𝑥∗ est solution du primal et (∗,∗) est solution du dual

Corollaire
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Programmation Linéaire et dualité
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96coût

unités 10unités 5C vitamine

unités 20unités 30B vitamine

unités 5unités 20A vitamine

2 elaboratoir1 elaboratoirpoudre de 100g

Il lui faut au moins 
25 unités de vitamine A
60 unités de vitamine B  
15 unités de vitamine C 

Pb du pharmacien : fournir une potion contenant un minimum d’unités 
en vitamines A, B, C
en utilisant  les poudres fournies par 2 laboratoires
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Quelques solutions
x1 = 3, x2 = 0, z = 18

x1 = 2, x2 = 1, z = 21

Ce sont des solutions sous-optimales donc majorants de la valeur optimale z*

z* ≤ 18

Comment obtenir des minorants ?

?  ≤  z*
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Majorants et minorants



• 3/10 × la contrainte vit.A  7,5 ≤ 6 x1 + 3/2 x2 ≤ 6 x1 + 9 x2 = z

Donc 7,5  ≤  z*

• 3/20 × vit.A + 1/10 × vit.B  75/20 + 6  ≤ 6 x1 + (15/20 + 2) x2 ≤  6 x1 + 9 x2 = z

Donc 3,75 + 6 = 9,75  ≤  z*

• 2/10 × la contrainte vit.B  12 ≤ 6 x1 + 4 x2 ≤  6 x1 + 9 x2 = z

Donc 12  ≤  z*

On sait dèjà que 12 ≤  z* ≤ 18 

Peut-on faire mieux  ?
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Généralisons cette approche

Introduisons les variables
yA≥0 , yB≥0 , yC≥0 

25 ≤ 20 x1 + 5 x2 × yA

60 ≤ 30 x1 + 20 x2 × yB

15 ≤ 5 x1 + 10 x2 × yC

25 yA + 60 yB + 15 yC ≤ x1 (20 yA + 30 yB + 5 yC ) + x2 (5 yA + 20 yB + 10 yC ) 

On impose  
20 yA + 30 yB + 5 yC ≤ 6 (1)
5 yA + 20 yB + 10 yC ≤ 9 (2)

On a alors 
25 yA + 60 yB + 15 yC ≤ 6 x1 + 9 x2 = z 

Comme on veut le minorant le plus haut possible, il ne reste plus qu’à
maximiser 25 yA + 60 yB + 15 yC

sous contraintes  (1) , (2) 
et avec  yA≥0 , yB≥0 , yC≥0 
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Résumons

Problème primal (P)

min 𝑧 =෍
𝑗=1

𝑛

𝑐𝑗𝑥𝑗

s.c. ൝
σ𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 (𝑖 = 1 à 𝑚)

𝑥𝑗 ≥ 0 (𝑗 = 1 à 𝑛)

Problème dual (D)

max𝑤 =෍
𝑖=1

𝑚

𝑏𝑖𝑦𝑖

s.c. ൝
σ𝑖=1
𝑚 𝑎𝑖𝑗𝑦𝑖 ≤ 𝑐𝑗 (𝑗 = 1 à 𝑛)

𝑦𝑖 ≥ 0 (𝑖 = 1 à 𝑚)
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Exemple:
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Dualité et programmation linéaire
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min
𝑥≥0

𝑐𝑥 s.c. 𝐴𝑥 ≥ 𝑏

max
𝑦≥0

𝑦𝑏 s.c. 𝑦𝐴 ≤ 𝑐

b

c

A

x

y

Format des données et des variables

Primal (P)

Dual (D)
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Construction du dual
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Définition du dual dans le cas général

minimisation maximisation

Fonction objectif min Fonction objectif max

Second membre Fonction objectif

A matrice des contraintes AT matrice des contraintes

Contrainte i type ≥ Variable yi ≥0

Contrainte i type = Variable yi sans signe

Variable xj ≥0 Contrainte j type ≤

Variable xj sans signe Contrainte j type =

Tableau de correspondance primal – dual 

On lit de gauche à droite quand le primal est en minimisation
De droite à gauche quand le primal est en maximisation

On rajoute des contraintes d’égalités et des variables sans signe (≷0)
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Remarque
Le dual de (D) est (P)

Pour le voir:
1- Ecrire (D) sous forme d’un problème de minimisation avec contraintes ≥

On note (D’) le problème obtenu, 
2- Ecrire le dual de (D’) en utilisant la transformation matricielle précédente

Vérifier que le dual de (D’) est (P)

Il en résulte que l’on peut lire la transformation pour passer du primal au dual 
de gauche à droite mais aussi de droite à gauche 

Exemple : écrire le dual de ce PL
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AxbcyA

Théorème de dualité faible
Pour toute solution x admissible de (P) et toute solution y admissible de (D)
l’objectif de (P) est supérieur ou égal à l’objectif de (D) : z  w

démonstration
z = cx ≥ (yA)x = y(Ax) ≥ yb = w

17

Dualité et programmation linéaire



AxbcyA

Théorème de dualité faible
Pour toute solution x admissible de (P) et toute solution y admissible de (D)
l’objectif de (P) est supérieur ou égal à l’objectif de (D) : z  w

démonstration
z = cx ≥ (yA)x = y(Ax) ≥ yb = w

Corollaire
Soit x* solution admissible de (P) et z* = cx* la valeur de l’objectif de (P)
Soit y* solution admissible de (D) et w* = y*b la valeur de l’objectif de (D) 
telles que z* = w*
Alors x* et z* sont solutions optimales de (P) et (D) respectivement.
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Dualité et programmation linéaire
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1- Ecrire le dual lagrangien de (P) avec y=0 comme variables duales
2- Donner les conditions sur y telles que ce dual lagrangien ait une valeur>-
3- En déduire que le dual lagrangien de (P) est le problème (D)

Exercice 

Exercice
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Le résultat suivant est très important ; 

- Si l’un des 2 problèmes a un optimum fini, 

alors les valeurs optimales des 2 problèmes (P) et (D) coïncident.

- Si l’un des 2 problèmes a un optimum non fini, 

alors l’autre problème n’a pas de solution réalisable

pas de saut entre les valeurs optimales des problèmes (P) et (D)

Saut de dualité
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Absence de saut de dualité
Théorème de dualité forte
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Conditions de Karush-Kuhn-Tucker

Soit le programme mathématique suivant

min𝑓(𝑥)

s.c.   𝑔𝑖 𝑥 ≤ 0 𝑖 ∈ 𝐼
Avec 𝐼 un ensemble fini d’indices
𝑓, 𝑔𝑖 𝑖 ∈ 𝐼 , fonctions de classe C1

Conditions nécessaires d’optimalité (Karush-Khun-Tucker)
Si x* « qualifié » est un minimiseur local alors il existe 𝑖 ≥ 0 𝑖 ∈ 𝐼 tels que

𝛻𝑓 𝑥∗ +෍

𝑖∈𝐼

𝑖𝛻𝑔𝑖 𝑥
∗ = 0 (𝑐1)

𝑖𝑔𝑖 𝑥
∗ = 0 𝑖 ∈ 𝐼 (𝑐2)

(c1) est la généralisation de f(x)=0  (f désigne le gradient de f)
(c2) sont les conditions de complémentarité : une contrainte non saturée gi(x)<0  i=0
i iI sont appelés « multiplicateurs de Lagrange »
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Conditions de Karush-Kuhn-Tucker
Qualification de Arrow-Hurwicz-Uzawa

Théorème Arrow-Hurwicz-Uzawa
Soit x réalisable (satisfaisant les contraintes) et I(x) les indices des contraintes gi(x)≤0 
saturées par x (i.e. gi(x)=0).
Si les gi iI(x) sont concaves alors x est qualifié. 

Dans ce cas, les conditions KKT sont des conditions nécessaires d’optimalité.

Dans le cas de la PL, les fonctions définissant les contraintes sont affines donc concaves.
Donc tout x réalisable est qualifié et 
les conditions KKT sont des conditions nécessaires d’optimalité
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Conditions KKT Exemple

Soit une bille de masse m sur des plans d’équation ai x ≥ bi avec 𝑥 =
𝑥1
𝑥2

La bille cherche à minimiser son énergie potentielle 
L’énergie potentielle z dépend de la hauteur x2 de la bille : z=mgx2

𝛻𝑧 =
0
𝑚𝑔

Considérons 3 plans : x1+x22 (1), -x1+2x2 0 (2) , -x1+x2 -2 (3)

𝑎1 =
1
1

, 𝑎2 =
−1
2

, 𝑎3 =
−1
1
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1. Dessiner les vecteurs ai i=1,2,3 et vérifier qu’ils sont orthogonaux aux plans (i) 
respectivement.

2. Mettre la bille au point 𝑃1 =
6
4

. La bille est supportée par le plan (3). 

Ecrire les conditions KKT. Sont-elles satisfaites ?

3. Mettre la bille au point 𝑃2 =
4
2

. Quels sont les 2 plans qui supportent la bille ?

Ecrire les conditions KKT. Sont-elles satisfaites ?

4. Mettre la bille au point 𝑃3 =
4

3
2

3

. Quels sont les 2 plans qui supportent la bille ?

Ecrire les conditions KKT. Sont-elles satisfaites ?
Vérifier que le poids mg de la bille est « compensé » par les vecteurs ai des plans 
supportant la bille.

Conditions KKT Exemple



Théorème de dualité forte

Si le primal admet une solution optimale alors le dual admet une solution optimale , 

et les valeurs optimales des 2 problèmes  coïncident.

Théorème de dualité
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Théorème de dualité forte

Si le primal admet une solution optimale alors le dual admet une solution optimale , 

et les valeurs optimales des 2 problèmes  coïncident.

Démonstration
On peut faire une preuve à partir des conditions nécessaires d’optimalité de 
Karush-Khun-Tucker
Soit x* la solution optimale de (P)
Il existe ≥0 associé aux contraintes b-Ax≤0, ≥0 associé aux contraintes -x≤0
tels que c-A-=0 et (Ax*-b)=0 et x*=0

Théorème de dualité
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Théorème de dualité forte

Si le primal admet une solution optimale alors le dual admet une solution optimale , 

et les valeurs optimales des 2 problèmes  coïncident.

Démonstration
On peut faire une preuve à partir des conditions nécessaires d’optimalité de 
Karush-Khun-Tucker
Soit x* la solution optimale de (P)
Il existe ≥0 associé aux contraintes b-Ax≤0, ≥0 associé aux contraintes -x≤0
tels que c-A-=0 et (Ax*-b)=0 et x*=0
-point 1. ≥0  c-A≥0  c ≥ A donc  satisfait les contraintes de (D)
-point 2. On multiplie c-A-=0 par x*  cx*-Ax*-x*=0  cx*= Ax* = b
Les valeurs des objectifs de (P) et (D) coïncident . 

Donc  est solution optimale de (D) (cf corollaire du th. Dualité faible)

Théorème de dualité
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Il résulte de l’inégalité zv (th. dualité faible) que
- si min z est non borné (-) alors max v= - c’est –à dire le dual n’a pas de solution
- et réciproquement si max v= + alors le primal n’a pas de solution

Exemple: soit le problème (P)
max𝑣 =𝑦1 + 2𝑦2

s.c. 

−2𝑦1 + 𝑦2 ≤ 2
−𝑦1 + 2𝑦2 ≤ 5
𝑦1 − 4𝑦2 ≤ 4
𝑦1 ≥ 0, 𝑦2 ≥ 0

Ecrire le dual de ce problème. A-t-il une solution réalisable ?
Confirmer votre réponse en résolvant (P) par l’algorithme du simplexe.

Que se passe-t-il si l’un des 2 problèmes (primal ou dual) est non borné ?
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Il résulte de l’inégalité zw (Th. dualité faible)

• Si (P) a un optimum non borné (-) alors le max de w vaut -  c’est-à-dire (D) pas de solution réalisable
Exemple: (P) min 𝑧 = −𝑥1 + 𝑥2

s.c. ቊ
−𝑥1 + 2𝑥2 ≥ 1
𝑥1 ≥ 0, 𝑥2 ≥ 0

• Si (D) a un optimum non borné (+) alors le min de z vaut +  c’est-à-dire (P) pas de solution réalisable
Exemple: (D) max𝑤 =𝑦1 + 𝑦2

s.c. ቊ
𝑦1 − 2𝑦2 ≤ 1
𝑦1 ≥ 0, 𝑦2 ≥ 0

(P) et (D) peuvent ne pas avoir de solution réalisable simultanément
Exemple : (P) min 𝑧 = 𝑥1 − 𝑥2

s.c.ቐ
𝑥1 + 𝑥2 ≥ 1
−2𝑥1 ≥ 1

𝑥1 ≥ 0, 𝑥2 ≥ 0
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Algorithmes primal et dual du simplexe



Algorithmes primal et dual du simplexe
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min
𝑥≥0

𝑐𝑥 s.c. 𝐴𝑥 = 𝑏

max
𝑦

𝑦𝑏 s.c. 𝑦𝐴 ≤ 𝑐

Problème (P) sous forme standard
(contraintes =)

Problème (D) dual de (P)

Attention pas de condition de signe sur y



Algorithmes primal et dual du simplexe

33

Base

A = 𝐵 𝑁

Quitte à déplacer les colonnes de A, 
on partitionne A en une matrice carrée B inversible et une matrice N 

On partitionne de façon identique le vecteur x et le vecteur c

𝑐𝑥 = 𝑐𝐵 𝑐𝑁
𝑥𝐵
𝑥𝑁

= 𝑐𝐵𝑥𝐵 + 𝑐𝑁𝑥𝑁

𝑐𝐵 est le vecteur extrait de 𝑐 , correspondant aux colonnes de la matrice 𝐵
𝑐𝑁 est le vecteur extrait de 𝑐 , correspondant aux  colonnes de la matrice 𝐵
Même chose pour le vecteur 𝑥



Algorithmes primal et dual du simplexe
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𝐴𝑥 = 𝑏 ↔ 𝐵 𝑁
𝑥𝐵
𝑥𝑁

= 𝐵𝑥𝐵 + 𝑁𝑥𝑁 = 𝑏

La solution de base (associée à B) est la solution  du système particulière suivante:

𝑥𝑁 = 0, 𝑥𝐵= 𝐵−1𝑏

Solution de base de (P)

𝑦 = 𝑐𝐵𝐵
−1On pose

On constate alors que:

𝑐𝑥 = 𝑐𝐵𝐵
−1𝑏

𝑐𝑥 = 𝑦𝑏 Égalité entre l’objectif de (P) et (D)

Maintenant si x satisfait les contraintes de (P) et y les contraintes de (D)
Alors x et y sont solutions (optimales) de (P) et (D) respectivement.
Voir le théorème de dualité et son corollaire 

Le coût de cette solution est 



Algorithmes primal et dual du simplexe
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Coûts réduits

𝑐𝑥 = 𝑐𝐵𝑥𝐵 + 𝑐𝑁𝑥𝑁

𝐴𝑥 = 𝑏 , 𝐵𝑥𝐵 + 𝑁𝑥𝑁 = 𝑏 , 𝑥𝐵 + 𝐵−1𝑁𝑥𝑁 = 𝐵−1𝑏

𝑐𝑥 = 𝑐𝐵𝑥𝐵 + 𝑐𝑁𝑥𝑁 = 𝑐𝐵𝐵
−1𝑏 + (𝑐𝑁 − 𝑐𝐵𝐵

−1𝑁)𝑥𝑁

L’objectif de (P) est exprimé en fonction de 𝑥𝑁 (variables hors-base) uniquement

Les coefficients de 𝑥𝑁 sont les coûts réduits :  𝑐𝑁 − 𝑐𝐵𝐵
−1𝑁



Exemple
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min 𝑧 = −𝑥1 − 2𝑥2

𝑥1 + 𝑥2 + 𝑥3 = 3
𝑥1 + 𝑥4 = 2
−𝑥1 + 𝑥2 + 𝑥5 = 1

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≥ 0

Prenons var. de base = x3, x4, x2

Donc hors-base = x1, x5



Exemple (suite)
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variables en base x3 , x4 , x2

variables hors-base x1 , x5

exprimons les variables de base en fonction des hors-base

𝐵 =
1 0 1
0 1 0
0 0 1

, 𝑁 =
1 0
1 0
−1 1

, 𝐵−1 =
1 0 −1
0 1 0
0 0 1

, 𝐵−1𝑁 =
2 −1
1 0
−1 1

,𝐵−1𝑏 =
2
2
1

Ce qui donne le système: ൞

2𝑥1 + 𝑥3 −𝑥5 = 2

𝑥1 + 𝑥4 = 2

−𝑥1 𝑥2 + 𝑥5 = 1



Exemple (suite)

38

Calculons les coûts réduits des variables hors-base  x1 , x5

cB=(0 0 -2)
• Coût réduit de x1 = c1-cBB-1A1 (A1=colonne 1 de A)

-1-(0 0 -2)
2
1
−1

=-1-2=-3

• Coût réduit de x5 = c5-cBB-1A5 (A5=colonne 5 de A)

0-(0 0 -2)
−1
0
1

=0+2=2

• cBB-1b=(0 0 -2)
2
2
1

=-2

D’où z = -2 -3x1 + 2x5

z = -2 sur la solution de base x3=2, x4 =2, x2=1, x1 =0, x5=0 (var. hors-base nulles)
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Solution duale réalisable

ቊ
𝑦𝐴 ≤ 𝑐

→ ቊ
𝑦𝐵 ≤ 𝑐𝐵
𝑦𝑁 ≤ 𝑐𝑁

En prenant 𝑦 = 𝑐𝐵𝐵
−1, on obtient: ൝

𝑐𝐵𝐵
−1𝐵 ≤ 𝑐𝐵

𝑐𝐵𝐵
−1𝑁 ≤ 𝑐𝑁

La première condition est toujours trivialement vérifiée.
La seconde est vérifiée si et seulement si 𝑐𝑁 − 𝑐𝐵𝐵

−1𝑁 ≥ 0

La solution y est duale réalisable si et seulement si les coûts réduits sont positifs ou nuls



Exemple (suite)
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• Calculer y=cBB-1

cB=(0 0 -2), 𝐵−1 =
1 0 −1
0 1 0
0 0 1

• Cet y satisfait-il les contraintes du dual ? Pouvait-on prévoir la réponse ? 
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Résumé

1- La matrice B induit une solution dite de base : 𝑥𝐵 = 𝐵−1𝑏, 𝑥𝑁 = 0

La solution de base est primale réalisable (𝑥 ≥ 0) si et seulement si 𝐵−1𝑏 ≥ 0

2- La matrice B induit une solution 𝑦 = 𝑐𝐵𝐵
−1 duale réalisable 

si et seulement si  𝑐𝑁 − 𝑐𝐵𝐵
−1𝑁 ≥ 0 (coûts réduits ≥ 0)

3- Pour cette solution de base et cette solution y, 
les objectifs du primal et du dual ont la même valeur = 𝑐𝐵𝐵

−1𝑏
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Algorithme primal
On passe de solution de base primale réalisable en solution de base primale réalisable
Et on stoppe dès que l’on a atteint une base B qui est duale réalisable (coûts réduits ≥ 0)

Algorithme dual
On passe de base duale réalisable en base duale réalisable
Et on stoppe dès que l’on a atteint une solution de base primale réalisable (𝐵−1𝑏 ≥ 0)
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B’ et B adjacentes = ne diffèrent que d’une colonne
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Ecriture canonique de (P) relativement à une matrice de base B

൞

min 𝑧 = 𝑐𝐵𝐵
−1𝑏 + 𝑐𝑁 − 𝑐𝐵𝐵

−1𝑁 𝑥𝑁

𝑥𝐵 + 𝐵−1𝑁𝑥𝑁 = 𝐵−1𝑏
𝑥𝐵 ≥ 0, 𝑥𝑁≥ 0

min 𝑧 = 𝑐𝐵𝐵
−1𝑏 + ෍

𝑗 ℎ𝑜𝑟𝑠−𝑏𝑎𝑠𝑒

∆𝑗𝑥𝑗

𝑥𝑖 + ෍

𝑗 ℎ𝑜𝑟𝑠−𝑏𝑎𝑠𝑒

𝑎𝑖𝑗 𝑥𝑗 = ഥ𝑏𝑖 ∀𝑖 𝑒𝑛 𝑏𝑎𝑠𝑒

𝑥𝐵 ≥ 0, 𝑥𝑁≥ 0

que l’on peut noter:
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Algorithme primal
Variable entrant dans la base
- Variable entrant dans la base : 𝑥𝑒 𝑡𝑒𝑙 𝑞𝑢𝑒 ∆𝑒< 0 et le plus petit

Variable sortant de la base
- Si tous les 𝑎𝑖𝑒 ≤ 0 (dans la colonne e) alors minimum non borné (-)
(on peut augmenter indéfiniment la variable 𝑥𝑒 )

Sinon variable 𝑥𝑠 sortant de la base où 𝑠 = argmin
𝑖

𝑏𝑖

𝑎𝑖𝑒
: ∀𝑖 𝑡. 𝑞. 𝑎𝑖𝑒 > 0

(cette règle permet de maintenir le second membre ത𝑏≥0)

Règles de pivotage (pour passer d’une base B à une base B’ adjacente)
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Algorithme dual
Variable sortant de la base
- Variable sortant de la base : 𝑥𝑠 𝑡𝑒𝑙 𝑞𝑢𝑒 ത𝑏𝑠 < 0 et le plus petit

Variable entrant dans la base
- Si tous les 𝑎𝑠𝑗 ≥ 0 (dans la ligne s) alors primal non réalisable 

(en ligne s, on a une équation avec membre gauche0 et membre droit <0)

Sinon variable 𝑥𝑒 entrant dans la base où 𝑒 = argmax
𝑗

∆𝑗

𝑎𝑠𝑗
: ∀𝑗 𝑡. 𝑞. 𝑎𝑠𝑗 < 0

(cette règle permet de maintenir les coûts réduits ≥0)

Règles de pivotage (pour passer d’une base B à une base B’ adjacente)
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min 𝑧 = 2𝑥1 + 3𝑥2

s.c

4𝑥1 + 𝑥2 ≥ 8
𝑥1 + 4𝑥2 ≥ 8

7𝑥1 + 10𝑥2 ≥ 47
𝑥1 ≥ 0, 𝑥2 ≥ 0

1-Mettre ce problème sous forme standard
2-Trouver une base duale réalisable évidente
3-Partant de cette base, résoudre le problème par l’algorithme dual du simplexe



Annexes

• Dualité – Interprétation économique

• Ecarts complémentaires
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Un 3ème laboratoire décide de commercialiser les vitamines A, B, C séparément. 

Il lui faut trouver le prix yA, yB, yC pour chaque unité de vitamine. 

Pour être concurrentiel avec le laboratoire 1 il faut : 20yA+30yB+5yC6 

Si le pharmacien achète la préparation du 3è laboratoire, il ne paiera pas plus cher que pour la potion 
du laboratoire 1

96coût

unités 10unités 5C vitamine

unités 20unités 30B vitamine

unités 5unités 20A vitamine

2 elaboratoir1 elaboratoirpoudre de 100g Il lui faut au moins 
25 unités de vitamine A
60 unités de vitamine B  
15 unités de vitamine C 

Pb du pharmacien :



50

Un 3ème laboratoire décide de commercialiser les vitamines A, B, C séparément. 

Il lui faut trouver le prix yA, yB, yC pour chaque unité de vitamine. 

Pour être concurrentiel avec le laboratoire 1 il faut : 20yA+30yB+5yC6 

Si le pharmacien achète la préparation du 3è laboratoire, il ne paiera pas plus cher que pour la potion 
du laboratoire 1

Pour être concurrentiel avec le laboratoire 2 il faut : 5yA+20yB+10yC9. 

96coût

unités 10unités 5C vitamine

unités 20unités 30B vitamine

unités 5unités 20A vitamine

2 elaboratoir1 elaboratoirpoudre de 100g Il lui faut au moins 
25 unités de vitamine A
60 unités de vitamine B  
15 unités de vitamine C 

Pb du pharmacien :
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Un 3ème laboratoire décide de commercialiser les vitamines A, B, C séparément. 

Il lui faut trouver le prix yA, yB, yC pour chaque unité de vitamine. 

Pour être concurrentiel avec le laboratoire 1 il faut : 20yA+30yB+5yC6 

Si le pharmacien achète la préparation du 3è laboratoire, il ne paiera pas plus cher que pour la potion 
du laboratoire 1

Pour être concurrentiel avec le laboratoire 2 il faut : 5yA+20yB+10yC9. 

Le laboratoire désire maximiser les gains en vendant ses vitamines au 
pharmacien

maximiser 25 yA + 60 yB + 15 yC

96coût

unités 10unités 5C vitamine

unités 20unités 30B vitamine

unités 5unités 20A vitamine

2 elaboratoir1 elaboratoirpoudre de 100g Il lui faut au moins 
25 unités de vitamine A
60 unités de vitamine B  
15 unités de vitamine C 

Pb du pharmacien :
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Pb du pharmacien : se fournissant auprès des laboratoires 1 et 2
préparer sa potion à un moindre coût

Pb du concurrent des laboratoires 1 et 2 : trouver le juste prix des vitamines 

pb primal

pb dual
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Propriété.

Soit x une solution réalisable de (P) c’est-à-dire x vérifie les contraintes de (P) et 

y une solution réalisable de (D) c’est-à-dire y vérifie les contraintes de (D). 

x et y sont solutions optimales de (P) et (D) respectivement 

si et seulement si y(Ax-b)=0 et (c-yA)x=0.

Ecarts complémentaires

yA(20x1+5x2-25) +
yB(30x1+20x2-60) +
yC(5x1+10x2-15) +
x1(6-20yA-30yB-5yC) +
x2(9-5yA-20yB-10yC) =0

 6x1+9x2 -25yA-60yB-15yC= 0  l’objectif (P)=l’objectif de (D)  x et y solutions 
de (P) et (D)

termes0 si la somme=0 ils sont tous nuls

Vérifions la propriété sur le pb du pharmacien:



il résulte du théorème des écarts complémentaires que
une contrainte lâche (non saturée) correspond à une variable duale nulle 
et ceci pour les 2 problèmes primal et dual
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Exemple du problème pharmacien

Une solution de (P) x1 = 1, x2 = 3/2 
Une solution de (D) yA = 1/5, yB = 1/30, yC = 1/5
La contrainte (vit.A) de (P) est non saturée (33,75 > 25) donc yA devrait être nulle
La contrainte (2) de (D) est non saturée (3+2/3 < 9) donc x2 devrait être nulle.
Ces solutions ne satisfont pas les écarts complémentaires donc non optimales

Une solution de (P) x1 = 3/2, x2 = 3/4
Une solution de (D) yA = 0, yB = 3/40, yC = ¾ 
Elles vérifient les écarts complémentaires donc optimales pour (P) et (D) respectivement
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𝑐𝑥 = 𝑦𝑏 si et seulement si
𝑦 𝑏 − 𝐴𝑥 = 0 et 𝑐 − 𝑦𝐴 𝑥 = 0

Exercice
Soit 𝑥 ≥ 0 satisfaisant les contraintes de (P)
et 𝑦 ≥ 0 satisfaisant les contraintes de (D)

Montrer que :
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Interprétation des variables duales

Soit (P) pb de type minimiser et son dual (D). 

A l ’optimum de (P) et (D) on a z*=v*=yb

De combien varie l ’optimum de (P) 
lorsque b le second membre des contraintes varie ?

z*=yb si b pas trop grand 
sinon z*yb les valeurs des var. duales y n ’étant plus optimales

Faisons varier un bi uniquement z*=yibi z*bi=yi

yi représente le prix à payer quand on fait varier la contrainte i
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Solution du dual:
yA = 0 , yB = 340 , yC = 34 , v = 634

15+  z= yC  = 34  

25+  z= yA  = 0  

Exemple : si le pharmacien fait varier ses demandes en vitamines A, B, C

60+  z= yB  = 340  

La vitamine A pas d’effet sur le coût, B un peu d’effet, C 10 fois plus d’effet 


