
CORRIGE TEST TP : PARTIE THEORIQUE

Exercice1 (/5) : Répondre aux questions suivantes :
1) Donner la sortie du programme suivant?

#include <unistd.h>
#include <stdio.h>

int main(void){
if (fork()) printf(“a”);
else{
if (!fork() printf(“b”);
else printf(“c”);
}
printf(“d”);
return 0;
}

adcdbd (1)

justification : (1)

Le processus père précède fils :

le 1er fork : père affiche a puis d

else : (le 1er fils) : le deuxieme fork : père affiche c puis d

et enfin le 2eme fils affiche b puis d

2) Peut-on utiliser la primitive pthread_join() dans un thread secondaire ?Justifier !

Le pthread_join est utilisé bloquer le thread en cours jusqu’à exécution finale du thread précisé
dans le join !

Pthread_join() est utilisé dans thread principal pour attendre ses threads secondaires,

ou dans thread secondaire pour attendre un thread tertiaire qu’il a lui-même crée,

ou si la déclaration des threads est global, dans ce cas n’importe quel thread peut l’utiliser
pour attendre un autre thread autre que lui-même. (1)

3) Pourquoi la primitive pthread_cond_wait ne peut s’exécuter qu’entre une

pthread_mutex_lock et pthread_mutex_unlock ? Cela peut-il provoquer un interblocage ?

le variables conditions ont été crées pour les moniteurs donc doivent s’exécuter en EM, le lock

(verrou) permet d’assurer cette EM. (1)

le pthread_cond_wait ne provoque pas d’interblocage puisque le lock est libéré avant que le

processus ne soit enfilé ! et à son réveil (pthrad_cond_signal) il le verrouille. (1)

Il y’a interblocage si le signal est exécuté (aussi en EM) avant le wait, ou si on oublie le unlock !

Exercice2 (/5) : Soit le programme suivant:

#include <unistd.h>

#include <stdio.h>

#include <pthread.h>

int x =0;

void *fonc1(void *a){

int loca = * (int *) a ;

loca=loca- x;

x=loca ;

printf("a = %d\n", loca);

return(NULL);

}

void *fonc2(void *b){

int locb =*(int *) b; (0,25)

locb=locb + x;

x=locb ;

printf("b = %d\n", locb);

return(NULL);

}

int main (){

int a = 2 , b = 1;

pthread_t th1;

pthread_t th2; (0,25)

pthread_create(&th1, 0, fonc1, &a);

pthread_create(&th2, 0, fonc2, &b);

pthread_join(th1);

pthread_join(th2); (0,25)

printf("ici main, x = %d \n", x);

return 0;

}

2) Donner la sortie du programme (en précisant les incertitudes) ?

a=2 (pas sûr pour la valeur et la position) (0,5)

b=3 (pas sûr pour la valeur et la position) (0,5)

x=3 (pas sûr pour la valeur et sûr pour la position) (0,5)

3) Quel est le problème du programme et proposer une solution ?

Le programme n’est pas déterministe à cause de la variable x ! il nécessite une

synchronisation, un verrou les fonctions verrouiller() et déverrouiller() vont protéger la

variable x dans les deux threads secondaires ! (0,5)

#include <unistd.h>

#include <stdio.h>

#include <pthread.h>

int x =0;

pthread_mutex_t verrou=PTHREAD_MUTEX_INITIALIZER ; (0,25)

void *fonc1(void *a){

int loca = * (int *) a ;

pthread_mutex_lock(&verrou); (0,5)

loca=loca- x;

x=loca ;

pthread_mutex_unlock(&verrou); (0,5)

printf("a = %d\n", loca);

return(NULL);

}

void *fonc2(void *b){

int loci =*(int *) b;

pthread_mutex_lock(&verrou); (0,5)

locb=locb + x;

x=locb ;

pthread_mutex_unlock(&verrou); (0,5)

printf("b = %d\n", locb);

return(NULL);

}

int main (){

int a = 2 , b = 1;

pthread_t th1;

pthread_t th2;

pthread_create(&th1, 0, fonc1, &a);

pthread_create(&th2, 0, fonc2, &b);

pthread_join(th1,NULL);

pthread_join(th2,NULL);

printf("ici main, x = %d \n", x);

return 0;

}

-FIN-

