CORRIGE TEST TP : PARTIE THEORIQUE

Exercicel (/5) : Répondre aux questions suivantes :
1) Donner la sortie du programme suivant?

#include <unistd.h> adedbd (1)

#include <stdio.h> justification : (1)

. 4 . Le processus pere précede fils :
1?2;:; :ﬁggvg;izti‘(“a”); le 1¢r fork : pere affiche a puis d

else{ else : (le 1 fils) : le deuxieme fork : pére affiche ¢ puis d
if (fork() printf(“b”);
else printf(“c”);

h
printf(*“d”);
return O;

}

et enfin le 2eme fils affiche b puis d

2) Peut-on utiliser la primitive pthread_Jjoin () dans un thread secondaire ?Justifier !

Le pthread_join est utilisé bloquer le thread en cours jusqu’a exécution finale du thread précisé
dans le join |

Pthread_join() est utilisé dans thread principal pour attendre ses threads secondaires,
ou dans thread secondaire pour attendre un thread tertiaire qu’il a lui-méme crée,

ou sila déclaration des threads est global, dans ce cas n’importe quel thread peut l'utiliser
pour attendre un autre thread autre que lui-méme. (1)

3) Pourquoi la primitive pthread_cond_wait ne peut s’exécuter qu’entre une
pthread_mutex_lock et pthread_mutex_unlock ? Cela peut-il provoquer un interblocage ?
le variables conditions ont été crées pour les moniteurs donc doivent s’exécuter en EM, le lock
(verrou) permet d’assurer cette EM. (1)

le pthread_cond_wait ne provoque pas d’interblocage puisque le lock est libéré avant que le
processus ne soit enfilé | et a son réveil (pthrad_cond_signal) il le verrouille. (1)

Il y’a interblocage si le signal est exécuté (aussi en EM) avant le wait, ou si on oublie le unlock !

Exercice2 (/5) : Soit le programme suivant:

#include <unistd.h>
#include <stdio.h>
#include <pthread.h>

int x =0;
void *foncl (void *a

)
int loca = * (int *
loca=loca- Xx;

{
)

a ;

x=loca ;

printf ("a = $d\n", loca);
return (NULL) ;

}

void *fonc2 (void *b) {

int locb =*(int *) b; (0, 25)
locb=locb + x;
x=locb ;

printf ("b = %d\n", locb);
return (NULL) ;
}

int main () {

int a =2, b=1;

pthread_t thl;

pthread_t th2; (0, 25)
pthread_create(&thl, 0, foncl, &a);
pthread_create(&th2, 0, fonc2, &b);
pthread_join (thl);

pthread_join (th2); (0, 25)

printf ("ici main, x = %d \n", x);
return 0;

}

2) Donner la sortie du programme (en précisant les incertitudes) ?

a=2 (pas siir pour la valeur et la position) (0,5)

b=3 (pas sir pour la valeur et la position) (0,5)

x=3 (pas siir pour la valeur et slir pour la position) (0,5)

3) Quel est le probléeme du programme et proposer une solution ?

Le programme n’est pas déterministe a cause de la variable x ! il nécessite une
synchronisation, un verrou les fonctions verrouiller() et déverrouiller() vont protéger la

variable x dans les deux threads secondaires ! (0,5)

#include <unistd.h>
#include <stdio.h>
#include <pthread.h>

int x =0;
pthread_mutex_t verrou=PTHREAD MUTEX INITIALIZER ; (0,25)

void *foncl (void *a) {

int loca = * (int *) a ;

pthread mutex_lock (&verrou) ; (0,5)
loca=loca- Xx;

x=loca ;

pthread mutex unlock (&verrou) ; (0,5)
printf ("a = %d\n", loca);

return (NULL) ;
}

void *fonc2 (void *b) {

int loci =*(int *) b;
pthread mutex_lock (&verrou) ;
locb=locb + x;

x=locb ;

pthread mutex unlock (&verrou) ;
printf ("b = $d\n", locb);
return (NULL) ;

}

int main () {

int a =2, b =1;

pthread_t thl;

pthread_t th2;

pthread_create (&thl, 0, foncl,

pthread_create (&th2, 0, fonc2,
)
)

4

pthread_join (thl, NULL
pthread_join (th2, NULL
printf ("ici main, x = %d \n",
return 0;

}

4

&a);
&b) ;

X);

-FIN-

(0,5)

(0,5)

