
Copyright © BENADDA Meriem
 1

Chapter 6: Records

How can several data items of different types be grouped within
the same structure? How can a real-world entity characterized by
multiple attributes be represented in an algorithm? How can this
information be stored and manipulated as a single logical variable
while still allowing separate access to each data item? How can
the clarity and organization of algorithms be improved when they
handle complex data?

This chapter answers these questions.

6.1 Introduction
n previous chapters, we studied basic data types (integer, real, character, Boolean) as
well as arrays, which allow the storage of multiple values of the same type.
However, in many real situations, it is necessary to group together several pieces of

information of different types describing the same entity (for example: a student, an
employee, a medicine or a product).
To meet this need, records are used.

6.2 Concept of a Record
A record is a composite data structure consisting of a set of fields, where each field has its
own name (identifier) and type.
All the fields together represent a single logical entity.

6.3 Declaration of a Record
The declaration of a record type in algorithmics is performed as follows:

I

Copyright © BENADDA Meriem

2

Syntax

 In Algorithmic:
Type record_type_id = Record
 Field1 : Type1;
 Field2 : Type2;
 …
 FieldN : TypeN;
End;

In C language:

//Method 1
struct record_id {
 Type1 Field1;
 Type2 Field2;
 ………..
 TypeN FieldN;
};

//Method 2
typedef struct {
 Type1 Field1;
 Type2 Field2;
 ………..
 TypeN FieldN;
} record_type_id;

In Method 1, the record is declared only as a Tag1, it is not a type however in Method 2 it
is defined as a new type.

 Notes:
- With typedef, the C compiler treats the declared type like a predefined type such as

int or float.

- Each field corresponds to an elementary piece of information (A property), and all
fields together form a new data type that can be used to declare variables.

Example: Declaration of a record representing a student

1 A tag is simply a name (label) given to a record/structure definition, not a data type by itself.
It is mainly used to identify the structure so that it can be referred to later.

Copyright © BENADDA Meriem
 3

 In Algorithmics:
Type Student = Record
 id : integer;
 lName, fNname : string [30];
 average : real;
End;
 In C language:
//Method 1
struct Student {
 int id;
 char lName[30], fName[30];
 float average;
};

//Method 2
typedef struct {
 int id;
 char lName[30], fName[30];
 float average;
} Student;

Once a record type is defined, variables of this type can be declared and used like any other
variable.

Syntax:

 In Algorithmic

Variables record_variable_id : record_type_id;

Example:
Variables s1, s2 : Student;

 In C language:

With the first method, we must use the keyword struct before declaring any record
variable, for example struct Student s1, s2;

However in the second method we declare the variables directly without any keywords
because here the record is defined as a type: Student s1, s2;

Notes:
- Each variable of a record type groups together all the fields defined in that type.

Copyright © BENADDA Meriem
 4

- Within a record, each field must have a unique identifier in order to avoid any
ambiguity inside the structure. However, it is perfectly possible to reuse the same
field identifier in different records, whether the associated type is the same or
different, since each field is defined within the context of its own record.

Example:

Type Book = Record
 title : string [40];
 author : string [30];

nbPage : integer;
End;

Type Movie = Record
 title : string [40];
 director : string [30];
End;

In this example, the field title appears in both records (Book and Movie). This does not
cause any problem because each field belongs to a different record, even though they share
the same identifier and type.

6.4 Accessing Record Fields
Access to a record field is performed using the dot operator (.). Each field can be read,
modified, or displayed independently.

Example:

s1.id ← 12893;
s2.lName ← "BENADDA";
Read(s1.fName);
Write(s2.average);

6.5 Arrays of Records
In many applications, it is not sufficient to manipulate a single record. Very often, it is
necessary to manage a collection of entities sharing the same structure, such as a list of
students, employees, or products.
In such cases, an array of records is used.

An array of records allows storing multiple variables of the same record type, indexed like
a standard array, while each element still contains all the fields of the record.

Copyright © BENADDA Meriem
 5

Example: Array of students

In Algorithmic:

Type Student = Record
 id : integer;
 lName, fName : string [30];
 average : real;
End;

Variables students : Array [1..100] of Student;

In this example, students is an array containing up to 100 student records. Each element of
the array represents one student and can be accessed using its index.

Syntax: id_Array[Index].id_field ;

Example: Let’s see how to access fields of an array of records g the previous example:

students[15].id ← 2023001;

Read(students[55].fName);

students[21].average ← 14.5;

Write(students[1].lName);

Thus, it is possible to manipulate both the array index and the fields of each record
simultaneously, which makes arrays of records particularly suitable for managing
structured collections of data.

6.6 Records Containing Other Records
A record may include fields that are themselves records. This makes it possible to represent
entities composed of several structured attributes, and to model real-world data in a clear
and hierarchical way.

Example: Student record containing a Date of Birth record

 In Algorithmics:

Type DOB = Record
 day, month, year : integer;
End;

In C language:

#include <stdio.h>
typedef struct {
 int day, month, year;
} DOB;

Copyright © BENADDA Meriem
 6

Type Student = Record
 id: integer;
 lName, fName : string [30];
 birth : DOB;
 average : real;
End;

In this example, the birth field of the Student record is a record of type DOB, which groups
the day, month, and year of birth into a single structured entity.

Example: Accessing fields of a nested record assuming s as a variable of the
Student record

s.birth.day ← 12;

s.birth.month ← 5;

s.birth.year ← 2003;

The dot operator (.) is used repeatedly to access fields inside records.
This approach improves the clarity of algorithms by organizing related data into
meaningful substructures, while still allowing direct access to each individual field.

6.7 The “With” Instruction (Statement)
In some programming languages, such as Pascal and Visual Basic, an instruction called
with exists that allows programmers to avoid repeatedly rewriting the record variable
identifier. However, this instruction does not exist in the C language; therefore, it will not
be used in our algorithms.

Example:

 s.id ← 2025773;
 s.lName ← "BENADDA" ;
 s.fName ← "Meriem";
 s.average ← 15;

Conclusion
In this chapter, we introduced records as a structured data type that allows grouping related
data of different types into a single entity. We showed how records improve clarity,
organization, and data handling in algorithms

typedef struct {
 int id;
 char lName[30], fName[30];
 DOB birth;
 float average;
} Student;

 With s do
 Begin
 id ← 2025773;
 lName ← "BENADDA" ;
 fName ← "Meriem";
 average ← 15;
 End;

Using the with instruction,
we get

