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NATURAL CONVECTION OF AIR IN A SQUARE CAVITY 
A BENCH MARK NUMERICAL SOLUTION 
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SUMMARY 

Details are given of the computational method used t o  obtain an accurate solution of the equations 
describing two-dimensional natural convection in a square cavity with differentially heated side walls. 
Second-order, central difference approximations were used. Mesh refinement and extrapolation led to  
solutions for 1 0 3 < R a s  10‘ which are believed to be  accurate to better than 1 per cent at the highest 
Rayleigh number and down to one-tenth of that at the lowest value. 
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INTRODUCTION 

Buoyancy-driven flow in a square cavity with vertical sides which are differentially heated is 
a suitable vehicle for testing and validating computer codes used for a wide variety of 
practical problems such as nuclear reactor insulation, ventilation of rooms, solar energy 
collection and crystal growth in liquids. 

to the solution 
of this problem. At the Venice conference on Numerical Methods in Thermal Problems, the 
contributions were reported in detail’ and  omp pa red^,^ with a bench mark solution. The 
present paper describes the development and characteristics of the bench mark solution in 
greater detail than previously published. It is hoped that it will lead to further contributions 
to the search for efficient, high accuracy methods for problems of this type. 

Attention is drawn to the fact that, as a result of the availability of time for further 
computations, the bench mark solution has been refined since Reference 6 was written, and 
the present results-which are the same as those in Reference 7 d i f f e r  to a very slight 
extent from those previously published. 

Following a suggestion to this effect by Jones,’ contributions were 

THE PROBLEM 

The problem being considered is that of the two-dimensional flow of a Boussinesq fluid of 
Prandtl number 0.71 in an upright square cavity of side L. Both velocity components are 
zero on the boundaries. The horizontal walls are insulated, and the vertical sides are at 
temperatures Th and T,, 

The solutions of this problem-velocities, temperature and rates of heat transfer-have 
been obtained at Rayleigh number< of lo3, lo4, 10’ and lo6. 
0271-20911831030249-16$01.60 
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MATHEMATICAL FORMULATION AND METHOD OF SOLUTION 

The stream function-vorticity (+I-{) formulation of the problem was used. We choose the 
quantities L, K (the thermal diffusivity) and L 2 / ~  as scale factors for length, stream function 
and time, and introduce T = ( T ‘  - Tc)/(Th- TJ ,  where T’ is the local dimensional tempera- 
ture. We use axes labelled (x ,  z ) ,  with z vertically upwards. The non-dimensional equations 
are then 

a a aT 
- (ul) +- (wc) = Pr V21 + RaPr - 
ax aZ ax 

a a 
- (uT) f- (wT) = V2T. a x  az 

These equations were modified to allow the use of the method of the false transient8 by 
the inclusion, on the left hand sides of each, of the terms 

1 dT 
and -- -- l a g  Ll 

a< at’ a+ at ’  a= at 

respectively. As t -+ and a steady state is approached, the equations revert to their correct 
forms and the true steady solution (if one exists) is achieved. The coefficients at, a+ and a= 
provide extra degrees of freedom to control stability and the rate of approach to the steady 
state. 

The modified equations were solved on a square mesh by a finite difference method; 
forward differences were used for the time derivatives and second-order central differences 
for all space derivatives. The resulting finite difference approximations were solved by an 
alternating-direction implicit algorithm. 

This method is not advanced as being particularly accurate in itself: it yields a standard 
second-order solution. But it is efficient; it allows solutions to be found at conditions under 
which the normal FITS method is unstable; and the retention of a uniform mesh facilitates 
the application to the solutions of an extrapolation process. Richardson’s extrapolation has 
been used; this leads to the high accuracy bench mark solution described here. 

THE CALCULATION OF HEAT FLUX 

From the viewpoint of an engineer, the most important characteristic of the flow is probably 
the rate of heat transfer across the cavity. 

The local heat flux in a horizontal direction at any point in the cavity is 

Q(x,  z ) =  uT-aT/ax. 

(On the boundaries, u = 0.) The quantity Q was calculated at all mesh points. Except at x = 0 
and x = 1, aT/ax was found using a second-order central difference approximation. 

Previous numerical experiments’-’* had suggested that, at the vertical boundaries, the 
first-order (two point) approximation to aT/ax should be used. It had been found to lead to 
values of wall heat flux which were less sensitive to variations in mesh size than those 
obtained using a second-order formula and therefore, for any non-zero mesh size, more 
accurate. To test this suggestion further, the heat flux O(0, z )  at the boundary was computed 
for each Rayleigh number and mesh size with formulae of the first to the fourth orders. The 
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average Nusselt number on the boundary, Nu,, was then found by numerical integration 
using Simpson’s rule. 

Some of the initial results-those for Ra= lo3 and 1O6-are shown in Figure 1. The values 
of Nu,, as a function of the mesh size h, appear to be converging for each differentiation 
formula to  the same value, as indicated by an arrow on the Nu axis. (The indicated value is 
the bench mark value, found as described below.) For each mesh size used, the second-order 
formula performs better than any of the others in almost every case. The results for Ra  = lo4 
and los have similar characteristics and support this assertion. The solutions presented below 
were therefore obtained using a second-order approximation at the wall, as well as within the 
cavity. 

The reason for the disagreement with the previous numerical experiments is not known. 
One of these” concerned convection inside a cylinder, for which the temperature field near 
the wall would be different from-and apparently more nearly linear than-that found here. 
In a study” of convection in a rectangular cavity, a first-order approximation was found to 
be better for a Boussinesq fluid, but a second-order approximation was better when fluid 
property variations were incorporated into the analysis. One would have expected that 
approximations of the same order should be used throughout the calculations. That was 
found to be the case here, but apparently is not always true. In particular, the present results 

+ Second order 

x Third order 

o Fourth order 

I I I I 
002 001 006 008 0 

k 

1 08 
0 

Figure 1. Nu,, a5 a function of mesh size and differentiation 
formula for Ra = lo3 and toh 
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show that the thin thermal boundary layer associated with high Rayleigh numbers can be 
well represented by a high-order approximation. But in the absence of knowledge of the 
correct value, a second-order approximation is now regarded as the most appropriate and 
was used to obtain all the results presented here. 

THE ORIGINAL SOLUTIONS 

For Ra of lo3 and lo4, solutions were found using uniform meshes from 11 X 11 to 41 X 41; 
at the higher values of Ra, finer meshes up to 81 x 81 were also used. 

One of the complications of numerical fluid dynamics is the amount of computer output 
generated. Since the purpose of the present work is to find accurate values for quantities 
which can be readily compared, only some salient features of the flow are given here: those 
requested in References 2-4 and a few others. 

Tables I to IV show, for the four Rayleigh numbers, and for the various mesh sizes, the 
following quantities: 

It&,d the stream function at the mid-point of the cavity; 
the maximum absolute value of the stream function (together with its location): for 
R a =  lo5 and lo6, the maximum does not occur at the cavity mid-point; 
and lo", the maximum does not occur at the cavity mid-point; 

u,,, the maximum horizontal velocity on the vertical mid-plane of the cavity (together 
with its location); 

w,,, the maximum vertical velocity on the horizontal mid-plane of the cavity (together 
- with its location); 
Nu the average Nusselt number throughout the cavity; 
Nu,,, the average Nusselt number on the vertical mid-plane of the cavity; 
Nuo the average Nusselt number on the vertical boundary of the cavity at x = 0; 
Nu,,, the maximum value of the local Nusselt number on the boundary at x = 0 (together 

with its location); 
Nu,,, the minimum value of the local Nusselt number on the boundary at x = 0 (together 

with its location). 
The values given in the tables here and below for maximum (and minimum) quantities are 

not necessarily the largest (and smallest) mesh point quantities. They, and their locations, 
were computed by numerical differentiation using a fourth-order polynomial approximation; 
the evaluation and location of the maximum stream function required double differentiation. 
The interpolated maximum (minimum) values differed from the closest of the adjacent mesh 
point values by no more than 1 per cent in every case except one; the interpolated value of 
wmax at R a =  10" was 6 per cent greater than the largest of the adjacent mesh point values. 

Table I. The original solutions at Ra = 10' 

- 1.462 0.723 3'427 3'449 1.096 1.104 1.105 0.141 0.936 - 0.801 0.193 

1.491 0.702 
1 3'589 3'629 1.111 1.114 1.113 0.112 - 0.811 0-181 

- 3'634 3'679 1.116 1.117 1.116 1.501 0.694 
- 0.813 0.179 0.087 1 

0-1 1.181 

- 
0-05 1.174 

0.025 1.174 
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Table 11. The original solutions at Ra = 104 

- 16.243 18.055 2.171 2.170 2.307 3.637 0.676 
- 0.808 0.139 0.21 1 1 0.1 5.529 

__ 16.189 19.197 2.212 2.213 2.255 3.603 0.610 
- 0.820 0.125 0.165 1 

- 16.182 19.509 2.234 2.235 3.545 0.592 

0.05 5.176 

__ 0.823 0.120 2'242 0.149 1 0.025 5.098 

Table 111. The original solutions at Ra = lo5 
U*,*X 

z Nu Nu: 

6-538 1.516 40.90 59.71 4.446 4.381 4.767 0,218 

7.901 0.797 36'46 62'79 4.454 4.455 4-716 0.133 0.973 

7-905 0.755 35.07 66'73 4.487 4.491 4.564 0.095 

34'87 67'91 4.503 4-506 4.531 0.087 

34.81 68'22 4.510 4.512 4.523 0.085 

12.68" 
0.3", 0.6" 0.846 0.083 0.1 11.97 

9'702 0.291,0.601 0,854 0.075 0.05 

9'234 0.286,0.602 0.855 0.068 0.025 

0'016 9'164 0.285,0.601 0.855 0.067 

0'0125 9'142 0.285,0-602 0.855 0.066 

10.236 

9.739 

9.667 7.802 0.741 

7.761 0.736 9.644 

* Mesh point values (see text) 

Table IV. The original solutions at Ra = 106 

46'41* 230'22 213.91 6.105 5.296 6.790 0.138 7.959 3.853 
32.93 0.5*, 0.7" 0.915 0.0670 1 

20.16 0-149,0-554 0.862 0.0447 1 

0.1 

0.05 20'914 79'27 195.44 9.027 9.214 9.502 14.215 0.124 1.749 

17.613 6749 206'32 8.811 8.869 9.270 17.947 0.0675 0,984 1.015 

18.255 1.020 17.113 

0.025 17'15 0.151,0542 0.854 0.0423 

O'O1b 16'67 0.151,0.541 0.852 0.0396 

0'0125 16'53 0.151,0.543 0.851 0.0387 

1 65'81 214'64 8.794 8.823 9.035 0.0523 

16.961 65'33 216'75 8.798 8.816 8.928 18.076 0.0456 1.005 

* Mesh point values (see text) 
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Although the effect of interpolation was generally small as far as the values themselves were 
concerned, it enabled the location of the extreme values to be found more precisely. The 
values and locations which are given in the tables for JI,,, at R a =  lo5 and 10" using h = 0-1  
are not interpolated values but the relevant mesh point values; the solution is so distorted 
that numerical differentiation cannot be conveniently performed. 

These tables show the not unexpected result that the process used is convergent; that the 
coarse mesh, high Rayleigh number solutions are useless; and that in the absence of some 
other technique such as extrapolation, even finer meshes would be required to obtain mesh 
size independence to a target accuracy of, say, 0-1 per cent. 

EXTRAPOLATED SOLUTIONS 

With results for several mesh sizes available, an extrapolation scheme can be used to 
generate a solution of greater accuracy. 

If the order of the truncation error of the solutions is not known, it can be estimated from 
the results for three different mesh sizes, provided of course they have a set of mesh points in 
common. Thus three 11  x 11 matrices can be extracted from the three original solutions at 
h = 0-1, h = 0.0.5 and h = 0.025; and three 21 x 21 matrices can be extracted from solutions 
at h = 0.02.5, h = 0.016 and h = 0.0125. 

Suppose X ,  is the true value at a mesh point of a quantity of which the value computed 
using a mesh size of h, is X,;  then 

X , = X ,  +Ch:", i = I, 2 , 3  

where n is the order of the truncation error and C is assumed to be independent of h. It 
follows that n is given by the solution of 

X ,  - X ,  hy- h; 
X2- X3-  h;- h; 

at each mesh point; or if h,lh, = hJh,  = h say, then 

The 'constant' C can then be found at each mesh point and hence the true value Xt can be 
obtained. 

Calculations of this nature were performed for various combinations of solutions. The 
coarse mesh, high Rayleigh number solutions are clearly unreliable and were excluded; but 
otherwise the extrapolation yielded results that were at least plausible. 

It was found, however, that the value of n varied throughout the cavity: from around 1 or 
even a little less to about 3 or even a little more. The average value of n was generally, but 
not always, quite close to the expected value of 2. There are two related reasons for this. 
First, the necessity to use three mesh sizes to calculate n meant that one relatively coarse 
solution had to be included. This contaminated the extrapolated solution, sometimes quite 
badly. Secondly, the computed value of the quantity C is not truly constant until the limit 
h --+ 0 is reached-which, of course, it never is. 

An extrapolation was then performed using not the local value of n computed at each 
mesh point for each variable but the average of those values for each variable. As 
mentioned, these averages were not always close to 2 and it was therefore felt, in retrospect, 
that unless this condition had been achieved, the extrapolated values would not be reliable. 
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After much exploration of these and some other extrapolation procedures, it was decided 
that use had to be restricted to the solutions obtained using two fine mesh sizes at each Ra, 
namely h = 0.05 and h = 0.025 at RaG lo4 and h = 0.025 and h = 0.0125 at R a a  10'. This 
enabled 21 X 21 solutions to be constructed at the two lower Rayleigh numbers, and 41 x 41 
solutions at the two higher values. The use of h = 0.016 at the higher Ra was not convenient 
because it would have restricted the mesh size of the extrapolated solution to 0.05. 

In consequence of performing extrapolation using only two solutions, it had to be assumed 
that n = 2. The method used is second order, a rate of convergence which is progressively 
approached as the mesh size is reduced. In limiting attention to two fine mesh solutions it is 
implied that true quadratic convergence has in fact been reached. 

This extrapolation procedure failed in one case: in the determination of Nu,,, at Ra  = lo6, 
the value of which proved to be exceptionally sensitive to the method of its calculation. 
Figure 2 shows the variation of Nu along the lower part of the heated wall for the three finest 
grids used. At z = 0, Nu increases with decreasing grid size; at z = 0-1, Nu decreases; and 
Nu,,,, which occurs in the interval 0 S z S 0.1, is not monotonic. It turns out that extrapola- 
tion from the solutions found at h = 0.025 and 0.0125 yields a value for Nu,,, which is 
greater than the 0.0125 value, whereas examination of the 0.016 and 0-0125 solutions, as 
illustrated in Figure 2, suggests that the zero mesh size value should be smaller. 

For this one case, therefore, values of Nu at x = 0 and near z = 0 were extracted at 
intervals of 0.05 from the 0.016 and the 0.0125 solutions. This  has the advantage that use is 
made of solutions found with the two finest meshes, and the disadvantage that these meshes 
have fewer points in common. Extrapolation was applied to these values, using n = 2, and 
numerical differentiation then used to locate the maximum. 

THE BENCH MARK SOLUTION 

Table V shows the results of the extrapolation process: the bench mark solution. Again, only 
selected quantities are presented here. Copies of the full output are available on request. 

0 

2 

O.Ot 

//l x 81 

I I 

l8 Nu 17 

Figure 2. The variation of local Nusselt number along the lower part of 
the heated Walt computed for three different mesh sizes. R a =  10" 

Computed points; 0 Interpolated maxima 



256 G. DE VAH1. DAVIS 

Table V. The bench mark solution 

I 4 J d i  1.174 5-071 9.111 16.32 

__ 9.612 16.750 I 

iQimax 

x, __ - 0.285,0.601 0.151,0547 

Urn,, 3.649 16,178 34-73 64.63 
z 0.813 0.823 0.855 0.850 

W , , ,  3.697 19.617 68.59 219.36 
X 0.178 0.119 0-066 0.0379 

Nu 1.118 2.243 4.519 8.800 

Nu$ 1.118 2.243 4.519 8.799 

Nut, 1.117 2.238 4.509 8.817 

Nu,,, 1.505 3.528 7.717 17.925 
z 0.092 0.143 0.081 0.0378 

Nu,,,,, 0.692 0.586 0.729 0.989 
z 1 1 1 1 

- 

The modified extrapolation procedure used for Nu,,, was introduced after References 6 
and 11 (an early version of this paper which was distributed at the Venice conference) were 
written. Some of the values in Table V differ from those in Reference 6, and Nu,,,, at 
Ra= 106 differs also from the value in Reference 11. The extent of the differences is 
displayed in the Appendix. 

Figures 3-7 show the streamlines, isotherms, isovels and vorticity contours for the bench 
mark solution. 

It is emphasized that extrapolation has been applied to all variables: to the primary 
solution variables 4, 5 and T ;  to the secondary variables, the velocities u and w; and to the 
derived quantity Q, the heat flux across the cavity. If the velocities and heat flux of the 
extrapolated solution had been computed by differentiation of the extrapolated stream 
function and temperature respectively, the truncation errors of the numerical differentiation 
formulae-which in theory had been eliminated by extrapolation-would have been rein- 
troduced. 

By using extrapolation on the secondary and derived variables, the complete bench mark 
solution set is no longer internally consistent: the values of all the variables do not satisfy a 
system of finite difference approximations. Velocity in the bench mark solution is not the 
result of numerical differentiation of the bench mark values of stream function; and the 
bench mark heat flux cannot be computed from the bench mark temperature and velocity. 
Instead, the values of the bench mark variables are, within the limits of accuracy of the 
extrapolation process, a 21 X 21 or 41 X 41 subset of the internally consistent solution which 
would be obtained if it were possible to perform the computations using a mesh size of zero. 

DISCUSSION 

An assessment of the validity of the assumption that n = 2 may be obtained by examining the 
behaviour of the error in the computed solutions, the error being taken as the difference 
between those solutions and the extrapolated (true?) solutions. 
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( C )  (d) 

Figure 7. Contour map? of vorticity c: 
(a) R a =  10'; contours at -32.01(8.328)51.27; 
(b) Ra=  lo4; contours at -124.8(55.17)426.9; 
(c) Ra = lo5; contours at -6004(322.6)2626; 
(d) Ra= 10'; contours at -3178(1847.1)15293 

Table VI. Error (%) in some features of the 
original solutions 

0-1 

0-025 
0.1 

0.025 
0.1 
0.05 

0-016 
0.0125 
0.1 
0.05 

0.016 
0.0125 

10' 0.05 

104 0.05 

105 0.025 

10" 0.02: 

0.6 
0.0 
0-0 
9.0 
2.1 
0.6 

31.4 
6.5 
1.4 
0.6 
0.3 

101.8 
235  

5.1 
2.2 
1.3 

-6.7 
-1.8 
-0.5 
-8.0 
-2-1 
-0.6 

-12.9 
-8.5 
-2.7 
-1.0 
-0.5 
-2.5 

-10.9 
-5.9 
-2.1 
-1.2 

-1.3 
-0.4 
-0.1 
-3-3 
-1.3 
-0.4 
-3.1 
-1.4 
-0.6 
-0.3 
-0.2 

-39.8 
4.7 
0.8 
0.3 
0.2 
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Table VI shows these errors for three significant features of the flow: the mid-point stream 
function, the maximum vertical velocity on the horizontal mid-plane and the mid-plane 
Nusselt number. By and large, quadratic convergence is confirmed to an extent which is 
about as good as could be expected from such a complex numerical process. In particular, 
these and other results show that the rate of convergence is most nearly quadratic in $, t and 
T-the computed variables. With the derived quantities such as u, w and Nu the rate of 
convergence is generally somewhat less rapid. Figure 8 illustrates the rate of convergence for 
some characteristics of the solution other than those in Table VI: the mid-point vorticity and 
the temperature at the mid-point of the top of the cavity. The slopes of the lines, which have 
been drawn by eye, are all very close to 2 and again quadratic convergence is confirmed. 

Figure 8 also provides at least qualitative support for believing the bench mark solutions to 
be accurate. For if the value adopted for X ,  (i.e. the bench mark value) actually contained an 
error, then a log-log plot of X , - X ,  against h would not produce a straight line. 

Without knowing the correct solutions, of course, a quantitative assessment of the 

/ 

I I I /  
I1 0.02 0OL 006 008 

Mesh size h 

(a) 

, 
/ 

/ 
/ 

/ 
I I 1 1  

I '  0.02 00L 006 0081 
Mesh size h 

(b) 

Figure 8. Rates of convergence: (a) mid-point vorticity Cmmld; 
(b) temperature at mid-point of top of cavity T+,l 

O R a =  10' +Ra= 104xRa=105 D R a =  10' 
(Note: Errors in .$m,d at Ra-  lo6 are 10 times larger than values 

shown in graph) 
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%ox 

9 8  

" ' ~ h  9.4 0 0.025 005 

70 

Nu, 

1110 

005 

24 

0 0025 005 

18 

accuracy of the bench mark solutions is impossible to obtain. Figure 9 shows plots against h 
of several characteristics of the original solutions; the bench mark values are shown at h = 0. 
These and similar plots of other characteristics suggest the values shown in Table VII for the 
accuracy of the bench mark solutions. There will, of course, be some variation of accuracy 
among the various characteristics.However, these estimates are felt to be conservative and it 
is believed that the solutions presented here are therefore suitable for use as a bench mark 
against which other solutions can be compared. 

Table VII. Estimated 
error of the bench 

mark solutions 

Ra Error (%) 

lo3 0.1 
104 0.2 
1 o5 0.3 
10" 1 
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WHICH NUSSELT NUMBER? 

In a cavity with insulated horizontal boundaries, the heat flow across any line joining these 
boundaries-including the two vertical walls-must be the same. Through any line parallel to 
the z-axis, the heat flow is given by 

1 

Nu, = Q(x, z )  dz 1) 
and must be independent of x. 

function of x for the four extrapolated solutions. Also shown are the average values 
Figure 10 shows Nu,-the integral having been calculated using Simpson’s rule-as a 

again found using Simpson’s rule. Note that a very open scale has been used, which 
exaggerates the variation of Nu, with x. The maximum relative difference between Nu, and 
Nu occurs, as would be expected, at the walls where the approximation used (although 
second order) is formally less accurate by a factor of two than a central difference 

NU 

( C )  ( d )  

Figure 10. Nusselt number: (a) Ra = lo”, (b) Ra =104, (c) Ra = lo5, (d) Ra = 10“ 
-Nu ------Nu 
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approximation. These maximum differences are still very small: 0.09 per cent at R a =  lo3, 
0.2 per cent at lo4 and lo5 and 0.4 per cent at lo6. 

The mid-plane Nusselt number  NU^,^ is sometimes given in papers. As Table V shows, this 
is a quantity which agrees extremely well with Nu. The mid-plane value Nu,,, is easier to 
calculate than Nu, and there is no reason to suppose that the latter is any more accurate. 
Indeed, it is probably less accurate, since it contains the wall values Nu, and Nu,. 

Accordingly, it is recommended that  NU^,^ be adopted as the Nusselt number used to 
describe the heat flow across a cavity with adiabatic 'end' walls. 
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APPENDIX 

Table VIII shows the differences between the bench mark solution and the solution 
presented in Reference 6. The latter was derived using a slightly different extrapolation 
process, and before the generation of the 81  X 81 solutions had been completed. Most of the 
differences are very small. 

Table  VIII. Differences (%) between bench mark 
solution and solution published in Reference 6 

Ra 

l$",,'tI 0.0 -0.2 -0.1 -0.2 
I$lmx - - -0.1 -0.1 

um,x -0.2 0.0 -0.1 -0.5 
Wm2.X -0.1 -0.1 0.5 -0.9 
N u  0.0 0.2 0.3 -1.2 
__ 
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