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Abstract-The paper presents a computational method used to obtain solutions of the buoyancy-driven 
laminar and turbulent flow and heat transfer in a square cavity with differentially heated side walls. A series of 
Rayleigh numbers, ranging from lo3 to 1Or6 was studied. Donor-cell differencing is used. and mesh-refinement 
studies have been performed for all Rayleigh numbers considered. The turbulence model used for Rayleigh 
numbers greater than 10” is a (k N E) two-equation model of turbulence, that includes gravity z density gradient 
interactions. The results are presented in tabular and graphical form, and as correlations of the Nusselt 
and Rayleigh numbers. Furthermore, the results for Rayleigh numbers up to lo6 are compared with the 

benchmark numerical solution of de Vahl Davis. 

NOMENCLATURE 

cavity width [m] 
gravitational acceleration [m s-‘1 
kinetic energy of turbulence per unit mass 

CJ hi-‘1 
Nusselt number 
Prandtl number 
Rayleigh number, p2gD3/lAT PrJp’ 
source term 
temperature [K] 
velocity component in the y-direction 

[m s-r] 
velocity component in the z-direction 
[m s-‘1 
spatial coordinates [m] 
normalized coordinates. 

1. INTRODUCTION 

THE DETERMINATION of buoyancy-driven flow in an 
enclosed cavity provides a suitable comparison prob- 
lem for evaluating the performance of numerical 
methods dealing with viscous flow calculations [l-3]. 
Furthermore, the above process has many practical 
applications of which the most widely known is that of 
double glazing. Other applications include nuclear- 
reactor insulation, ventilation of rooms, solar-energy 
collection and crystal growth in liquids. There is an ever 
increasing amount of research on confined natural 
convection and refs. [4-l 0] are typical examples ofsuch 
work. A recent review of the existing literature is given 

by Ostrach [ 1 I]. Despite all the recent research activity, 
a central problem that has remained unsolved is the 
coupling between boundary layers and core flows. The 
latter depend on the boundary layer, which, in turn, is 
influenced by the core. This problem was first identified 

* Present address: Faculty of Science and Mathematics, 
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Polytechnic, London SE18 6PF, U.K. 

by Ostrach [S] and discussed more fully in refs. [6, 71. 
The purpose of this work is to describe a computa- 

tional procedure for solving the non-linear, coupled 
differential elliptic equations over the entire flow 
domain, with no assumptions concerning the core 
configuration or any other ad hoc simplification for 

Rayleigh numbers up to 106, and with the speculative 
use of a two-equation turbulence model for higher 
Rayleigh numbers ; and to demonstrate that this can be 

accomplished without excessive demands on computer 
time or storage. The presented results are restricted to 
rectangular cavities of aspect ratio 1, fluids of Prandtl 
number 0.71, and Rayleigh numbers ranging from 10” 
to 10t6. However, the procedure is general and can be 
easily applied for practical computations in cavities of 
different aspect ratios, fluids of different Prandtl 
numbers, three-dimensional (3-D) enclosures or tilted 
enclosures such as. for example, those studied by 

Catton [4]. 

2. THE PROBLEM CONSIDERED 

The problem considered is depicted schematically in 
Fig. 1, and refers to the two-dimensional (2-D) flow in a 
square cavity, of side D. The cavity is assumed to be 
of infinite depth along the x-axis and is heated 
differentially along the South (low-y) and North 
(high-y) walls. The other two (horizontal) walls are in- 
sulated. 

The no-slip condition is applied on the velocity at all 
four walls, and friction is calculated by invoking ‘wall- 
functions’ [ 121, see Appendix. The hot and cold walls 
are considered to be isothermal, and the other two 
adiabatic. Heat transfer through the walls causes 
density changes to the fluid in the cavity, and leads to 
buoyancy-driven recirculation. The resulting flow is 
treated as steady and, depending on the Rayleigh 
number, laminar (Ra < 106) or turbulent (Ra > 106). 
This criterion for switching over to turbulence cal- 
culations is based on experimental observations [25, 
261 and has been used widely in the literature [l--3,20, 
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FIG. 1. (a) The process considered. (b) The solution grid used for Ra < 106. 

221. Reference fluid properties were calculated at the 
ambient temperature T, = 293 K. 

3. MATHEMATICAL FORMULATION 
AND METHOD OF SOLUTION 

3.1. The dzferential equations 
For steady flow, the equations for continuity, 

velocity components and temperature take the form : 
continuity 

G4 I Gw) _ o, 

ay az ’ 

y-direction momentum 

(1) 

;(Puw)+ fpuu) = ; (II;) + ~(f$)+s.: 
(2) 

z-direction momentum 

&ww)+ ~(Puwl=; (PZ) + ;(lrg)+s,: 
(3) 

general transported fluid scalar, 4 (e.g. T, k, E) 

;bw9)+&4) = f r,m& + ay r,,y +s,; ( ““> a ( ““1 
(4) 

where r+ is the exchange coefficient for the transport of 
property I$. The source terms in the momentum 
equations are 

(5) 

ST = 0, 

where 0 is the temperature rise above ambient TO. 
For Rayleigh numbers above lo6 a two-equation 

(k - F) turbulence model was used. Then the above 
equations are time-averaged equations and p and rb 
are replaced by their ‘effective’ values pLerf and rerfr as 
given by the turbulence model [12,13]. 

The generation term in the k-equation includes the 
buoyancy production 

G, = -Bs$$- 
In stable stratification, G, becomes a sink term so that 
the turbulent mixing is reduced. In unstable 
stratification, the buoyancy will enhance turbulence 
since Ga is positive. The buoyancy term appearing 
tentatively in the c-equation, in other k - E calculations 

for buoyant flows [ 14,241, has been omitted. There is 
no obvious physical reason for including such a term 
and other related work indicated that it is completely 
insignificant [ 151. The turbulence model contains five 
constants which were assigned the following values 

WI 

C1 = 1.44; C, = 1.92; C, = 0.09; 

ok = 1.0; aE = 1.314. 

More details may be found in refs. [14, 153. 
Assuming that p is proportional to l/T the densities 

are obtained from the temperature field, without 
invoking the Boussinesq-type approximations. 

3.2. The solution procedure 
The above equations were solved on a square mesh 

by the finite-domain method outlined in refs. [16-18-J. 
Finite-domain equations are derived by integration of 
the differential equations over an elementary control 
volume or cell surrounding a grid node. Upwind 
differencing is used in the convective terms and the 
integrated source term is linearized. Both these 
practices are widely used to enhance numerical 
stability. The upwind scheme has come under much 
criticism recently, but it is only grid-refinement that can 
detect the ‘false diffusion’ associated with the various 
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schemes. Therefore, care was taken to obtain grid- 

independent results. Pressures are obtained from a 
pressure-correction equation which yields the pressure 

change needed to procure velocity changes to satisfy 
mass continuity. The ‘SIMPLEST’ practice [17] is 
followed for the momentum equations. The most 
significant difference between ‘SIMPLEST’ and the 
well-established ‘SIMPLE’ algorithm [ 193 is that in the 
former the finite-domain coefficients for momenta 
contain only diffusion contributions, the convection 
terms being added to the linearized source term of the 
equations. This implies that, in the absence of diffusion, 
the momentum equations are solved by a Jacobi point- 

by-point procedure as opposed to the more popular 
‘simultaneous’ line-by-line procedures. This mixed 
practice (the use of Jacobi for convection terms, the use 
of line-by-line for diffusion terms) derives from 

experience and intuition. For example, use of Jacobi for 
diffusion in a pipe would take an extremely long time to 
spread the viscous effects of the wall, while a 

simultaneous solution would do that in virtually a 
single iteration. This is not so for the convection terms, 
however, because of their special links with the 
pressure-correction equation. The above mixed 
practice was found to accelerate convergence 
significantly. 

The equations are solved by a line-by-line procedure 
which is similar to Stone’s Strongly Implicit Method 
but free from parameters requiring case-to-case adjust- 

ment and so less complex and slower. The pressure- 

correction equation is solved in a ‘whole-field’ manner, 
2-D simultaneous. Further details may be found 
in refs. [16, 171. 

3.3. 7he Nusselt number 

From the engineering viewpoint, the most important 
characteristic of the flow is the rate of heat transfer 
across the cavity. The Nusselt number on the hot wall at 
y = 0 is given by 

.,I 

Nu(z)=+$ (10) 
H c 

where the heat flux at the wall, $Lall, is calculated by the 
program, from wall-functions [12,19]. 

The average Nusselt number is given by 

fi = (11) 

The mid-plane value Nu,,, is also computed as it is 
probably [3] a more accurate quantity in describing the 
heat flow across a cavity with adiabatic ‘end’ walls. The 
three- and five-point formulae commonly used by other 
investigators [20] for resolving the wall temperature 
gradient in equation (8) were also used. The five-point 

formula gave results very close to the ones calculated by 

equation( 10) for Ra up to lOa, but it became erroneous, 

as expected, for the high Ra numbers. 

4. RESULTS AND DISCUSSION 

The main results are presented in graphical and 
tabular form, and as Nu vs Ra correlations. The 
graphical results are obtained by the post-processor 
GRAFFIC [21]. 

Solutions were computed for Pr = 0.71 (air) and Ra 

between lo3 and 1016. The solutions for Ra up to lo6 
were obtained by using normalized variables, in such a 
way that dimensionless velocities were of the order of 
unity, in order to improve the numerical accuracy of the 
results. Indeed it was found that this procedure led to a 
3% improvement in the important parameters over the 
dimensional solution, due to the limited accuracy of the 
mini-computer used. 

The validity of the relationship O(y,z) = /3(1 --y, 
1 -z), where 0 is the dependent variable, was found 
to hold for all the solutions obtained, with very close 
approximation, everywhere in the flow field. An ex- 
ception to this was in the cavity core for Ra > lo’*, 
probably due to the round-off error in the very small 
velocities encountered in this region, as compared with 
the large ones at the wall boundary layers; but even 
then the departure from the above centro-symmetry 
was within a few percent. 

The presented results are practically grid in- 
dependent (see Section 6 on grid dependence). 

The velocity components at the domain centre-lines 
are shown in non-dimensional form (using K/D as a 
scale factor, where ti is the thermal diffusivity) in Figs. 2- 
4, for Rayleigh numbers Ra = 103, lo5 and 106. 

It can be seen from these graphs that as the Rayleigh 
number increases, the velocity maximum moves closer 
to the wall and its amplitude increases. At the same 
time, the velocity between the two maxima becomes 
progressively smaller and at Ra > lo6 flow reversal is 
observed immediately outside the boundary layers. 
The reason for the above behaviour will be explained in 
conjunction with the thermal distribution inside the 
section. 

Figure 5 shows streamlines for Ra = 103-1016. 
Corresponding maps of temperature are shown in 
Fig. 6. The presented contours, in all the figures are 
labelled according to a well-known convention. For ex- 
ample, in Fig. 6 the contours are labelled via the 
statement 283(2)303 K. This means that temperature 
contours are presented every 2 K with the first (at the 
extreme right) corresponding to 283 K and the last to 
303 K. 

At Ra = 103, streamlines are those of a single vortex, 
with its centre in the centre of the domain. Corre- 
sponding isotherms are parallel to the heated walls, 
indicating that most of the heat transfer is by heat 
conduction. The effect of convection is seen as the 
departure of the isotherms from the vertical. The vortex 
is generated by the horizontal temperature gradient 



758 N. C. MAKKATOS and K. A. PERICLEWS 

FIG. 2. (a) The vertical velocity component : Ra = 103. (b) The horizontal velocity component: Ra = 103. 
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FIG. 3. (a) The vertical velocity component: Ra = 105. (b) The horizontal velocity component: Ra = 10’. 
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FIG. 4. (a) The vertical velocity component: Ra = 106. (b) The horizontal velocity component: Ra = 106. 

across the section. This gradient, aTjay, is nega- 
tive everywhere in this case, giving rise to positive 
(clockwise rotation) vorticity. 

As the Rayleigh number increases (Ra = 104) the 
central streamline is distorted into an elliptic shape and 
the effect of convection is more pronounced in the 
isotherms. Temperature gradients are now more severe 
near the vertical walls, but diminish in the centre. 

This behaviour continues to Ra = 105; the central 
streamline is further elongated and two secondary 
vortices appear inside it. Its long axis is now tilted in the 
direction of the flow, as the secondary vortices are 
convected by the flow in the periphery. Heat transfer 
by convection in the viscous boundary layers alters 
the temperature distribution to such an extent that 
temperature gradients in the centre are close to zero, or 
change sign, thus promoting negative vorticity. This 
causes the development of secondary vortices in the 
core. 

As discussed in ref. [22], the secondary vortices in the 
square cavity do not result from an instability of the 
base flow but are a direct consequence ofthe convective 
distortion of the temperature field. As Ra increases, the 
development of thermal boundary layers intensifies 
aTlay in the vicinity of the walls, and the convection 
within each layer leads to negative aT/ay in the centre. 
A vorticity sink thus separates the regions cf 
concentrated vorticity generation and two secondary 

vortices are formed. Viscous diffusion appears to 
prohibit the development of these vortices for Ra 

< 105. The vortices at Ra = lo5 are sufficiently strong 
to convect the temperature fields to the extent that the 
isotherms are nearly horizontal in the centre, 
preventing any vertical motion there (see w-velocity 

plots in Fig. 3). 
Increasing Ra to 106, causes the secondary vortices 

to move closer towards the walls and are convected 
further downstream. A third vortex appears in the 
centre of the section, again rotating clockwise. This is 
surprising, as one would expect this last vortex to rotate 
counterclockwise, to reduce the shear between the 
other two vortices. Mallinson and de Vahl Davis [22] 
attribute this to the presence of a small positive 
temperature gradient in the centre. Viscous diffusion 
between the secondary vortices dissipates any 
counterclockwise vortices that might appear. Heat 
transfer is now mostly by convection in the rapidly 
moving fluid near the walls. The boundary layers 
adjacent to the vertical walls have become thin and fast. 
In the central region the vertical stratification in the 
temperature distribution, shown in Fig. 6 with 
increasing values from the bottom to the top of the 
cavity, prevents any vertical motion as confirmed by the 
w-plots in Fig. 4. In general, as Ra is increased w tends 
to become comparatively small outside the vertical 
boundary layers, and is virtually zero over the central 



760 N. C. MARKATCIS and K. A. PERICLEOUS 

(e) 

(b) 

FIG. 5. Streamlines :(a) Ra = lo3 ;(b) Ra 
(9) 

= lO’;(e)Ra = 10S;(d)Ra = 106;(e)Rn = 108;(f)Ra = 10’ 
Ra = 10”; (h) Ra = 10L6. 

c. 
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FIG. 6. Isotherms: (a) Ra = 103;(b) Ra = 104;(c) Ra = 10’; (d) Ra = 106;(e) Ra = 10’; (f) Ra = 10”; 
(g) Ra = 10” ; Ra = 1016. Contours at 283(2)303 K, except(f) which is at 288(1)298 K. 
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60”/;,ofthecavitywidthat Ra = 106.Themaximumand 
minimum w values for each profile are strongly affected 
bythe~anumberasshowninTable l.In this table(and 
also in Table 2) the velocities are normalized using D as 
a scale factor for length and D’/K as a scale factor for 
time. The results obtained for Ra = lo6 were identical 
whether the (k - E) model was used or not, due to 
virtually zero k generation. 

As the Ralyeigh number increases from lo6 to 10’. 
the secondary vortices generated in the central core, 
are convected further upstream and closer to the 
differentially heated walls. The central vortex has now 
diffused into the other two vortices which become a 
dominant feature of the flow. The boundary layers on 
the heated walls are now very thin. At the upstream 
corner of each boundary layer, the low momentum 
outer layer is absorbed by the adjacent vortex, while 
the rest of the boundary layer follows the adiabatic 
wall under the action of the secondary vortices. 

For Ra = 10” the central vortex reappears [Fig. 
5(f)] and the other two vortices are shifted closer to the 
walls and get thinner and elongated. As Ra increases 
further, the vortex system becomes progressively 
weaker and eventually (Ra = 1016) disappears com- 
pletely. High velocities now only occur within the thin 
boundary layers, and the Row in the central core is 
stratified. The streamline patterns of Fig. 5(h) show this 
feature very clearly. Recirculation now only exists 
within the isothermal layers of fluid and the sense of 
rotation alternates between adjacent layers. 

The accompanying temperature maps, for Ra = lo* 
and LO’* show the temperature range in the core 
dimillishing, from between 289 and 297 K to 291 and 
295 K. A steep temperature gradient accompanies the 
location of the secondary vortices. The horizontal 
extent and magnitude of this gradient determines the 
extent and strength of the vortices described earlier. 
The negative temperature gradient in the central vortex 
is observed. For high Ra, the T-profiles have a very 
steep slope within the thermal boundary layers; and 
this becomes steeper as Ra increases. Outside the 
boundary layers the T-profiles are almost horizontal 
and temperature increases with z. 

Surprisingly, as the Rayleigh number increases even 
further, the temperature range in the core increases 
againto between288and29~K(Ra = 1012)andfinally 
to 287 and 299 K at Ra = 1016. This is due to weak 
interchange of heat and momentum between adjacent 
fluid layers as the flow becomes increasingly stratified. 
At the same time, the temperature gradient in the 
horizontal direction diminishes to zero. This is to be 
expected, since now the walls are ‘too far away’ to have 
any influence in the core (Ra CC D3, while 6 cc Dm3j4). 

Figures 7 and 8 show horizontal and vertical velocity 
contours at various Ra numbers. For Rayleigh 
numbers up to lo6 these contours are normalized, but 
not for the higher ones. The main observations 
discussed so far can also be inferred from these figures, 
i.e. the location and thickness of the boundary layers 
and the location of reverse flow regions accompanying 
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Table 2. Comparison of the two solutions 

163 

lo3 
I 2 

Ra 
lo4 lo5 

1 2 1 2 
lo6 

1 2 

“,,X 3.544 
z 0.832 
W,,X 3.593 
4 0.168 
NU 1.108 
Nu,,, 1.496 

‘Numi,, 0.0825 0.720 
F 0.9925 

3.649 16.18 16.178 35.73 34.73 68.81 64.63 
0.813 0.832 0.823 0.857 0.855 0.872 0.850 
3.691 19.44 19.617 69.08 68.59 221.8 217.36 
0.178 0.113 0.119 0.067 0.066 0.0375 0.0379 
1.118 2.201 2.243 4.430 4.519 8.754 8.799 
1.505 3.482 3.528 7.626 7.717 17.872 17.925 
0.092 0.1425 0.143 0.0825 0.081 0.0375 0.0378 
0.692 0.643 0.586 0.824 0.729 1.232 0.989 
1.0 0.9925 1.0 0.9925 1.0 0.9925 1.0 

Note: (1) Present solution; (2) de Vahl Davis’ solution 131. 

the secondary vortices. The vertical velocity maximum 
moves closer to the hot wall as the Rayleigh number 
increases, and it is close to the centre of the hot wall for 

Rayleigh numbers up to lo6 (see also Table 1). The 
maximum horizontal component also moves closer to 
the hot wall as the Rayleigh number increases, and is 
shifted upwards. 

Figure 9 shows the resulting velocity fields. The 

boundary layer profiles and the diminishing velocity 
field in the centre are clearly seen. An enlarged view of 
the central portion of Fig. 9(d) (indicated by the dotted 
line) shows clearly the presence and direction of the 
three secondary vortices (Fig. 10). 

Figure 11 presents boundary layer velocity profiles at 
the ‘hot’ wall for Ra = lo”, at various Y-locations. The 
boundary layer gets progressively thicker as we move 

from the bottom (IZ = 15, Z = 0.0075) up to z = 0.5. 
Further up, Z = 0.795, negative flow is observed at the 

edge of the boundary layer, which is now thinner. The 
reason for this was explained earlier in connection with 
the presence of the secondary vortices. The boundary 

layer at Z = 0.9925 has almost disappeared as it 
approaches separation at the top corner. Inspection of 
the detailed results indicates that both velocity 
components are indeed negative at that corner. The 
velocity profiles within the boundary layers are not 

logarithmic in nature (neglecting the near-wall points 
where a logarithmic profile was imposed by the use of 
the ‘wall functions’). This is in agreement with the 
results of George and Capp [27]. 

Figure 12 presents w-velocity profiles within the 

narrow boundary layer near to the hot wall, for Ra 

= 10” with two different scaling factors. Three profiles 

are presented at three horizontal stations, z/D = 0.25, 
0.50 and 0.75. Figure 13 presents the same information 
for Ra = 10”. 

The important quantities for the problem con- 

sidered, e.g. the Nusselt numbers and the maximum 
velocities are summarized in Table 1. The table shows 
the calculated Nusselt numbers at the ‘hot’ wall. 

The maximum and minimum values are given in the 

table, together with the Nusselt number at j = y/D 

= 0.5. The same table, contains values of the maximum 
vertical velocity component on the horizontal mid-line 
and its location, the maximum horizontal velocity on 
the vertical mid-line and its location and the maximum 
horizontal and vertical velocities over the whole 
domain and their location. 

The heat transfer coefficient is seen to increase with 

Rayleigh number, as convection becomes dominant, 
but not as fast as the flow. Thus, passing from Ra = lo3 
to lo6 leads to an increase of w,,, from 3.59 to 221.8 ; 

Table 3. Comparison of present and experimental correlations (arrows indicate range of validity of 
equations used) 

Nu (laminar) Nu (turbulent) 
log Ra Equation (12) Equation (20) A% Equation (14) Equation (21) A% 

3 1.128 1.102 + 2.4 

4 2.246 1.960 . . . ...? + 14.6 1.698 1.546 +9.8 
5 4.470 3.485 

+ 
28.3 

3.621 
.~ 

3.329 +8.8 

6 1.723 7.167 + 7.2 
.” .~ . . . . . . . . . . . . ..t .., .., __ 8 

35.14 33.40 + 5.2 

10 159.9 155.0 +3.1 

12 727.5 720.0 + 1.0 
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(a) 

(e) 

F1~.7.Horizontalvelocity(v)contours:(a)Ra = 103,contoursat -3.55(0.711)3.55;(b)Ra = 104,contoursat 
- 16(3.2) 16;(c)Ra = 106,contoursat -43@62)43;(d)Ra = 106,contoursat - 117.88(23.58) 117.88;(e)Ra 
= 108,contoursat ~0.005,0.01,0.02,0.03,0.04,0.05;(f)Ra = lO”‘,contoursat +0.01,0.025,0.05,0.075.0.1. 

but the maximum Nusselt number increases only from 
1.496 to 17.87, despite the passage from diffusion- 
dominated to convection-dominated transfer, as 
revealed by the configuration of the isotherms. 

The maximum Nusselt number occurs at the bottom 
of the cavity and the minimum at the top. 

The results for Rayleigh numbers up to lo6 are 
compared with the benchmark solution provided inref. 
[3] which can be considered as accurate. The 
qualitative agreement of the presented plots of stream 
function, temperature and velocity maps with those of 
the benchmark solution is very good. Quantitative 

comparison is provided by the Nusselt numbers and the 
maximum velocity values in Table 2. Agreement is 
generally good. Differences exist in the minimum 
Nusselt number, particularly at Ra = 106. Although 
the agreement of the maximum and centre-line Nusselt 
numbers is better than 1.5% over the whole Ra range, 
the present predictions indicate a higher minimum 
Nusselt number than the benchmark solution. 

Numerical errors and the first-order differencing 
scheme used in this work do not account for the 
observed differences, since the results are practically 
grid independent. However, there are two other 
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FIG. 8. Vertical velocity(w) contours: (a) Ra = lo’, contours at - 3.555(0.71 I)3.5.55; (b) Ra = 104, contours at 
- 19.24(3.848)19.24; (c) Ra = 105, contours at -67.55(13.51)67.55; (d) Ra = 106, contours at -217.38 
(43.47)217.38;(e)Rn = lOs,contoursat ~0.0075,0.0125,0.02,0.03,0.04,0.05,0.06;(f)Rn = lo”,- 20, 
---- <O,contoursat +0.01,0.025,0.05,0.075,0.1,0.15;(g) Ra = 10IZ,contours at +0.01,0.025,0.05,0.1,0.2. 
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FIG. 1 I. Boundary layer velocity profiles at Ra = 10xz, ‘hot’ wall. 

differences between the procedures, namely the 
elimination of the Boussinesq assumption in the 
present work and the implied use of the linear velocity 
profile between wall and near-wall points, in the shear- 
stress calculation. The latter should not account for any 
difference either, provided that the benchmark solution 
has properly computed the wall shear-stresses. 

The computations were repeated by using the 
Boussinesq approximation. Minor differences were 
observed for Ra = 103 and 101, with a maximum of 1%. 
For Ra = lo5 and lo6 the differences were up to 3.7%; 

the minimum Nusselt number being 0.804 at Ru = 10’ 
and 1.188 at Ru = 106. The large errors in the 
calculation of the minimum Nusselt number appear to 
be due to the sensitivity of its calculation. Suppose for 

example that at Ru = lo6 the solution predicts a near- 
wall maximum temperature of 302.81 K instead of the 
correct value of, say, 302.84 K. This represents a very 
accurate temperature prediction with an error of less 
than 0.01% (well within the convergence criterion used, 
see Section 5). For a wall temperature of 303 K, the 
application of a one-sided formula for calculating a 
temperature gradient at the wall, would lead to a NQ,, 
which for the present grid spacing would be 1.267 
instead of 1.067, e.g. in error by 19%. The same is not 
true in the case of Nu,,,. Thus the same accuracy in 
temperature (say 300.43 K instead of 300.4 K) leads to 

Nu,,, = 17.13insteadof 17.33,e.g.inerror by only 1%. 
Therefore, despite the large errors at Ra = lo6 in the 
derived quantities, it is suggested that the present 

w (m 5’) 

FIG. 12. w-Velocity profiles within boundary layer, Ra = 10” 
(two scaling factors). Three horizontal stations at: (I) z/D 

= 0.25; (2) z/D = 0.50; (3) z/D = 0.75. 

0 02 03 0 4 

FIG. 13. w-Velocity profiles within boundary Iayer, Ra = lOi 
(two scaling factors). Three horizontal stations at: (1) z/D 

= 0.25; (2) zJD = 0.50; (3) z/D = 0.75. 
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solution may still be about 1% accurate in terms of the 
computed primitive variables. 

Direct comparisons are not possible for the 
turbulence runs, due to the scarcity of experimental 
evidence. However, the use of the k - E model in other 
related work (e.g. buoyant turbulent flow in buildings) 
has led to favourable comparisons with experiment 

Cl5]. 
Furthermore, the presented solutions certainly show 

some of the features that are observed experimentally 
(position of vortices and their shifting with increasing 

Ra number, thermal stratification, etc.) and indicate, 
qualitatively at least, the correct change in flow 
structure as Ra increases. 

Finally, the correlations of the present results given 
below are in good agreement with well-known 
correlations derived from a large number of 
experiments for Ra up to 1 O8 [23], and appear to extend 
the validity of those correlations up to Ra = 10”. For 
higher Ra a set of new correlations is proposed. 

4.1. Derived Nu - Ra correlations 
The following correlations for maximum, minimum 

and average Nusselt numbers were derived from the 
present predictions by least-square linear regression. 

Laminar (lo3 < Ra < 106) 

NM 1,z = Nu = 0.143Ra0.299; (12) 

Nu,,, = 0.130Ra0~356. (13) 

The minimum Nu is not given as the log Nu vs log Ra 
curve is not .a straight line. 

Turbulent (lo6 < Ra ,< 10”) 

Nu = 0.082Ra0.329 ; (14) 

Nu,,, = 0.057Ra0.37g; (15) 

Nu,,,~, = 0.016Ra0.3’5. (16) 

Turbulent (10” < Ra < 1016) 

Nu = 1.325Ra0.245; 

Num,, = 0.34Ra0,31 6 ; 

Nu = 0.137Ra0.233. In,” 

(17) 

(18) 

(19) 

4.2. Comparison with experimental correlations 
The above correlations are compared with the 

following experimental ones in Table 3 [23] : 

laminar 

Nu = 0.196Ra’i4 
0 

k 
- 119 

turbulent 

(2.8 x lo3 < Ra < 2.8 x 104); (20) 

(2.8 x lo4 < Ra < 1.55 x 107); (21) 

where L/D is the cavity aspect ratio. 

It can be seen that extrapolation of the experimental 
turbulence correlation up to Rayleigh numbers of 10” 
is in good agreement with the present predictions, 
despite the fact that the former is applicable to cavities 
of aspect ratios between 3 and 42. The aspect-ratio 
etfect explains the relatively large differences observed 
for the lower Ra numbers, and the closer agreement 
obtained for higher Ra numbers; the effect of aspect 
ratio diminishes as Ra increases. 

The switch in the exponent of the Rayleigh number 
for the correlations for Ra > 10” was introduced 

simply by requiring a zero error from the least-square 
linear regression. Experimental evidence, however 
limited, indicates an exponent of l/3. If the exponent of 
Ra is assumed to be l/3, then the best correlation of the 
present results over the whole of the turbulent range 
gives 

- 
Nu = 0.060Ra”3. (22) 

The above correlation gives higher values than those 

obtainedbyMacGregorandEmery(Nu = 0.046Ra1’3) - 
[28] and by Cowan et al. (Nu = 0.043 Ra”3) [26]. 
However, the former [28] refers to cavities of aspect 
ratio lo-40 with constant heat flux boundary 
conditions at the hot face, and isothermal cold face and 
the latter [26] refers to water and to Ra numbers up to 2 
x 10”. 

5. CONVERGENCE AND COMPUTER TIME 

A converged solution was defined as one that met the 
following criterion for all dependent variables 

max I@+’ -@I < 10-4, 

between sweeps n and n+ 1. At this stage mass 
continuity errors per slab were of the order of lo- ’ and 
therefore insignificant. Further sweeps of the solution 
domain confirmed no changes and were actually 
pointless since the accuracy limit of the computer was 
approached. The sum of the absolute volumetric error 
over the whole field was again insignificant, at 10m6. 

Convergence was found to be affected by the 
Rayleigh number. Hence, the high Rayleigh number 
cases required more sweeps than the low ones. To 
improve convergence, a false time-step relaxation was 
used. This was reduced by an order of magnitude, from 

0.1 to 0.01 for both velocities, for Ra > lo’, and to 0.001 
for Ra > 10”. This is to be expected since this 
relaxation factor is proportional to the fluid residence 
time in a typical cell; and it is therefore appropriate 
to reduce it as the velocity in the boundary layers in- 
creases with Rayleigh number. 

To economize on run-times each Rayleigh number 
case was restarted from the previous one (starting with 
Ra = 103) and 200 sweeps were found adequate for 
convergence. The domain dimension D was the 
parameter adjusted to get the required Rayleigh 
number value. 
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FIG. 14. Velocity comparison (Ra = 106) for 40 x 40 and 80 x 80 solutions. 

A 100~sweep run required 11 min CPU time on the 

Perkin-Elmer 3220 mini-computer, for the 30 
x 30 grid, and 15 min for a 40 x 40grid. The above mini- 

computer is several times slower than mainframe 
machines. In general, the time per finite-domain cell, 
per sweep, per variable was 1.5 x 10m3 s CPU on the 
Perkin-Elmer machine. A full run at Ra = 1014 

using a 60 x 60 grid would require 300 sweeps and take 
2.5 h on the mini-computer for solving the six equations 

(0, W, P, k, E, ‘0. 
It is not an easy matter to compare the above 

reported CPU times with those of other methods in the 
literature, because of different computers used and 
different practices in reporting these times. 

However, it appears to the authors after their survey 
that the present computer-time requirements are 

modest, and possibly an order of magnitude less than 
those reported in the literature for the same cases. If 
true, this is certainly due to thespeed ofthe SIMPLEST 
algorithm and the associated whole-field pressure 
solver, coupled with the thorough optimization of 
FORTRAN arithmetic and the very orderly bookkeep- 
ing in the software, embodying the solution procedure. 

6. GRID DEPENDENCE AND COMPUTER STORAGE 

Initial investigations were performed on a uniform 
30 x 30 grid. This was found to be adequate for Ra 
= 1 03, but not for higher values. An improved 30 x 30 
grid was then used, with closer spacing near the walls 
(Fig. l), to increase boundary layer resolution. 

This grid was used for all Rayleigh number cases up 
to Ra = lo6 and the results were stored. 

To check grid dependency, the grid was further 
refined to 40 x 40 by adding intermediate cells in the 
central region. All cases (up to Ra = 106) were re-run 
restarting from interpolation of the 30 x 30 results, for 
another 100 sweeps. In their bulk, the results showed 
little change, although the secondary vortices at Ra 
= lo5 and lo6 were, as expected, better resolved. The 
maximum velocity increased by 5% in the Ra = 10J 
case, and these are the results presented in this paper. 

The grid was refined again to 80 x 80 by halving all 

cells and the Ra = lo6 case was run for another 300 

sweeps. Very minor changes were observed, as shown in 
Fig. 14, for the velocity profile inside the hot wall 
boundary layer. The maximum velocity increased by 
0.4’/” in the Ra = lo6 case. The same observations 
apply also to the temperature-field changes with grid 
refinement. It is concluded that the results up to Ra 
= lo6 are practically grid-independent. 

For the turbulent cases care was taken to place l&l 5 

grid cells inside the wall boundary layers. The thickness 
of these layers is given by 6/D = 4.86Ra-‘I4 for Pr 
= 0.71. Care was also taken to concentrate several of 
these 10-15 points between the velocity peaks and the 
wall, and to place the first grid point very close to the 
wall (y/D = 1 x 10m6 for the high Ra numbers, y+ 
varying between 1 and 12 along the hot wall). The above 
considerations are very important for treating the 
boundary layers in accordance with the essential 
physics, since in the wall region temperature gradients 
are most severe and hence provide an important source 
of vorticity. If the first grid point is too far from the wall 
then the results will be grossly distorted by this effect. 
Three grids were used,(y, z) = 40 x 80,60 x 120 and 100 
x 160. Practically grid-independent results seemed to 

be obtained using a grid of (y, z) = 60 x 120 for all 
Ra > 10s; the 100 x 160 grid leading to a maximum 
further change of 1.2% for the maximum velocities and 
1.5% for temperature. For Ra > 1014 the resulting grid 
cells in the core were thought to be too ill-conditioned 
(aspect ratio of up to 10: 1) for sufficient accuracy. 
However, the flow in the core for these high Ra numbers 
is nearly stagnant and the cell aspect-ratio effect 
appears not to be important, as was indicated by 
repeating the runs with half the above ratios. 

The program required 90 K-words ; of these, 35 K- 
words were required for data storage (30 x 30 grid). 

7. CONCLUSIONS 

The problem considered represents a 2-D approxi- 
mation to a series of practical problems. The study 
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demonstrated that numerical solutions can be obtained 
quickly and economically for such problems, where 
buoyancy effects are dominant. 

Accurate results were obtained at both ends of the 
Rayleigh number scale, at least for the laminar range, 
indicating that both diffusion-only or convection-only 
heat transfer problems can be tackled with ease. The 
results were presented in graphical and tabular form, 
and as correlations between the Nusselt and Rayleigh 
numbers. 

The main points of the present method can be 
summarized as follows: (a) the model consists of the 
coupled differential elliptic equations which are solved 
over the entire flow domain, with no assumption 

concerning the core configuration ; (b) the procedure is 
strongly convergent and results were easily obtained 
even at Rayleigh numbers as high as 10’ 6 ;(c) practically 
grid independent results were obtained with only 
modest computer storage and CPU time requirements. 
Indeed, a survey revealed that the present method may 
be up to an order of magnitude faster than other 
available procedures, enabling very fine grid runs to be 
performed within practicable resources ; (d) the 
procedure and associated computer program are 
general and can be used immediately for 3-D natural 
convection problems in cavities of any aspect ratio and 
orientation, and fluids of any Prandtl number. It is 
therefore immediately applicable to all related practical 
problems ; (e) the speculative use of the (k - E) model in 
this work has indicated that, despite its well-known 
deficiencies in terms ofphysical realism, it may still lead 
to a reasonable prediction of the overall flow structure 
of the problems considered; (f) apart from the 
uncertainty connected with the (k - E) model itself 
another source of uncertainty is provided by the ‘wall- 
functions’. More work is required to establish more 

realistic ‘wall-functions’ for buoyancy-dominated 
flows. Once established, it is a very simple matter to 
incorporate in the present model. 

Although only time-averaged steady-state results 
have been presented, the procedure can also be used in 
its in-built transient mode. Also radiation and variable 
property effects, that have been neglected in the present 
study, must be included to investigate their im- 
portance at high Rayleigh numbers. Finally, much 
more experimental work is required for high Ra 
numbers to provide data for improving and validating 
the computer models. 
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APPENDIX 

THE WALL BOUNDARY CONDITIONS 

The treatment of wall boundary conditions for turbulent 
buoyant flows presents a source of uncertainty in the present 
work. It is therefore worthwhile describing briefly what was 
done. ‘Wall functions’ were used for both the laminar and 
turbulent calculations. In the laminar cases this simply meant 
that the wall shear stress was evaluated from the presumption 
of a linear velocity variation between the calculated near-wall 
value and the zero wall value. 

The shear stress calculated in this way was then included as a 
source term for the velocity component parallel to the wall. 
For the turbulent calculations, the Reynolds number for the 
near-wall point was first evaluated. If this was less than 132.25 
(y’ = 11.5, the value at which the laminar and turbulent wall- 

functions intersect) the above laminar wall-function was also 
used. If the Reynolds number was greater than 132.25, the 
presumed velocity variation was logarithmic, and the 
corresponding shear-stress coefficient was evaluated. Both k 
and E were fixed at the near-wall grid nodes at the values which 
would prevail there ifindeed the universal logarithmic velocity 
profile prevailed. The wall heat transfer rate was evaluated 
from the Chilton-Colburn form of the Reynolds analogy, in 
which the Stanton number (St) is related to the friction 
coefficient (C,) as follows : 

St = C, Prmzi3, (Al) 

where C, is related to the wall shear stress (7,) and the parallel- 
to-wall velocity /WI as follows: 

C, = r& I#). (A2) 

The heat transfer rate per unit area at the wall (4;) is then 
deduced from : 

4; = St plW C,(T,- T.), (A3) 

where T, is the temperature at thegrid node in question, and T, 
the temperature at the wall. 

It is realized that the wall functions may be influenced 
considerably by temperature variations, and indeed that the 
logarithmic form used is probably not appropriate since 
buoyancy effects are ignored in the log layer. A better wall 
function could be based on either the Monin-Obukov log- 
linear profile 1291, or on the cube root profiles of George and 

Capp ~271. 

CONVECTION LAMINAIRE ET TURBULENTE DANS UNE CAVITE FERMEE 

Resume---Onpresente unemethodenumeriquepour obtenirdes solutionsd’ecoulement nature1 et de transfer1 
de chaleur dans une cavite carree avec des parois laterales chauffees differemment. On Btudie un domaine de 
nombres de Rayleigh entre lo3 et 106. On utilise une differentiation de cellules donatrices et des etudes de 
maillage sont developpees pour tousles nombres de Rayleigh consider&. Le modele de turbulence utilist pour 
les nombres de Rayleigh superieurs a lo6 est un modele (k--E) i deux equations qui inclut les interactions 
gravite-gradient de masse volumique. Les resultats sont present& sous forme de tables et de graphiques et de 
formules de nombres de Nusselt et de Rayleigh. En outre, les resultats de nombres de Rayleighjusqu’a lo6 sont 

compares avec la solution numerique de Vahl Davis. 

LAMINARE UND TURBULENTE FREIE KONVEKTION IN EINEM GESCHLOSSENEN 
HOHLRAUM 

Zusammenfassung-Es wird eine Berechnungsmethode beschrieben, die dazu dient, Losungen fur die 
laminare und turbulente, von Auftriebskraften bestimmte Strbmung und den Warmelbergang in einem 
Hohlraum mit quadratischem Querschnitt und unterschiedlich beheizten Seitenwinden zu erhalten. Die 
Rayleigh-Zahl wurde im Bereich von 10’ bis lo6 variiert. Es werden “donor-cell”-Differenzen verwendet. 
Einfliisse der Gitterverfeinerung wurden bei allen betrachteten Rayleigh-Zahlen untersucht. Als 
Turbulenzmodell fiir Rayleigh-Zahlen griiBer lo6 wurde ein (k N &)-Model1 verwendet, welches 
Wechselwirkungen zwischen Schwerkraft und Dichtegradienten beriicksichtigt. Die Ergebnisse werden in 
tabellarischer und grafischer Form und als Korrelationen von Nusselt- und Rayleigh-Zahlen dargestellt. Die 
Ergebnisse fiir Rayleigh-Zahlen bis lo6 werden mit den Referenz-Losungen von de Vahl Davis verglichen. 
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.JlAMMHAPHAIl M TYP6YJIEHTHAR EmECTBEHHAII KOHBEKUMII 

B 3AMKHYTOR IlOJlOCll4 

AHHOTa,@,n--OIIBCbIBaeTCB WCneHHbIfi MeTon pe”IeHHn 3ana’I CBO60JlHOKOHBeKTBBHOrO naMNHapHOr0 

A Typ6yneHTHoro TeqeHm H TennonepeHoca B KBaflpaTH0i-I IIOnOCTB C 60KOBbIMH CTeHKaMB, 

HarpeTbv.48 no pa3HoB TemepaTypbI. MccnenoeaHm npoeonsnecb B mianasose 3HaveHaB mcna 

Penes OT lo3 a.0 1oL6. npH nOCTpOeHHH pa3HOCTHOfi CXeMbI liCnOnb30BaHbI ,.,OHOpCKIte WIeiiKW. 

,Qna BCCX paccMaTpwBaeMblx 3HaneHwii wicna Penea npoeonenmb m22nenoBaHm Emimm A3MenbqeHm 

ce~w Ha pemeaue. npa 3HaveHmx wicda Penea, npeBbImamUix 106, wnonb3oBanacb neyxnapa- 

MeTpmecKar (k s E) MOnenb Typ6yneHTHOCW yWiTbIBafOIUaK BsaaMoneficrme Meany canok 
TIlTeCTR w rpanrteHToM NIOTHOCTW. Pe3ynbTaTbI npencra9neHbI B mine Ta6nw A rpa@iKoB, a 

TaKme B Bltfle 0606IqeHHbIX 3aBHWMOCTei-4 Mexny ‘iHCnaMI( HyCCWIbTa U PeneSI. KpoMe TOTO, 

npoaeneH0 CpaBHemie pe3ynbTaTos. nonyveHHbIx npe wicnax Penen, MeHbuwix 106. c WCJIeHHbIM 

pemeH&ieM ne Baanb flaBma. 


