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N. C. MarkaTOs* and K. A. PERICLEOUS
Concentration Heat and Momentum Limited, 40 High Street, Wimbledon, London SW19 SAU, U.K.

Abstract—The paper presents a computational method used to obtain solutions of the buoyancy-driven
laminar and turbulent flow and heat transfer in a square cavity with differentially heated side walls. A series of
Rayleigh numbers, ranging from 103 to 10! was studied. Donor-cell differencing is used. and mesh-refinement
studies have been performed for all Rayleigh numbers considered. The turbulence model used for Rayleigh
numbers greater than 10°is a (k ~ £) two-equation model of turbulence, that includes gravity ~ density gradient
interactions. The results are presented in tabular and graphical form, and as correlations of the Nusselt
and Rayleigh numbers. Furthermore, the results for Rayleigh numbers up to 10° are compared with the
benchmark numerical solution of de Vahl Davis.

NOMENCLATURE

D cavity width [m]

g gravitational acceleration [m s 2]

k kinetic energy of turbulence per unit mass
kg ']

Nu  Nusselt number

Pr Prandtl number
Ra  Rayleigh number, p2gD3BAT Pr/u?

S source term

T temperature [K]

v velocity component in the y-direction
[ms™']

w velocity component in the z-direction
[ms™']

y,z  spatial coordinates [m]

¥,Z  normalized coordinates.

1. INTRODUCTION

THE DETERMINATION of buoyancy-driven flow in an
enclosed cavity provides a suitable comparison prob-
lem for evaluating the performance of numerical
methods dealing with viscous flow calculations [1-3].
Furthermore, the above process has many practical
applications of which the most widely known is that of
double glazing. Other applications include nuclear-
reactor insulation, ventilation of rooms, solar-energy
collection and crystal growth in liquids. Thereis an ever
increasing amount of research on confined natural
convection and refs. [4-10] are typical examples of such
work. A recent review of the existing literature is given
by Ostrach [11]. Despite all the recent research activity,
a central problem that has remained unsolved is the
coupling between boundary layers and core flows. The
latter depend on the boundary layer, which, in turn, is
influenced by the core. This problem was first identified
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by Ostrach [5] and discussed more fully in refs. [6, 7].
The purpose of this work is to describe a computa-
tional procedure for solving the non-linear, coupled
differential elliptic equations over the entire flow
domain, with no assumptions concerning the core
configuration or any other ad hoc simplification for
Rayleigh numbers up to 106, and with the speculative
use of a two-equation turbulence model for higher
Rayleigh numbers ; and to demonstrate that this can be
accomplished without excessive demands on computer
time or storage. The presented results are restricted to
rectangular cavities of aspect ratio 1, fluids of Prandtl
number 0.71, and Rayleigh numbers ranging from 10°
to 10'®. However, the procedure is general and can be
easily applied for practical computations in cavities of
different aspect ratios, fluids of different Prandtl
numbers, three-dimensional (3-D) enclosures or tilted
enclosures such as, for example, those studied by
Catton [4].

2. THE PROBLEM CONSIDERED

The problem considered is depicted schematically in
Fig. 1, and refers to the two-dimensional (2-D) flowina
square cavity, of side D. The cavity is assumed to be
of infinite depth along the x-axis and is heated
differentially along the South (low-y) and North
(high-y) walls. The other two (horizontal) walls are in-
sulated.

The no-slip condition is applied on the velocity at all
four walls, and friction is calculated by invoking ‘wall-
functions’ [12], see Appendix. The hot and cold walls
are considered to be isothermal, and the other two
adiabatic. Heat transfer through the walls causes
density changes to the fluid in the cavity, and leads to
buoyancy-driven recirculation. The resulting flow is
treated as steady and, depending on the Rayleigh
number, laminar (Ra < 10°) or turbulent (Ra > 10°).
This criterion for switching over to turbulence cal-
culations is based on experimental observations [25,
26] and has been used widely in the literature [1-3, 20,
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FIG. 1. (a) The process considered. (b) The solution grid used for Ra < 10°.

22]. Reference fluid properties were calculated at the
ambient temperature T, = 293 K.

3. MATHEMATICAL FORMULATION
AND METHOD OF SOLUTION

3.1. The differential equations

For steady flow, the equations for continuity,
velocity components and temperature take the form:
continuity
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where I'; is the exchange coefficient for the transport of
property ¢. The source terms in the momentum
equations are
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where 0 is the temperature rise above ambient Ty,
For Rayleigh numbers above 10° a two-equation

(k ~ ¢) turbulence model was used. Then the above
equations are time-averaged equations and g and I,
are replaced by their ‘effective’ values p . and Ty, as
given by the turbulence model [12, 13].
The generation term in the k-equation includes the
buoyancy production
Gy = —pg 222, U
Onep CY
In stable stratification, G becomes a sink term so that
the turbulent mixing is reduced. In unstable
stratification, the buoyancy will enhance turbulence
since Gg is positive. The buoyancy term appearing
tentativelyin the ¢-equation, in other k ~ gcalculations
for buoyant flows [ 14, 24], has been omitted. There is
no obvious physical reason for including such a term
and other related work indicated that it is completely
insignificant [15]. The turbulence model contains five
constants which were assigned the following values

[12]
C,=144; C,=192; C,=009;
g, =10; o,=1314

More details may be found in refs. [14, 15].
Assuming that p is proportional to 1/T the densities

are obtained from the temperature field, without

invoking the Boussinesq-type approximations.

3.2. The solution procedure

The above equations were solved on a square mesh
by the finite-domain method outlined in refs. [16-18].
Finite-domain equations are derived by integration of
the differential equations over an elementary control
volume or cell surrounding a grid node. Upwind
differencing is used in the convective terms and the
integrated source term is linearized. Both these
practices are widely used to enhance numerical
stability. The upwind scheme has come under much
criticism recently, butitis only grid-refinement that can
detect the ‘false diffusion’ associated with the various
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schemes. Therefore, care was taken to obtain grid-
independent results. Pressures are obtained from a
pressure-correction equation which yields the pressure
change needed to procure velocity changes to satisfy
mass continuity. The ‘SIMPLEST’ practice {17] is
followed for the momentum equations. The most
significant difference between ‘SIMPLEST’ and the
well-established ‘SIMPLE’ algorithm [19] is thatin the
former the finite-domain coefficients for momenta
contain only diffusion contributions, the convection
terms being added to the linearized source term of the
equations. This implies that, in the absence of diffusion,
the momentum equations are solved by a Jacobi point-
by-point procedure as opposed to the more popular
‘simultaneous’ line-by-line procedures. This mixed
practice (the use of Jacobi for convection terms, the use
of line-by-line for diffusion terms) derives from
experience and intuition. For example, use of Jacobi for
diffusion in a pipe would take an extremely long time to
spread the viscous effects of the wall, while a
simultaneous solution would do that in virtually a
single iteration. This is not so for the convection terms,
however, because of their special links with the
pressure-correction equation. The above mixed
practice was found to accelerate convergence
significantly.

The equations are solved by a line-by-line procedure
which is similar to Stone’s Strongly Implicit Method
but free from parameters requiring case-to-case adjust-
ment and so less complex and slower. The pressure-
correction equation is solved in a ‘whole-field’ manner,
2-D simultaneous. Further details may be found
inrefs. [16, 17].

3.3. The Nusselt number

From the engineering viewpoint, the most important
characteristic of the flow is the rate of heat transfer
across the cavity. The Nusselt number on the hot wall at
y = 0is given by

(), () e
- y y=0 oy y=0TH_TC’

6T q::vall
. = : (9)
<8y )y:O K
fran D
Nu(z) = qh_“ — (10)
H™ iC

where the heat flux at the wall, 4, is calculated by the
program, from wall-functions [12, 19].
The average Nusselt number is given by

__ 1760 1 X o0
Nu = — Jdz|;= ~— —(0,2)).
u J\o (6?) Z|y~00r1 N j;‘ 6_)7(0’21) (11)

The mid-plane value Nu,,, is also computed as it is
probably [3]amore accurate quantity in describing the
heat flow across a cavity with adiabatic ‘end’ walls. The
three- and five-point formulae commonly used by other
investigators [20] for resolving the wall temperature
gradient in equation (8) were also used. The five-point
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formula gave results very close to the ones calculated by
equation (10) for Ra up to 108, but it became erroneous,
as expected, for the high Ra numbers.

4. RESULTS AND DISCUSSION

The main results are presented in graphical and
tabular form, and as Nu vs Ra correlations. The
graphical results are obtained by the post-processor
GRAFFIC [21].

Solutions were computed for Pr = 0.71 (air) and Ra
between 10° and 10'°, The solutions for Ra up to 10°
were obtained by using normalized variables, in such a
way that dimensionless velocities were of the order of
unity,in order to improve the numerical accuracy of the
results. Indeed it was found that this procedureled to a
3% improvement in the important parameters over the
dimensional solution, due to the limited accuracy of the
mini-computer used.

The validity of the relationship 0(y,z) = 6(1—y,
1—2z), where 0 is the dependent variable, was found
to hold for all the solutions obtained, with very close
approximation, everywhere in the flow field. An ex-
ception to this was in the cavity core for Ra > 10!2,
probably due to the round-off error in the very small
velocities encountered in this region, as compared with
the large ones at the wall boundary layers; but even
then the departure from the above centro-symmetry
was within a few percent.

The presented results are practically grid in-
dependent (see Section 6 on grid dependence).

The velocity components at the domain centre-lines
are shown in non-dimensional form (using x/D as a
scale factor, where k is the thermal diffusivity)in Figs. 2—
4, for Rayleigh numbers Ra = 103, 10° and 10°.

It can be seen from these graphs that as the Rayleigh
number increases, the velocity maximum moves closer
to the wall and its amplitude increases. At the same
time, the velocity between the two maxima becomes
progressively smaller and at Ra > 10° flow reversal is
observed immediately outside the boundary layers.
The reason for the above behaviour will be explained in
conjunction with the thermal distribution inside the
section.

Figure 5 shows streamlines for Ra = 103-10'°,
Corresponding maps of temperature are shown in
Fig. 6. The presented contours, in all the figures are
labelled according to a well-known convention. For ex-
ample, in Fig. 6 the contours are labelled via the
statement 283(2)303 K. This means that temperature
contours are presented every 2 K with the first (at the
extreme right) corresponding to 283 K and the last to
303 K.

At Ra = 103, streamlines are those of a single vortex,
with its centre in the centre of the domain. Corre-
sponding isotherms are parallel to the heated walls,
indicating that most of the heat transfer is by heat
conduction. The effect of convection is seen as the
departure of the isotherms from the vertical. The vortex
is generated by the horizontal temperature gradient
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FIG. 2. (a) The vertical velocity component: Ra = 10°. (b) The horizontal velocity component: Ra = 103.
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FIG. 4. (a) The vertical velocity component: Ra = 10°. (b) The horizontal velocity component: Ra = 10°.

across the section. This gradient, dT/dy, is nega-
tive everywhere in this case, giving rise to positive
(clockwise rotation) vorticity.

As the Rayleigh number increases (Ra = 10%) the
central streamline is distorted into an elliptic shape and
the effect of convection is more pronounced in the
isotherms. Temperature gradients are now more severe
near the vertical walls, but diminish in the centre.
This behaviour continues to Ra = 10°; the central
streamline is further elongated and two secondary
vortices appear inside it. Its long axis is now tilted in the
direction of the flow, as the secondary vortices are
convected by the flow in the periphery. Heat transfer
by convection in the viscous boundary layers alters
the temperature distribution to such an extent that
temperature gradients in the centre are close to zero, or
change sign, thus promoting negative vorticity. This
causes the development of secondary vortices in the
core.

Asdiscussed in ref. [22], the secondary vortices in the
square cavity do not result from an instability of the
base flow but are a direct consequence of the convective
distortion of the temperature field. As Ra increases, the
development of thermal boundary layers intensifies
0T /dy in the vicinity of the walls, and the convection
within each layer leads to negative 0T/dy in the centre.
A vorticity sink thus separates the regions cf
concentrated vorticity generation and two secondary

vortices are formed. Viscous diffusion appears to
prohibit the development of these vortices for Ra
< 10°. The vortices at Ra = 103 are sufficiently strong
to convect the temperature fields to the extent that the
isotherms are nearly horizontal in the centre,
preventing any vertical motion there (see w-velocity
plots in Fig. 3).

Increasing Ra to 108, causes the secondary vortices
to move closer towards the walls and are convected
further downstream. A third vortex appears in the
centre of the section, again rotating clockwise. This is
surprising, as one would expect thislast vortex torotate
counterclockwise, to reduce the shear between the
other two vortices. Mallinson and de Vahl Davis [22]
attribute this to the presence of a small positive
temperature gradient in the centre. Viscous diffusion
between the secondary vortices dissipates any
counterclockwise vortices that might appear. Heat
transfer is now mostly by convection in the rapidly
moving fluid near the walls. The boundary layers
adjacent to the vertical walls have become thin and fast.
In the central region the vertical stratification in the
temperature distribution, shown in Fig. 6 with
increasing values from the bottom to the top of the
cavity, prevents any vertical motion as confirmed by the
w-plots in Fig. 4. In general, as Ra is increased w tends
to become comparatively small outside the vertical
boundary layers, and is virtually zero over the central
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762

60%, of the cavity widthat Ra = 10%. The maximumand
minimum w values for each profile are strongly affected
by the Ranumber asshownin Table 1. In this table(and
also in Table 2) the velocities are normalized using D as
a scale factor for length and D?/x as a scale factor for
time. The results obtained for Ra = 10° were identical
whether the (k ~ &) model was used or not, due to
virtually zero k generation.

As the Ralyeigh number increases from 10° to 105,
the secondary vortices generated in the central core,
are convected further upstream and closer to the
differentially heated walls. The central vortex has now
diffused into the other two vortices which become a
dominant feature of the flow. The boundary layers on
the heated walls are now very thin. At the upstream
corner of each boundary layer, the low momentum
outer layer is absorbed by the adjacent vortex, while
the rest of the boundary layer follows the adiabatic
wall under the action of the secondary vortices.

For Ra = 10'° the central vortex reappears [Fig.
5(f)] and the other two vortices are shifted closer to the
walls and get thinner and elongated. As Ra increases
further, the vortex system becomes progressively
weaker and eventually (Ra = 10'%) disappears com-
pletely. High velocities now only occur within the thin
boundary layers, and the flow in the central core is
stratified. The streamline patterns of Fig. 5(h) show this
feature very clearly. Recirculation now only exists
within the isothermal layers of fluid and the sense of
rotation alternates between adjacent layers.

The accompanying temperature maps, for Ra = 108
and 10'° show the temperature range in the core
diminishing, from between 289 and 297 K to 291 and
295 K. A steep temperature gradient accompanies the
location of the secondary vortices. The horizontal
extent and magnitude of this gradient determines the
extent and strength of the vortices described earlier.
The negative temperature gradient in the central vortex
is observed. For high Ra, the T-profiles have a very
steep slope within the thermal boundary layers; and
this becomes steeper as Ra increases. Qutside the
boundary layers the T-profiles are almost horizontal
and temperature increases with z.

Surprisingly, as the Rayleigh number increases even
further, the temperature range in the core increases
again, to between 288 and 298 K (Ra = 10'?}and finally
to 287 and 299 K at Ra = 10'®. This is due to weak
interchange of heat and momentum between adjacent
fluid layers as the flow becomes increasingly stratified.
At the same time, the temperature gradient in the
horizontal direction diminishes to zero. This is to be
expected, since now the walls are ‘too far away’ to have
any influence in the core (Ra oc D3, while § oc D™¥4),

Figures 7and 8 show horizontal and vertical velocity
contours at various Ra numbers. For Rayleigh
numbers up to 10° these contours are normalized, but
not for the higher ones. The main observations
discussed so far can also be inferred from these figures,
i.e. the location and thickness of the boundary layers
and the location of reverse flow regions accompanying

Table 1. Summary of the important quantities
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Table 2. Comparison of the two solutions
Ra
10° 10* 10° 108

1 2 1 2 1 2 1 2
Ummax 3.544 3.649 16.18 16.178 3573 34.73 68.81 64.63
z 0.832 0.813 0.832 0.823 0.857 0.855 0.872 0.850
Winax 3.593 3.697 19.44 19.617 69.08 68.59 221.8 217.36
y 0.168 0.178 0.113 0.119 0.067 0.066 0.0375 0.0379
Nu 1.108 1.118 2.201 2.243 4430 4.519 8.754 8.799
Nty 1.496 1.505 3482 3.528 7.626 7.717 17.872 17.925
z 0.0825 0.092 0.1425 0.143 0.0825 0.081 0.0375 0.0378
Nu,,;, 0.720 0.692 0.643 0.586 0.824 0.729 1.232 0.989
z 0.9925 1.0 0.9925 1.0 0.9925 1.0 0.9925 1.0

Note: (1) Present solution ; (2) de Vahl Davis’ solution [3].

the secondary vortices. The vertical velocity maximum
moves closer to the hot wall as the Rayleigh number
increases, and it is close to the centre of the hot wall for
Rayleigh numbers up to 10° (see also Table 1). The
maximum horizontal component also moves closer to
the hot wall as the Rayleigh number increases, and is
shifted upwards.

Figure 9 shows the resulting velocity fields. The
boundary layer profiles and the diminishing velocity
field in the centre are clearly seen. An enlarged view of
the central portion of Fig. 9(d) (indicated by the dotted
line) shows clearly the presence and direction of the
three secondary vortices (Fig. 10).

Figure 11 presents boundary layer velocity profiles at
the *hot’ wall for Ra = 10!2, at various Z-locations. The
boundary layer gets progressively thicker as we move
from the bottom (IZ = 15, Z = 0.0075) up to z = 0.5.
Further up, Z = 0.795, negative flow is observed at the
edge of the boundary layer, which is now thinner. The
reason for this was explained earlier in connection with
the presence of the secondary vortices. The boundary
layer at Z=0.9925 has almost disappeared as it
approaches separation at the top corner. Inspection of
the detailed results indicates that both velocity
components are indeed negative at that corner. The
velocity profiles within the boundary layers are not

logarithmic in nature (neglecting the near-wall points
where a logarithmic profile was imposed by the use of
the ‘wall functions’). This is in agreement with the
results of George and Capp [27].

Figure 12 presents w-velocity profiles within the
narrow boundary layer near to the hot wall, for Ra
= 10'° with two different scaling factors. Three profiles
are presented at three horizontal stations, z/D = 0.25,
0.50 and 0.75. Figure 13 presents the same information
for Ra = 1012,

The important quantities for the problem con-
sidered, e.g. the Nusselt numbers and the maximum
velocities are summarized in Table 1. The table shows
the calculated Nusselt numbers at the ‘hot’ wall.

The maximum and minimum values are given in the
table, together with the Nusselt number at § = y/D
= (.5. The same table, contains values of the maximum
vertical velocity component on the horizontal mid-line
and its location, the maximum horizontal velocity on
the vertical mid-line and its location and the maximum
horizontal and vertical velocities over the whole
domain and their location.

The heat transfer coefficient is seen to increase with
Rayleigh number, as convection becomes dominant,
but not as fast as the flow. Thus, passing from Ra = 103
to 106 leads to an increase of w,,, from 3.59 to 221.8;

Table 3. Comparison of present and experimental correlations (arrows indicate range of validity of
equations used)

Nu (laminar)

Nu (turbulent)

log Ra  Equation (12) Equation (20) A%, Equation (14) Equation (21) A%
3 1.128 1.102 +24 — - —

4 2.246 1.960 N +14.6 1.698 1.546 +9.8

5 4470 3485 +283 3621 3329 hes

6 - - — 7.723 7.167 +7.2

. B B SETA RS ROTSINEE +52

10 — — — 1599 155.0 +31

12 — — — 727.5 720.0 +1.0
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FiG. 7. Horizontal velocity (v) contours : (a) Ra = 10° contoursat —3.55(0.711)3.55;(b) Ra = 10*,contoursat
—16(3.2)16;(c) Ra = 10°,contours at —43(8.62)43;(d) Ra = 10°,contoursat — 117.88(23.58) 117.88;(¢) Ra
= 108, contours at +0.005,0.01,0.02, 0.03,0.04,0.05;(f) Ra = 10, contours at +0.01,0.025,0.05,0.075.0.1.

but the maximum Nusselt number increases only from
1.496 to 17.87, despite the passage from diffusion-
dominated to convection-dominated transfer, as
revealed by the configuration of the isotherms.

The maximum Nusselt number occurs at the bottom
of the cavity and the minimum at the top.

The results for Rayleigh numbers up to 10° are
compared with the benchmark solution provided in ref.
[3] which can be considered as accurate. The
qualitative agreement of the presented plots of stream
function, temperature and velocity maps with those of
the benchmark solution is very good. Quantitative

comparisonis provided by the Nusselt numbers and the
maximum velocity values in Table 2. Agreement is
generally good. Differences exist in the minimum
Nusselt number, particularly at Ra = 10°. Although
the agreement of the maximum and centre-line Nusselt
numbers is better than 1.5% over the whole Ra range,
the present predictions indicate a higher minimum
Nusselt number than the benchmark solution.
Numerical errors and the first-order differencing
scheme used in this work do not account for the
observed differences, since the results are practically
grid independent. However, there are two other
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F1G. 8. Vertical velocity {w) contours : (a) Ra = 103, contours at — 3.555(0.711)3.555; (b) Ra = 10%, contours at
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(43.47)217.38 ;(e) Ra = 10%, contours at +0.0075,0.0125,0.02,0.03,0.04,0.05,0.06 ;(f) Ra = 10'°,—— >0,
---- <0, contours at +0.01,0.025, 0.05, 0.075,0.1,0.15;(g) Ra = 10!, contours at +0.01, 0.025,0.03, 0.1,0.2.
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FiG. 11. Boundary layer velocity profiles at Ra = 10'%, ‘hot” wall.

differences between the procedures, namely the
elimination of the Boussinesq assumption in the
present work and the implied use of the linear velocity
profile between wall and near-wall points, in the shear-
stress calculation. The latter should not account for any
difference either, provided that the benchmark solution
has properly computed the wall shear-stresses.

The computations were repeated by using the
Boussinesq approximation. Minor differences were
observed for Ra = 10° and 10%, with a maximum of 1%,
For Ra = 10° and 10° the differences were up to 3.7%;
the minimum Nusselt number being 0.804 at Ra = 10°
and 1.188 at Ru = 105 The large errors in the
calculation of the minimum Nusselt number appear to
be due to the sensitivity of its calculation. Suppose for
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F16. 12. w-Velocity profiles within boundary layer, Ra = 101¢
(two scaling factors}. Three horizontal stations at: (1) z/D
=0.25:42) z/D = 0.50;(3) z/D = 0.75.
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example that at Ra = 10° the solution predicts a near-
wall maximum temperature of 302.81 K instead of the
correct value of, say, 302.84 K. This represents a very
accurate temperature prediction with an error of less
than 0.019; (well within the convergence criterion used,
see Section 5). For a wall temperature of 303 K, the
application of a one-sided formula for calculating a
temperature gradient at the wall, would lead to a Nu,,,
which for the present grid spacing would be 1.267
instead of 1.067, e.g. in error by 19%,. The same is not
true in the case of Nu,,,. Thus the same accuracy in
temperature (say 300.43 K instead of 300.4 K) leads to
Nugox = 17.13instead of 17.33,e.g. in error by only 1%,
Therefore, despite the large errors at Ra = 10° in the
derived quantities, it is suggested that the present
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F1G. 13. w-Velocity profiles within boundary layer, Ra = 102
{(two scaling factors). Three horizontal stations at: (1) z/D
=0.25;(2) z/D = 0.50: (3} z/D = 0.75.
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solution may still be about 1% accurate in terms of the
computed primitive variables.

Direct comparisons are not possible for the
turbulence runs, due to the scarcity of experimentai
evidence. However, the use of the k ~ ¢ model in other
related work (e.g. buoyant turbulent flow in buildings)
has led to favourable comparisons with experiment
[15].

Furthermore, the presented solutions certainly show
some of the features that are observed experimentally
(position of vortices and their shifting with increasing
Ra number, thermal stratification, etc.) and indicate,
qualitatively at least, the correct change in flow
structure as Ra increases.

Finally, the correlations of the present results given
below are in good agreement with well-known
correlations derived from a large number of
experiments for Raup to 108 [23],and appear to extend
the validity of those correlations up to Ra = 10'2. For
higher Ra a set of new correlations is proposed.

4.1. Derived Nu ~ Ra correlations
The following correlations for maximum, minimum
and average Nusselt numbers were derived from the
present predictions by least-square linear regression.
Laminar (10* < Ra < 10°)

Nuy,; = Nu = 0.143Rg%-299;
Numax = 0.130Ra0'356.

(12)
(13)

The minimum Nu is not given as the log Nu vs log Ra
curve is not a straight line.
Turbulent (10° < Ra < 10'2)

Nu = 0.082Ra%329; (14)

Nu,,, = 0.057Ra®37°; (15)
Ny, = 0.016Ra%315. (16)
Turbulent (1012 < Ra < 10'%)
Nu = 1.325Ra%2%5; (17
Nu,,,. = 0.34Ra®31¢; (18)
Nty = 0.137Ra%233, (19)

4.2. Comparison with experimental correlations
The above correlations are compared with the
following experimental ones in Table 3 [23]:

laminar

o LN\-1/9
Nu = 0.196Ra”“<—5>

(28 x10° < Ra < 2.8 x 10%); (20)
turbulent
. L -1/9
Nu = 0.072Ra'’® <5>
(2.8 x10* < Ra < 1.55x107); (21)

where L/D is the cavity aspect ratio.

N. C. MarkaTos and K. A. PericLEOUS

It can be seen that extrapolation of the experimental
turbulence correlation up to Rayleigh numbers of 10'2
is in good agreement with the present predictions,
despite the fact that the former is applicable to cavities
of aspect ratios between 3 and 42. The aspect-ratio
effect explains the relatively large differences observed
for the lower Ra numbers, and the closer agreement
obtained for higher Ra numbers ; the effect of aspect

ratio diminishes ag Rg increases

The switch in the exponent of the Rayleigh number
for the correlations for Ra > 10'? was introduced
simply by requiring a zero error from the least-square
linear regression. Experimental evidence, however
limited, indicates an exponent of 1/3. If the exponent of
Rais assumed to be 1/3, then the best correlation of the
present results over the whole of the turbulent range
gives

Nu = 0.060Ra!’3. (22)

The above correlation gives higher values than those
obtained by MacGregor and Emery (Nu = 0.046Ra'/3)

[28] and by Cowan et al. (Nu = 0.043 Ra'/3) [26].
However, the former [28] refers to cavities of aspect
ratio 10-40 with constant heat flux boundary
conditions at the hot face, and isothermal cold face and
the latter [26] refers to water and to Ranumbers up to 2
x 1011,

5. CONVERGENCE AND COMPUTER TIME

A converged solution was defined as one that met the
following criterion for all dependent variables

max |¢p"t ! —¢"| < 1074,

between sweeps n and n+1. At this stage mass
continuity errors per slab were of the order of 10~ # and
therefore insignificant. Further sweeps of the solution
domain confirmed no changes and were actually
pointless since the accuracy limit of the computer was
approached. The sum of the absolute volumetric error
over the whole field was again insignificant, at 10”°,

Convergence was found to be affected by the
Rayleigh number. Hence, the high Rayleigh number
cases required more sweeps than the low ones. To
improve convergence, a false time-step relaxation was
used. This was reduced by an order of magnitude, from
0.1t0 0.01 for both velocities, for Ra > 10%,and to 0.001
for Ra > 10!°. This is to be expected since this
relaxation factor is proportional to the fluid residence
time in a typical cell; and it is therefore appropriate
to reduce it as the velocity in the boundary layers in-
creases with Rayleigh number.

To economize on run-times each Rayleigh number
case was restarted from the previous one (starting with
Ra = 10%) and 200 sweeps were found adequate for
convergence. The domain dimension D was the
parameter adjusted to get the required Rayleigh
number value.
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FIG. 14. Velocity comparison (Ra = 10°) for 40 x 40 and 80 x 80 solutions.

A 100-sweep run required 11 min CPU time on the
Perkin-Elmer 3220 mini-computer, for the 30
x 30grid, and 15minfor a40 x 40 grid. The above mini-
computer is several times slower than mainframe
machines. In general, the time per finite-domain cell,
per sweep, per variable was 1.5x 1073 s CPU on the
Perkin-Elmer machine. A full run at Ra = 104
using a 60 x 60 grid would require 300 sweeps and take
2.5h on the mini-computer for solving the six equations
(v,w,p,k,e, T).

It is not an easy matter to compare the above
reported CPU times with those of other methods in the
literature, because of different computers used and
different practices in reporting these times.

However, it appears to the authors after their survey
that the present computer-time requirements are
modest, and possibly an order of magnitude less than
those reported in the literature for the same cases. If
true, this is certainly due to the speed of the SIMPLEST
algorithm and the associated whole-field pressure
solver, coupled with the thorough optimization of
FORTRAN arithmetic and the very orderly bookkeep-
ing in the software, embodying the solution procedure.

6. GRID DEPENDENCE AND COMPUTER STORAGE

Initial investigations were performed on a uniform
30 x 30 grid. This was found to be adequate for Ra
= 103, but not for higher values. An improved 30 x 30
grid was then used, with closer spacing near the walls
(Fig. 1), to increase boundary layer resolution.

This grid was used for all Rayleigh number cases up
to Ra = 10° and the results were stored.

To check grid dependency, the grid was further
refined to 40 x 40 by adding intermediate cells in the
central region. All cases (up to Ra = 10°) were re-run
restarting from interpolation of the 30 x 30 results, for
another 100 sweeps. In their bulk, the results showed
little change, although the secondary vortices at Ra
= 10° and 10° were, as expected, better resolved. The
maximum velocity increased by 5% in the Ra = 10°
case, and these are the results presented in this paper.

The grid was refined again to 80 x 80 by halving all
cells and the Ra = 10° case was run for another 300
sweeps. Very minor changes were observed, asshown in
Fig. 14, for the velocity profile inside the hot wall
boundary layer. The maximum velocity increased by
0.4%, in the Ra = 10° case. The same observations
apply also to the temperature-field changes with grid
refinement. It is concluded that the results up to Ra
= 10° are practically grid-independent.

For the turbulent cases care was taken to place 10-15
grid cells inside the wall boundary layers. The thickness
of these layers is given by 6/D = 4.86Ra™'/* for Pr
= 0.71. Care was also taken to concentrate several of
these 1015 points between the velocity peaks and the
wall, and to place the first grid point very close to the
wall (y/D = 1x 107 for the high Ra numbers, y*
varying between 1 and 12 along the hot wall). The above
considerations are very important for treating the
boundary layers in accordance with the essential
physics, since in the wall region temperature gradients
are most severe and hence provide an important source
of vorticity. If the first grid point is too far from the wall
then the results will be grossly distorted by this effect.
Three grids were used, (y, z) = 40 x 80,60 x 120and 100
x 160. Practically grid-independent results seemed to
be obtained using a grid of (y,z) = 60x 120 for all
Ra > 10%; the 100 x 160 grid leading to a maximum
further change of 1.2 for the maximum velocities and
1.5% for temperature. For Ra > 10'# the resulting grid
cells in the core were thought to be too ill-conditioned
(aspect ratio of up to 10:1) for sufficient accuracy.
However, the flow in the core for these high Ranumbers
is nearly stagnant and the cell aspect-ratio effect
appears not to be important, as was indicated by
repeating the runs with half the above ratios.

The program required 90 K-words; of these, 35 K-
words were required for data storage (30 x 30 grid).

7. CONCLUSIONS

The problem considered represents a 2-D approxi-
mation to a series of practical problems. The study
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demonstrated that numerical solutions can be obtained
quickly and economically for such problems, where
buoyancy effects are dominant.

Accurate results were obtained at both ends of the
Rayleigh number scale, at least for the laminar range,
indicating that both diffusion-only or convection-only
heat transfer problems can be tackled with ease. The
results were presented in graphical and tabular form,
and as correlations between the Nusselt and Rayleigh
numbers.

The main points of the present method can be
summarized as follows: (a) the model consists of the
coupled differential elliptic equations which are solved
over the entire flow domain, with no assumption
concerning the core configuration ; (b) the procedure is
strongly convergent and results were easily obtained
evenat Rayleigh numbers as high as 1019 ;(c) practically
grid independent results were obtained with only
modest computer storage and CPU time requirements.
Indeed, a survey revealed that the present method may
be up to an order of magnitude faster than other
available procedures, enabling very fine grid runs to be
performed within practicable resources; (d) the
procedure and associated computer program are
general and can be used immediately for 3-D natural
convection problems in cavities of any aspect ratio and
orientation, and fluids of any Prandtl number. It is
therefore immediately applicable to all related practical
problems ; (e) the speculative use of the (k ~ ¢) model in
this work has indicated that, despite its well-known
deficiencies in terms of physical realism, it may still lead
to a reasonable prediction of the overall flow structure
of the problems considered; (f) apart from the
uncertainty connected with the (k ~ &) model itself
another source of uncertainty is provided by the ‘wall-
functions’. More work is required to establish more
realistic ‘wall-functions’ for buoyancy-dominated
flows. Once established, it is a very simple matter to
incorporate in the present model.

Although only time-averaged steady-state results
have been presented, the procedure can also be used in
its in-built transient mode. Also radiation and variable
property effects, that have been neglected in the present
study, must be included to investigate their im-
portance at high Rayleigh numbers. Finally, much
more experimental work is required for high Ra
numbers to provide data for improving and validating
the computer models.
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APPENDIX
THE WALL BOUNDARY CONDITIONS

The treatment of wall boundary conditions for turbulent
buoyant flows presents a source of uncertainty in the present
work. It is therefore worthwhile describing briefly what was
done. *Wall functions’ were used for both the laminar and
turbulent calculations. In the laminar cases this simply meant
that the wall shear stress was evaluated from the presumption
of a linear velocity variation between the calculated near-wall
value and the zero wall value.

The shear stress calculated in this way was thenincluded asa
source term for the velocity component parallel to the wall.
For the turbulent calculations, the Reynolds number for the
near-wall point was first evaluated. If this was less than 132.25
(y* = 11.5, the value at which the laminar and turbulent wall-

functions intersect) the above laminar wall-function was also
used. If the Reynolds number was greater than 132.25, the
presumed velocity variation was logarithmic, and the
corresponding shear-stress coefficient was evaluated. Both k
and ¢ were fixed at the near-wall grid nodes at the values which
would prevail there ifindeed the universal logarithmic velocity
profile prevailed. The wall heat transfer rate was evaluated
from the Chilton—Colburn form of the Reynolds analogy, in
which the Stanton number (St) is related to the friction
coefficient (Cy) as follows:

St =Cy Pro?3, (A1)

where C;isrelated to the wall shear stress (z,,) and the parallel-
to-wall velocity |w| as follows:

Cr = u/(p IW?). (A2)

The heat transfer rate per unit area at the wall (¢},) is then
deduced from:

du = St pw|C(T,—T,), (A3)

where T,is the temperature at the grid node in question,and T,,
the temperature at the wall.

It is realized that the wall functions may be influenced
considerably by temperature variations, and indeed that the
logarithmic form used is probably not appropriate since
buoyancy effects are ignored in the log layer. A better wall
function could be based on either the Monin—Obukov log-
linear profile [29], or on the cube root profiles of George and
Capp [27].

CONVECTION LAMINAIRE ET TURBULENTE DANS UNE CAVITE FERMEE

Résumé---On présente une méthode numérique pour obtenir des solutions d’écoulement naturel et de transfert
de chaleur dans une cavité carrée avec des parois latérales chauffées différemment. On étudie un domaine de
nombres de Rayleigh entre 10 et 10°. On utilise une différenciation de cellules donatrices et des études de
maillage sont développées pour tous les nombres de Rayleigh considérés. Le modéle de turbulence utilisé pour
les nombres de Rayleigh supérieurs 4 10° est un modéle (k—¢) 4 deux équations qui inclut les interactions
gravité-gradient de masse volumique. Les résultats sont présentés sous forme de tables et de graphiques et de
formules de nombres de Nusselt et de Rayleigh. En outre, les résultats de nombres de Rayleigh jusqu'a 10° sont
comparés avec la solution numérique de Vahl Davis.

LAMINARE UND TURBULENTE FREIE KONVEKTION IN EINEM GESCHLOSSENEN
HOHLRAUM

Zusammenfassung—Es wird eine Berechnungsmethode beschrieben, die dazu dient, Losungen fiir die
laminare und turbulente, von Auftriebskriften bestimmte Strdmung und den Wirmeiibergang in einem
Hohlraum mit quadratischem Querschnitt und unterschiedlich beheizten Seitenwinden zu erhalten. Die
Rayleigh-Zahl wurde im Bereich von 10° bis 10 variiert. Es werden “donor-cell”-Differenzen verwendet.
Einfliisse der Gitterverfeinerung wurden bei allen betrachteten Rayleigh-Zahlen untersucht. Als
Turbulenzmodell fiir Rayleigh-Zahlen groBer 10 wurde ein (k ~ g)-Modell verwendet, welches
Wechselwirkungen zwischen Schwerkraft und Dichtegradienten beriicksichtigt. Die Ergebnisse werden in
tabellarischer und grafischer Form und als Korrelationen von Nusselt- und Rayleigh-Zahlen dargestellt. Die
Ergebnisse fiir Rayleigh-Zahlen bis 10° werden mit den Referenz-Losungen von de Vahl Davis verglichen.
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JJAMMUHAPHAS U TYPBVYJIEHTHAS ECTECTBEHHAS KOHBEKLIHUA
B 3AMKHYTOH MOJIOCTH

AnnoTama—ONHCLIBAETC YUCIEHHDBIH METOI PEILEHHS 3a1a4 CcBOOOIHOKOHBEKTHBHOTO JIaMHHAPHOTO
H TYpOYJEHTHOTO TedeHHs H TEIIONEPeHOCa B KBAJAPATHOH MOJOCTH C GOKOBBIMH CTEHKaMY,
HarpeThHIMH [0 pa3HO# TemnepaTypsl. MccnefoBaHHs NPOBOAMAHCL B JMana3’OHE 3HAYCHMHA yMCIa
Penes ot 10° no 10'°. TIpH mOCTPOEHMH Pa3HOCTHOH CXeMBl HCMOJIB30BaHbI AOHOPCKHE AHEHKH.
JIns Bcex paccMaTpHBaeMbIX 3HaUeHHH uKcaa Peaes npoBOANIKCh HCCIENOBAHUS BIIMAHHS H3MEIIBYCHAA
CETKH Ha pelucHue. IIpH 3HaueHmsx yucna Penes, npesbiwaroumx 10, ucnosnbsoanace aByxnapa-
MeTpHueckas (k ~ &) Mopmens TypOYJIeHTHOCTH, YYHTRIBAIOIIAS B3AMMOJCHCTBHE MEXY CHIION
TAKECTH H TpaJHEHTOM I[UIOTHOCTH. Pe3yiabTaThl NMpeAcTaBicHbl B BHAE Tabnuu u rpadukos, a
Takxke B Buae oOOOIIEHHBbIX 3aBMcHMOcTeit Mexay uuciaamu Hyccenbta u Penes. Kpome Toro,
NpoBEEHO CPABHEHHE DE3YNILTATOB, NMOJIYYEHHLIX NPH 4Hcaax Pened, MeHbLiux 108, ¢ 4HC/IeHHBIM
pewienueM ne Baanw [laBuca.



