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Abstract—A high-resolution, finite difference numerical study is reported on three-dimensional steady-
state natural convection of air, for the Rayleigh number range 10° < Ra < 10%, in a cubical enclosure,
which is heated differentially at two vertical side walls. The details of the three-dimensional flow and
thermal characteristics are described. Extensive use is made of state-of-the-art numerical flow visualizations.
The existence of the transverse z-component velocity, although small in magnitude, is clearly shown.
Comparison of the present three-dimensional results with the two-dimensional solutions is conducted. The
three-dimensional data demonstrate reasonable agreement with the experimental measurements.

INTRODUCTION

NATURAL convection flow analysis in enclosures has
many thermal engineering applications, such as
cooling of electronic devices, energy storage systems
and compartment fires. In the present paper, a
numerical study is reported on steady-state three-
dimensional natural convection in an air-filled cubical
enclosure, which is heated differentially at two vertical
side walls. As shown in Fig. 1, the temperature of the
right vertical side wall (at x = L,) is Ty, and that of
the left side wall (x = 0) is T, where Ty > T¢. The
remaining four walls are thermally insulated. The pre-
sent geometry and the boundary conditions are math-
ematically well posed and they provide a basic model
for relevant thermal engineering systems.

Two-dimensional numerical analyses for a square
cavity filled with air have been carried out in the past
over a wide range of Rayleigh numbers. Results for
10° < Ra < 10° were presented in Markatos and Per-
icleous [1]. The laminar flow regime was assumed up
to the Rayleigh number of 10°, and for higher Ray-
leigh numbers, the k—¢ turbulence model was used.
For 10° < Ra < 10° and a Boussinesq fluid of
Pr = 0.71, a set of benchmark solutions has been sug-
gested by de Vahl Davis [2]. By resorting to systematic
grid refinement practise and by concurrent use of the
Richardson extrapolation to obtain grid-independent
data, these solutions were claimed to be within an
accuracy of 1%.

In order to simulate practical situations, three-
dimensional flow calculations are highly desirable.

I Author to whom all correspondence should be addressed.

Three-dimensional laminar flows have been studied
for enclosures of the depth aspect ratio, 4., varying
from 2 to 4 [3, 4]. Gross features observed in the
enclosures revealed highly three-dimensional struc-
tures of the flow. The enclosures with 4, =1 and 2
were considered in Lankhorst and Hoogendoorn [5];
they were computed for three Rayleigh numbers:
Ra = 10°, 4 x10®% and 10'°, In the last two cases, the
k—¢ turbulence model was employed. However, it is
emphasized that these previous calculations were
executed by using relatively coarse finite difference
meshes, of up to 45 x 45 x 20.

The present investigation is implemented on a much
finer mesh system with a view toward delineating
steady-state three-dimensional structures of the fields
with sufficient resolution. The numerical resolution in
the present three-dimensional calculations is com-
parable to the highest one among the preceding two-
dimensional results [2]. The Rayleigh number ranges
from 10° to 10°. The Prandtl number of the fluid is
held fixed at 0.71. Comprehensive details of the flow
and temperature fields are presented by displaying
elaborate three-dimensional color graphics and
illustrative field quantities. By inspecting these results
of the realistic three-dimensional calculations, the
validity of the prior two-dimensional results can be
also assessed.

The majority of the past experimental works have
studied high aspect ratio enclosures (e.g. 4 = 5), but
relatively little research endeavor has been devoted to
the cases of small aspect ratio cavities [6-11]. In most
of these experimental investigations, care was taken
to justify the two-dimensional approximation. Depth
aspect ratios, 4_, greater than 5 were adopted in refs.
[6-8] in an effort to minimize the end effect of the finite
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NOMENCLATURE

A aspect ratio, (enclosure height/width) Ty reference temperature, (7 + 7,,)/2
A depth aspect ratio, (enclosure 1., Ty cooled and heated side wall

depth/width) temperatures
¢, specific heat at constant pressure iy reference velocity, [g*f* L (T, —T)]'°
Fr Froude number, uj/g*L, u, v, w  velocity components in the x-. y- and
g gravitational acceleration =-directions
k thermal conductivity x.p. 2 Cartesian coordinates. :
Ly reference length (enclosure height)
p pressurc Greck symbols
Po reference pressure (hydrostatic pressure) I thermal expansion coeflicient
Pr Prandtl number, ¢ u*/k* ) overheat ratio, (T, — T )/ 7T,
Ra Rayleigh number, I viscosity

GERECEPF LTy — Te)jpu*k* P density.
Re Reynolds number, p*u,L,/u*
t time Superscript ’
T temperature * dimensional quantities. 1‘

|

enclosure. By using a Mach-Zchnder interferometer
technique, Bajorek and Lloyd [6] visualized the tcm-
perature field in square enclosures, with and without
partitions, for 1.7 x10° < Re < 3x 10°. The media
considered were air and carbon dioxide gas. Laser
Doppler velocity measurements in the identical
geometry were conducted in ref. [7] for air at Rayleigh
numbers of 10° and 10°. The samec measurement
techniques were utilized by Krane and Jessee [8], who
acquired both velocity and temperature distributions
at Ra = 1.89 x 10° and for air.

In actual experiments, it is nearly impossible to
perfectly insulate the surfaces, especially when air is
chosen as the medium. Heat transfer from the sup-
posedly adiabatic walls is unavoidable. The effects of
conducting horizontal walls have been of considerable
interest. The behavior of steady periodic oscillations
in the flow field was the subject of the experimental
work by Briggs and Jones [9] with a cubical enclosure
having a linear temperature profile on the horizontal

Ty atx*=1L,

FiG. |. The flow geometry in a cube of length L. The solid
walls are thermally insulated, except for x* = 0 and L, as
noted.

walls. Bohn er af. [10] constructed a water-filled cube
with isothermal walls, and the combined effects of the
side and bottom heating on the heat transfer rate for
water were studied.

A recent investigation [11] was conducted in a
differentially heated cubical enclosure (the geometry
of present interest) for a high Prandtl number fluid
(Pr = 6000). Visualization experiments with liquid
crystal tracers suspended in mixtures of glycerol and
water were made for 10* < Ra < 2x 107 ; the Ray-
leigh number range overlaps that of the present analy-
sis. The streamline patterns were compared with the
parallel numerical results executed on a finite differ-
cnce mesh system of 31°. Global features were in
agrecment, although the changes in the structure
of the streamlines occurred at different Rayleigh
numbers between the measurements and the
computations.

The primary impetus of the present work is to por-
tray the details of the three-dimensional local charac-
teristics of the fields. Given the fact that any realistic
laboratory experiment is three-dimensional in naturc.
the two-dimensional numerical simulations to datc
have been unable to fully describe the salient features
associated with the real systems. As mentioned earlier,
the existing three-dimensional numerical simulations
arc still in a rudimentary stage. The existing numerical
studies have. by and large, suffered from insufficient
resolution; the prominent characteristics of com-
plicated three-dimensional situations have not been
described in sufficient depth. In particular, at high
Raylcigh numbers, greatly enhanced numerical capa-
bilities are essential to depict the significant dynamic
features in thin boundary layers.

In the present study, a massive utilization of the
state-of-the-art computational resources has been
made. The vastly expanded hardware capabilities.
together with such advanced computational tech-
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niques, will enable us to implement the three-dimen-
sional numerical simulations of the flow and heat
transfer properties in the enclosure. These numerical
results will allow proper verification of the exper-
imental observations. It is also noteworthy that, by
cross-checking the results, the extent of the applic-
ability of the earlier two-dimensional results to actual
three-dimensional systems will be illuminated.

MATHEMATICAL MODEL

The flow field is described by the incompressible
Navier—Stokes equations and the energy equation.
The Boussinesq approximation is invoked for the fluid
properties. The non-dimensionalized form of the
governing equations can be expressed in tensor
notation as

ou;
6‘)@- =0 (1)
6u op 1 % T—l
o (u ) = Re 0x,0x; +onp, @
8T 1 0T
0t (u n= Re Pr 0x,0x; @

where §,, is the Kronecker delta (5, =1 if i = j, and
8, = 0 otherwise). The viscous dissipation and the
pressure work terms are neglected in the energy equa-
tion.

The physical quantities are non-dimensionalized in
the following manner :

(xsy5 Z) = (X*vy*9 Z*)/L09

= t*up/Lo,

(W*, v*, w¥) u,,

=T*/T,

(u,v,w) =

= (p*—po)/p*us,

where an asterisk (*) denotes dimensional values. The
reference scales for length, velocity, pressure and tem-
perature are the enclosure height (L,), the convective
velocity (1, = [g*B*Lo(Ty—Tc)]"?), the hydro-
static pressure (p,) and the film temperature
(Ty = (Te+ Ty)/2), respectively. In the present non-
dimensionalization, the Rayleigh, Prandtl and Reyn-
olds numbers are related as Ra = Re® Pr. The Prandtl
number is held fixed at 0.71 for air in the present
study.
The boundary conditions are

u=v=w=0 onall the walls 4)
=(2-9)2atx=0, T=02+§2atx=1,
and éT/on=0aty=0,landz =0, 1 (5)

where n indicates the coordinate normal to the surface.
The overheat ratio, 4, is set equal to 0.1 in the present
analysis.

SOLUTION METHOD

A discretized form of the governing equations (1)-
(3) is secured by a control-volume based finite differ-
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ence procedure. Numerical solutions are acquired by
an iterative method, together with the pressure cor-
rection algorithm, SIMPLE [12]. The present tech-
nique employs the Strongly Implicit Scheme (SIP)
[13] to accelerate convergence characteristics of the
solutions. SIP is applied to the planes of constant z
in order to determine simultaneously the dependent
variables in the x- and y-directions on each plane.

The convection terms in the momentum equation
(2) are treated by the QUICK methodology [14, 15].
The QUICK scheme involves a third-order accurate
upwind differencing, which possesses the stability of
the first-order upwind formula and is free from sub-
stantial numerical diffusion experienced with the usual
first-order techniques. In the present numerical pro-
cedure, a non-uniform grid version is adopted. The
convection terms in the energy equation (3) are dealt
with by a hybrid scheme [12].

The entire enclosure constitutes the full com-
putational domain. The number of grid points for
computations is 62 x 62 x 62, except for the case of
Ra = 10%, in which a 32 x 32 x 32 mesh network is
chosen. Variable grid spacing is introduced to resolve
steep gradients of the velocity and the temperature
near the walls. The configuration of non-uniform grid
systems is determined with the aid of parallel two-
dimensional computations. The predictions of these
two-dimensional computations have been satis-
factorily compared with the benchmark solutions of
de Vahl Davis [2]. The mesh distribution was altered
systematically until the differences in the maximum
velocity and the average Nusselt number at the iso-
thermal walls fell less than 3 and 1.5%, respectively,
of the reference data [2] at Ra = 10°. Differences of
less than 1% were achieved for the lower Rayleigh
numbers.

The grid independency of the solutions has been con-
firmed at Ra = 10° by a test computation in which the
number of grid points in the x-direction was doubled.
This was done because the maximum gradients of the
fields occur in the x-direction, in particular, within the
boundary layers along the isothermal walls. Changes
in the maximum velocities are approximately 2% as
the number of grid points varied. The variance in the
average Nusselt number at the isothermal walls was
even smailer, i.c. less than 0.2%. When the Rayleigh
number is lower, the differences are anticipated to
decrease further.

Convergence of computations is declared when the
following convergence criterion is satisfied :

|¢n ¢n II

|¢n |mdx1mum

<10 *forall ¢ 6)

where ¢ represents any dependent variable, and
n refers to the value of ¢ at the nth iteration
level.

At each Rayleigh number, the converged solution
for a lower Rayleigh number is used as the initial
guess. In actual computations, transient calculations
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are conducted by an implicit method 1o generate
steady-state solutions.

RESULTS AND DISCUSSION

Steady states were reached for all the Rayleigh num-
bers studied. Computations were performed on a
HITACHI S-820/80 supercomputer system at the
Institute of Computational Fluid Dynamics (ICFD)
in Tokyo, Japan. The system has a maximum CPU
speed of 3 GFLOPS and a maximum incore memory
of 512 MB. A typical computation required CPU time
of 30 min with 600 iterations and 100 MB of memory.
The three-dimensional graphics were produced by an
interactive graphic software [16], which runs on a
FUHTSU VP-200 supercomputer system at the
ICFD.

The global ficld characteristics are examined by
viewing comprehensive three-dimensional contours of
the temperature and flow fields. Results for two Ray-
leigh numbers are inspected in detail in the following
two subsections: Ru = 10 and 10°. The {ormer casc
exemplifies a flow ficld in which the relative import-
ance of convection is generally less significant.
However, the latter case is representative of the flow
structure in which convection is intense such that
distinct boundary layers are discernible near the
isothermal solid walls.

The case of Ra = 10*

The isotherm surfaces are depicted in Fig. 2. The
overall isotherm patterns on the constant z-planes are
qualitatively similar to those of the two-dimensional
flows ; however, three-dimensional variations in the z-
direction are also notable. As previously stated, the
entire flow field constitutes the computational
domain. The right half domainin 0.5 < z < 1 is sym-
metric to the left half (0 < z < 0.5) with respect to the
plane of z = 0.5. In addition, the flow on each con-
stant z-plane is centro-symmetric with respect to the
center of the cavity, (x = 0.5, vy = 0.5). The three-
dimensional variations in the z-direction, although
generally weak in magnitude, are noticed in Fig. 2.

Figure 3 displays isosurfaces of constant velocitics
for each component (u. v and w). As can be inferred
from the knowledge of two-dimensional flows, the x-
component velocity (1), which constitutes the main
flow, is concentrated in the regions near the horizontal
walls (¥ = 0 and 1). Similarly, the p-component vel-
ocity () has large values near the isothermal vertical
walls (x = 0 and 1). Combining these descriptions.
the bulk of the enclosure is occupied principally by a
single cell. As is clear in Figs. 3(a) and (b), the three-
dimensionalities in the main streams (¢ and ¢ ficlds)
are less conspicuous in much of the interior region.
Figure 3(c) illustrates the transverse velocity com-

ponent (w). Note that w is, in general, an order of

magnitude smaller than the dominant main stream
flows (u and ¢). 1t should be pointed out that w van-
ishes at the end walls (2 = 0 and 1) and at the mid-

T. FuseGt er ol

symmetry plane (z = 0.5). The transverse flows, which
are noticeable in the enclosure, are a direct mani-
festation of the three-dimensional nature of the flow.

Another physical variable, which is informative in
depicting the gross flow field characteristics, is the
vorticity. Figure 4 illustrates the absolute value of the
vorticity, which is defined as the magnitude of the
vorticity vector. This figure gives a direct indication
of the velocity gradients. As is clearly demonstrated in
Fig. 4. the gradients of flow are substantial in narrow
regions in the vicinity of the solid boundary walls.
The plots of the isovorticity surfaces also reflect the
existence of a dominant unicellular structure in much
of the enclosure.

The cuse of Ra = 10°

The computed results at this high Rayleigh number
arc characterized by a combination of the distinct
boundary layers near the side walls (v = 0 and 1) and
the almost stagnant interior core. These are clearly
captured in the isotherm surfaces shown in Fig. 5. The
existence of the thin boundary layers on the vertical
isothermal walls, and of the near-lincar temperature
stratification in the interior, is evident. The three-
dimensional variations are noticeable very near the
end walls (z =0 and 1).

The regions of large velocities (1 and ) are now
confined into the areas near the walls. as revealed in
Figs. 6(a) and (b). Notice that. in comparison to the
case of Ru = 10* {(sec Fig. 3). the concentration of
dominant flows is more pronounced and the boundary
layer thickness is smaller at this Rayleigh number,
The c-variations of the flows are appreciable.
especially near the solid walls. In particular, as can be
noted in Fig. 6(¢). strong transverse flows (w) arc
gencrated near the corners. The transverse velocity
component is again {found to be one order of mag-
nitude lower than the dominant velocity components
(1 and r).

The contours of the absolute magnitude of the vor-
ticity, shown in Fig. 7, clearly demonstrate again the
combined structure of the distinct boundary layers
and the necar-stagnant interior core. Three-dimen-
sionalities are prominent only near the end walls : this
is similar to the behavior of the temperature field
discussed carlicr. 1t is noteworthy that areas of weak
vortices ure found in the regions where the isothermal
vertical side walls (x = 0 and 1) abut the adiabatic
vertical end walls (- = 0 and 1). These regions extend
over the entire height of the enclosure. The presence
of these secondary vortices has also been documented
by the numerical simulations of Lankhorst and Hoog-
endoorn [5]. who dealt with an cnclosure of aspect
ratio. 4. of 2.

Heat transfer characteristics

The non-dimensionalized heat transfer rate at the
isothermal walls is represented by the Nusselt
numbers. These quantities are defined as follows:
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FiG. 2. The temperature field at Ra = 10° (contour levels: 0.9667 (purple), 0.9833 (blue), 1.0 (green), 1.017

(vellow), 1.033 (red}).
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FiG. 4. Isosurfaces of the absolute values of the vorticity at Ra = 10* (contour levels: 0.9 (purple),
(blue), 2.7 (green), 3.6 (yellow), 4.5 (red)).
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= 10° (contour levels: 3.6 (purple), 7.2
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F1G. 7. Isosurfaces of the absolute values of the vorticity at Ra
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Fic. 8. Local Nusselt number distributions at the heated wall (x = 1): (a) Ra = 10*; (b) Ra = 10°.

dy

x=0orx=1

(-

i
Nuoverall = J‘ Numean (Z) dz.
0

0 Ox

Nty (2) = f 01.2)

J; Nulocal (ys Z) dy) (7)

®)

Variations of the local Nusselt number at the heated
wall (x =0) are illustrated in Fig. 8 for the cases
of Ra=10* and 10°. At a high Rayleigh number
(Ra = 10°), the Nu,., distribution demonstrates
prominent convection activities. The Nusselt number
changes rapidly in the vertical direction. The z-vari-
ations of Nuy., are apparent only in the areas near
the end walls (z = 0 and ). The symmetric patterns
are obtained for Nu,., at the cooled wall (x = 0, not
shown).

Figure 9 represents the profiles of the mean Nusselt
number along the z-direction at each Rayleigh number
studied. For the Rayleigh numbers smaller than 10°,
the mean Nusselt number increases as the symmetry
plane is approached, and its peak value occurs at
the symmetry plane located at z = 0.5. However, at
Ra = 10°® two minor peaks appear at z = 0.2 and 0.8.
The presence of the intense convective flow in the z-
direction enhances the heat transfer in these regions
at a high Rayleigh number.

The overall Nusselt number is tabulated in Table 1,
and it is also illustrated in Fig. 8. In Table 1, the
deviations from the two-dimensional predictions are
also included. For the Rayleigh numbers smaller than
10°, the overall three-dimensional Nusselt numbers
are found to be appreciably smaller than for the two-
dimensional results. At Ra = 10°, the difference is
considerably small compared with the cases of lower
Rayleigh numbers. This can be explained by noting
that Nugera is almost uniform along the z-direction
until it drops off sharply near the end walls for high
Rayleigh numbers.

Utilizing the above numerical results, heat transfer
correlations over 10° < Ra < 10° for the three-
dimensional enclosure are proposed as

®
(10)

The above cxpressions give a maximum error of
within 1% of the Nusselt number presented in Tables
1 and 2.

Nitean (z = 0.5) = 0.1378 Ra®***
Nuoverall = 0.1307Ra0-304‘

Characteristic field values in the symmetry plane
(z=10.5)

Comparisons of several important field variables in
the symmetry plane (z = 0.5) with the two-dimen-
sional data are attempted in this subsection. These will
test the validity of the two-dimensional assumption,
which has been routinely invoked for numerical stud-
ies. Table 2 reproduces the representative quantities
of the flow field and the heat transfer rates in the
symmetry plane. The differences between the two-
and three-dimensional results are also indicated. The
discrepancies in the local quantities (the peak vel-
ocities and the minimum and maximum Nusselt num-
bers) are as large as 10%, while those in the averaged
quantity (the mean Nusselt number) are within 2%.
In general, the changes are small at Ra = 10°. At
a high Rayleigh number, three-dimensionalities are
insignificant in the bulk of the flow field, except in the
regions near the end walls (z = 0 and 1), as previously
remarked.

Comparison of the numerical predictions with the
experimental measurements

As discussed in the previous section, several exper-
imental studies have been conducted for the differ-
entially heated cubical enclosure. In this subsection,
comparison with the laboratory data is undertaken to
verify the present numerical results. It is to be noted
that, except for one set of measurements [11], en-
closures with large depth aspect ratios (4. > 5) were
usually employed in the experiments; this precludes
precise quantitative comparisons of each set of data.

Figure 10 represents the temperature distribution
in the symmetry plane at Ra = 10°. These numerical
predictions are compared with the experimental data
at Ra =1.89x10° acquired by a Mach-Zehnder
interferometry technique {8]. The temperature profile
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----- s Nitovoras » @ Ntteon (2) (two-dimensional)): (a) Ra = 10°: (b) Ra = 10*: (¢c) Ra = 107
Table 1. The overall Nusselt number at the isothermal walls
Ru 107‘ l()‘ 10i 10°
Ntgeeran 1.085(—~4.52%) 2.100(—8. 29%) 4.361(-—4.75%) 8. 770(71 88%)
Note - the ficures ‘;Ty‘ 1ronfhncu::|;1r‘“ﬁufn the difference hetween the three- and two-
Note: the figures in parentheses indicate the difference between the three- and t
dimensional data.
Tohla 7 Daneacantativa fAnld valivag tn tha oummiostry nlona (~ — (1 S)
1403C 2. RCPITSCiiiative 1iCiG Vaiucs i til Synimiiry planc (I = v.2y
Ra 10 10* 10° 10°
Uy 0. 1?!4( 3.30%) 0.2013(4. 47% 0.1468(7.83%)  0.08416(5.60%)
1 0.200 0.1833 0.1453 0.1443
Py N 1IN A 200/ NIEY __ 2 AK0/0 NIATLL 5 190/, N DSQQS 1 210/
gy Vo 1IZUL— 99700 ) Veaslday 3. 7270} VLTI 2000 o) V.e3OS 150 o
x 0.8333 0.8833 0.9353 0.9669
Nu,,,. 1.420(—5.85%)  3.652(3.12%) 7.795(2.45%) 17.67(1.13%)
y  0.08333 0.6232 0.08256 0.03793
Nu,,, 0.7639(4.45%)  0.6110(—2.00%) 0.7867(—9.06%) 1.257(—1.51%)
vy 10 1.0 1.0 1.0
Nty 1.105(—2.62%)  2.302(1.22%) 4.646(1.68%) 9.012(0. 854%)

Note: the figures in parentheses indicate the difference between the three- and two-

dimensional data.
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FiG. 10. Comparison of the temperature profiles in the symmetry plane at z = 0.5 (Ra = 10°) (solid curves,
present numerical results ; symbols, measurements at Ra = 1.89 % 10° [8]): (a) at various heights: (b} at
x = 0.5.

at the mid-height (y =0.5) agrees well with the
measurements. The discrepancy between the com-
putations and the measurements increases as the hori-
zontal walls are approached. This may be attributed to
the unavoidable heat transfer through the horizontal
walls in the actual experimental situations. This is
clearly observed in the measured temperature dis-
tribution at the enclosure center depicted in Fig. 10(b).
In the experiments, the perfect insulator condition
{which is routinely assumed in the numerical study)
could not be strictly realized [8]. This is perhaps the
reason for the discrepancy shown in Fig. 10(b).
Comparison of the velocity fields is shown for two
Rayleigh numbers. Figure 11 illustrates the profiles of
the horizontal and vertical velocity components at
selected locations in the enclosure symmetry plane at
Ra = 10°. The velocity measurements by laser Dop-
pler technigues (for Ra = 1.03 x 10° [7] and 1.89 x 10°
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[8]) are also plotted in the same figure. The exper-
imental data of Krane and Jessee [B], at a slightly
higher Rayleigh number than that considered in the
present computation, agree reasonably well with the
numerical predictions. Slight deviations are found in
the peak values of the vertical velocity (v) near the
isothermal walls and in the locations where they occur,
as well as in the values of the peaks of the horizontal
velocity. These may reflect the effects of intensified
convective activities at a higher Rayleigh number. The
results of Bilski et al. {7] exhibit considerable asym-
metry in the profiles even though the overheat ratio
of their experiments is small, § < 0.03. When the
overheat ratio is large (6 > 0.2), the effects of the
non-uniform fluid properties may have a measurable
impact on the field characteristics; thus, the asym-
metric fields will be formed, as réported in the two-
dimensional numerical studies for differentially
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FiG. 11. Comparison of the velocity profiles in the symmetry plane at z = 0.5 (Ra = 10°) (solid curves.
present numerical results; O, measurements at Rg = 1.03x 107 {71; A, measurements at Rg == 1.89 x 10°
[B:(@)atx=05;(b)aty=0.5.
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heated square enclosures [I7-19}. No clear cxpla-
nations were given in ref. [7] as to the cause of the
asymmetric velocity profiles, which appeared at the
small overheat ratio used.

The horizontal velocity (1) profiles of both exper-
iments indicate the existence of a region of very low
velocities near the mid-height of the enclosure. This is
not quite evident in the numerical predictions, in
which the velocity changes gradually from a peak
to another peak almost linearly. The effects of the
extraneous heat transfer through the horizontal walls
in the experiments could be the sources of the dis-
crepancy [6-8].

The results at Ra = 10® are shown in Fig. 12, in
which the experimental data obtained by Bilski ef al.
[7] for Ra = 1.13x 10° are included. Again, at this
Rayleigh number, the asymmetry of the profiles i
noticeable in the measurements. However, the degree
of the asymmetry decreased in comparison to the case
of the lower Rayleigh number discussed previously.
The experimental results overpredict the peak values
of the horizontal velocity components compared to
the numerical results, while they show reasonable
agreement for the vertical velocity profiles.

CONCLUSIONS

In the present numerical study, three-dimensional
steady flow analyses have been madce on natural con-
vection in a differentially heated cubical enclosure.
The detailed structures of the three-dimensional fields
were scrutinized by using high-resolution com-
putational results over the range of Rayleigh numbers
studied, 10° < Ra < 10°.

Examinations of the perspective three-dimensional
fields revealed that the variations in the z-direction
were evident particularly near the end walls (z = Q and
1). As the Rayleigh number increases, the convective
activities intensify, and significant z-variations tend to
be confined into narrower areas close to the end walls,

The w velocity was found to be an order of mag-

nitude smalicr than the dominant velocities (& and 1)
over the entire Rayleigh number range studied. The
non-zero values of the w velocity were noticed in the
cnd wall regions, specifically near the corners. The size
of these areas becomes smaller as Ra increases. At
high Rayleigh numbers, the secondary vortices form
along the vertical edges ; thesc affect the mean Nusselt
number distribution.

The predicted overall Nussell numbers show con-
siderable discrepancies from the corresponding two-
dimensional solutions. The maximum difference was
found to occur near Ra = 10%, which is near the tran-
sition point between the conduction dominant flow
and the boundary layer-type flow structure,

The present three-dimensional data are found to be
in fair consistency with the available experimental
measurements. Comparisons with the prior exper-
imental results for air suggest that the thermal bound-
ary condition at the horizontal walls has a con-
siderable influence on the vertical profiles of flow
variables.

Note: the interested reader should contact the first
aothor for the quantitative results of these three-
dimensional computations.

Note added 10 proof~—It has come to our attention that i
similar work was recently performed by using the finite
clement method.

D. W. Pepper, Modeling of three-dimensional natural con-
veciion with a time-split finite-element technique. Numer.
Heat Transfer 1, 31 35 {1987}
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Résumé—On rapporte une étude numérique, par différences finies @ haute résolution, de la convection

naturelle permanente tridimensionnelle de I'air pour un nombre de Rayleigh 10° < Ra < 10, dans une

cavité cubique dont deux parois verticales sont chauffées différentiellement. On décrit les détails de

Pécoulement tridimensionnel et des caractéristiques thermiques. On utilise les visualisations graphiques de

Iécoulement. L’existence de la composante de vitesse selon z, est clairement visible bien que de faible

valeur. On fait la comparaison des présents résultats tridimensionnels avec les solutions bidimensionnelles.
Les premiers montrent un accord raisonnable avec les mesures expérimentales.

NUMERISCHE UNTERSUCHUNG DER DREIDIMENSIONALEN KONVEKTION IN
EINEM UNGLEICHMASSIG BEHEIZTEN WURFELFORMIGEN HOHLRAUM

Zusammenfassung—Die stationire, dreidimensionale natiirliche Konvektion von Luft in einem wiirfel-
férmigen Hohlraum, in dem zwei Seitenwinde unterschiedlich beheizt werden, wird mit Hilfe eines
hochaufiésenden Differenzenverfahrens im Bereich 10° < Ra < 10° numerisch untersucht. Die drei-
dimensionale Stromung und die thermischen Vorginge werden eingehend beschrieben. Dazu werden
moderne Verfahren der Sichtbarmachung von berechneten Sirémungen eingesetzt. Das Vorhandensein
einer Geschwindigkeitskomponente in z-Richtung wird nachgewiesen, obwohl diese sehr klein ist. Die
Ergebnisse dieser dreidimensionalen Berechnungen werden mit denen zweidimensionaler Verfahren ver-

n\‘r‘hnr\ Die dreidimensionalen Rerechnun
..... areraimensionaien serecnnu:

oon stimmen cut mit Versuchowerton itherain
Ungen Suminein gui mit vCrsucnswericn ocreii.

YHUCJIEHHOE UCCIIEAOBAHUE TPEXMEPHOM KOHBEKLIMM B HEOJJHOPO/HO
HAT'PEBAEMOHM KYBHUYECKOW ITOJIOCTH

Assorammg—TIpuBOaATCS pe3yNLTATH YHCICHHOTO MCCIICAOBAHAA KOHEYHO-PA3HOCTHBIM METOAOM
BBICOKOTO pa3spellieHAs TPEXMEpHOH CTalMOHAPHON €CTECTBCHHOH KOHBEKIHH BO3[yXa NPH 3HAYCHHAX
uncna Paaes, mamensromnxcs B AHTepBaie 10° < Ra < 105, B ky6rueckoit MOJOCTH C ABYMS Pa3HIHO
HAarpeBaeMbiMH BEPTHKAJIbHEIMA CTCHKAMH. ONHCHIBAIOTCA AETANM TPEXMEPHOTO TEYCHMS W TEMIOBbIE
xapakTepacTukd. IAPOKO NPHMEHSIOTCA COBpEMEHHbIE MHCICHHBIE METOABI BH3YAIM3aIHH TCHYEHHS.
YeTko MOKa3bIBacTCA HAIMMAC NONEPEYHOH KOMIOHEHTbI CKODOCTH HECMOTPS Ha €€ MAYIo Be.nn-mny

ITNOROMETCS CHABUAHTAE MANVHAHHLIY TRAVAIANIILIV MANUTL A TAR A fTRLaramees r e searrarsee o cxe

22POBORHTCA CPABHCHAC NOMYHCHINX TPEXMEPHEIX PE3Y/IbTATOB ¢ ABYMCPDHDIME PCIICHHAMHA. T PCXMEP-
HbIC pe3yIbTAThl IEMOHCTPHPYIOT YAOBJETBOPHTEIBHOE COIJIACHE C IKCIEPAMEHTAIbHBIMH JaHHBIMY.



