

Figure V: Différent type de frittage.

IV. Propriétés des céramiques structurales

IV.1. Réfractarité et propriétés thermiques

Les céramiques sont connues pour leur bon comportement aux températures élevées. Pour commenter leur comportement thermique, il faut introduire les notions de **conductivité thermique**, dilatation thermique et résistance **aux chocs thermiques**.

Il y a deux possibilités d'utilisation des céramiques pour les applications thermiques: le matériau peut avoir à subir des **chocs thermiques**. Dans ce cas, il faut qu'il possède un **coefficient de dilatation thermique** le plus faible possible et une **conductivité thermique** élevée, mais il peut être utilisé aussi en tant qu'isolant thermique. Pour cela, il doit avoir une faible conductivité thermique.

Les céramiques sont essentiellement connues pour leur **réfractarité**, c'est à dire leur bon comportement aux températures élevées. En général, on admet qu'une céramique est réfractaire quand sa **résistance pyroscopique** est au moins de 1500°C. La **résistance pyroscopique** d'un réfractaire est la température àlaquelle une éprouvette conique faite du matériau à étudier s'affaisse d'une valeur donnée.

On a représenté, dans le tableau ci-dessous, des valeurs pour plusieurs céramiques.

Céramiques	Formule	Température de	Densité
		fusion (en °C)	(en kg/dm ₃)
Aluminate de baryum	Ba O - Al2 O3	2000	3.99
Aluminate de baryum	Ba O - 6Al2 O3	1860	3.64
Aluminate de béryllium	Be O - 6Al ₂ O ₃	1870	3.76
Aluminate de cobalt	Co O - Al2 O3	1955	4.38
Aluminate de	Mg O - Al ₂ O ₃	2135	3.58
magnésium			
Aluminate de nickel	Ni O - Al ₂ O ₃	2015	4.45
Aluminate de	Sr O - Al2 O3	2010	
strontium			
Aluminate de zinc	Zn O - Al2 O3	3890	4.58
Carbure de hafnium	Hf C	2160	
Chromate de calcium	Ca O - Cr O ₃	2000	3.22
Chrome magnésie	Mg O - Cr2 O3	2170	4.39
Chromite de calcium	Ca O - Cr2 O3	2030	4.8
Lanthanate de	Mg O - La2 O3	1760	
magnésium			
Magnésio ferrite	Mg O - Fe2 O3	2570	4.48
Oxyde d'aluminium	Al2 O3(99,8%)	2600	3.97

Oxyde de béryllium	Be O (99,8%)	3050	3.03
Oxyde de calcium	Ca O (99,8%)	1840	3.97
Oxyde de magnésium	Mg O (99,8%)	2000	3.02
Oxyde de thorium	Th O2 (99,8%)	1860	10.5
Oxyde de titane	Ti O2 (99,5%)	1870	4.96
Oxyde de zirconium	Zr O2 stabil. (92%)	2550	5.6
Oxyde d'uranium	U O2 (99,8%)	2800	4.5
Oxyde d'ytrium	Y2 O3 (99,8%)	2410	3.14
Phosphate de calcium			
Phosphate de calcium	3 Ca O - P2 O5	1730	4.53

La **conductivité thermique** λ (unité S.I. : W / m.K) est la propriété d'un matériau de transmettre un flux de chaleur par unité de surface. Elle est proportionnelle à la capacité calorifique c, la quantité et la vitesse des porteurs thermiques (électrons ou phonons) v, et leur libre parcours moyen l.

Pour les céramiques, les fortes **conductivités** seront obtenues pour les structures composées d'éléments simples ou constituées d'atomes de poids voisins. Le *graphite* aura une excellente conductivité thermique. SiC, BeO et B_4C , matériaux composés d'éléments de poids atomiques voisins, présenteront de même de très bonnes conductivités thermiques. Les céramiques ayant des structures plus complexes ont une conductivité faible. Par exemple, Al_2O_3 a une conductivité de 25 W/ m.K.

La structure des céramiques ioniques, comme les **oxydes**, est compacte. Cette structure est la cause d'une forte dilatation thermique. Al_2O_3 , Zr_2O , MgO ont donc une forte dilatation due à la température. Ceci explique leur très mauvaise tenue aux chocs thermiques. Par contre, cette dilatation sera beaucoup plus faible pour les *céramiques covalentes* (non oxydes). Pour lamême amplitude, on aura absorption de ces vibrations dans les cages interstitielles et par les déviations angulaires.